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Abstract: Aimed at joint state and parameter estimation problems in hypersonic glide vehicle defense,
a novel moving horizon estimation algorithm via Carleman linearization is developed in this paper.
First, the maneuver characteristic parameters that reflect the target maneuver law are extended into
the state vector, and a dynamic tracking model applicable to various hypersonic glide vehicles is
constructed. To improve the estimation accuracy, constraints such as path and parameter change
amplitude constraints in flight are taken into account, and the estimation problem is transformed into
a nonlinear constrained optimal estimation problem. Then, to solve the problem of high time cost for
solving a nonlinear constrained optimal estimation problem, in the framework of moving horizon
estimation, nonlinear constrained optimization problems are transformed into bilinear constrained
optimization problems by linearizing the nonlinear system via Carleman linearization. For ensuring
the consistency of the linearized system with the original nonlinear system, the linearized model is
continuously updated as the window slides forward. Moreover, a CKF-based arrival cost update
algorithm is also provided to improve the estimation accuracy. Simulation results demonstrate that
the proposed joint state and parameter estimation algorithm greatly improves the estimation accuracy
while reducing the time cost significantly.

Keywords: hypersonic glide vehicles; joint state and parameterestimation; moving horizon
estimation; Carleman linearization; constrained optimization problem; inequality constraints

1. Introduction

Due to their fast speed, high accuracy, long-range lethality, and unique survivability,
hypersonic glide vehicles have brought great challenges to the modern defense system [1,2].
As one of the key technologies for hypersonic glide vehicle defense, the high-accuracy
target tracking method has become a hot and difficult point of the study on antimissile
technology in recent years [3,4]. However, only estimating the state is difficult to meet
the requirements of target type recognition, maneuver mode recognition, and accurate
trajectory prediction. To effectively defend hypersonic targets, it is necessary to accurately
estimate their state and parameters.

Currently, the joint state and parameter estimation has attracted more and more atten-
tion, and some estimation algorithms have been developed and reported [4–8]. However,
most current joint state and parameter estimation algorithms for hypersonic targets are
designed in the framework of the Kalman filter system to improve the state estimation accu-
racy by constructing a more accurate parameter-augmented model, and pay little attention
to the accuracy of parameter estimation. Due to the system state model’s strong nonlin-
earity, it is difficult for the Kalman filter algorithms based on model recursion to achieve
accurate parameter estimation for hypersonic targets. Moreover, during flight, the vehicle is
subjected to numerous constraints, the maneuver characteristic parameters change slowly,
and their variation amplitudes are limited [9,10]. Taking various prior constraints into ac-
count in the estimator can help to improve the estimation accuracy, particularly parameter

Aerospace 2022, 9, 217. https://doi.org/10.3390/aerospace9040217 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9040217
https://doi.org/10.3390/aerospace9040217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://doi.org/10.3390/aerospace9040217
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9040217?type=check_update&version=2


Aerospace 2022, 9, 217 2 of 20

estimation accuracy. However, it is difficult for Kalman filter algorithms to consider prior
inequality constraints. Therefore, the joint state and parameters estimation algorithm can
consider numerous inequality constraints while improving estimation accuracy.

The essence of the estimation problem is to design an estimator, which can output the
estimated system’s state according to the input measurement. Since the error characteristics
are usually unknown, with the feedback correction idea of the control system for reference,
the full information estimation algorithm based on the moving optimization principle of
model predictive control (MPC) is proposed to improve estimation accuracy. However, the
full information estimation algorithm suffers from the ‘data explosion’ problem [11]. By
introducing the arrival cost, moving horizon estimation transforms the full information
estimation problem into optimization problems within a sliding window and effectively
solves the ‘data explosion’ problem. Moving horizon estimation, in contrast to traditional
Kalman filters, introduces a feedback correction mechanism and realizes state estimation
by solving a nonlinear optimization problem, significantly improving estimation accuracy.
Unlike the traditional model-based recursive Kalman filters, the parameters in moving
horizon estimation are independent optimization variables, which help to improve the
parameter estimation accuracy, particularly for strongly nonlinear systems. Moving hori-
zon estimation has been widely used in state estimation of nonlinear systems [12,13], such
as UAVs [14], robotics [15], aircraft [16], etc., because of its high estimation accuracy and
adaptability. Furthermore, by solving constrained optimization problems, state and pa-
rameter inequality constraints can be considered in moving horizon estimation to improve
the estimation accuracy. Therefore, in this paper, moving horizon estimation is adopted to
solve the joint state and parameter estimation problem in hypersonic glide vehicle defense.

However, due to the need to continuously solve the nonlinear optimization problems,
the time cost of moving horizon estimation is usually quite high, especially when inequality
constraints are considered. Adding inequality constraints will increase the time cost signifi-
cantly. Therefore, the key to the engineering application of moving horizon estimation is
reducing time costs while maintaining estimation accuracy. There are two primary ways for
reducing the time cost. The first is to improve the solution algorithm of the nonlinear opti-
mization problem to speed up the problem’s solution [17–19]. However, it is often difficult
to improve optimization algorithms, and improved optimization algorithms are often less
adaptive for nonlinear systems. Another way is to linearize the nonlinear system [20,21].
Combined with the characteristics of moving horizon estimation, the linearized model can
maintain a high approximation accuracy by continuously updating the expansion points.
The linearization methods have high adaptability and applicability. The most efficient
way to reduce time costs is to linearize nonlinear systems. The Carleman linearization
method was proposed by Torsten Carleman in 1932 and its core idea is: by changing
a set of bases in the state space, the finite-dimensional nonlinear differential equations
can be transformed into infinite-dimensional linear differential equations [22]. By Taylor
expansion and augmenting new states that represent the higher order deviation terms
to the original dynamic system state, the Carleman linearization method can accurately
approximate the state equation of a nonlinear system [23]. Carleman linearization has
attracted increasing attention and has been widely used in the linearization of nonlinear
systems [24–29]. Therefore, in this paper, Carleman linearization is applied to the joint
state and parameter estimation of the hypersonic target, and a moving horizon estimation
algorithm via Carleman linearization is proposed to reduce time cost.

Moreover, arrival cost reflects the influence of historical data on state estimation,
and its update accuracy has a direct impact on the accuracy and stability of system state
estimation. However, for constrained linear or nonlinear systems, arrival cost usually
does not have an analytical solution. Currently, the most common approach for updating
the arrival cost is to approximate it with the estimated covariance matrix of the linear
unconstrained system [30]. For constrained linear systems, the arrival cost update can
be implemented using the standard Kalman filter or Kalman smoothing. For nonlinear
systems, currently, there are mainly two approaches to updating the arrival cost: (1) Lin-
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earize the nonlinear system, use the EKF (extended Kalman filter) or convert the arrival
cost update problem into a least-squares problem to solve [16,31]. The basic idea of EKF is
to linearize the nonlinear system based on Taylor expansion and then use the Kalman filter
to realize suboptimal estimation. However, due to the large error caused by the neglected
high-order term in Taylor expansion, the estimation accuracy of the EKF algorithm for
strongly nonlinear systems is usually low, and even filtering divergence occurs. (2) From
the perspective of probability and statistics, the mean and covariance of state distribution
are approximated by random or deterministic sampling [32,33], such as UKF (unscented
Kalman filter), particle filter, etc. For strongly nonlinear systems, linearization methods
often lead to large arrival cost update errors. Random or deterministic sampling filtering
algorithms enable accurate mean and covariance predictions; thus, using the sampling
filtering algorithm is beneficial to improve the accuracy of arrival cost update. Among
the random or deterministic sampling filtering algorithms, CKF (Caubature Kalman filter)
makes it possible to numerically compute multivariate moment integrals encountered in
the nonlinear Bayesian filter based on the spherical–radial cubature rule and deterministic
sampling. CKF is capable of accurately approximating the first two order statistical mo-
ments and has high applicability to high-dimensional nonlinear systems [34]. Furthermore,
in the case of equal accuracy, the amount of calculation of the CKF algorithm is also less
than that of other sampling filters, such as UKF and particle filter. Therefore, in this paper,
CKF is adopted to update the arrival cost.

Motivated by the above discussions, the objective of this paper is to solve the joint state
and parameter estimation problem in hypersonic glide vehicle defense. The contributions of
this paper can be summarized as follows: A novel moving horizon estimation algorithm via
Carleman linearization is developed. The maneuver characteristic parameters that reflect
the target maneuver law are extended into the state vector, and a dynamic tracking model
applicable to various hypersonic glide vehicles is constructed. To improve the estimation
accuracy, the constraints in flight are taken into account, and the estimation problem is
transformed into a constrained nonlinear optimal estimation problem. Then, to solve the
problem of high time cost for solving nonlinear constrained optimal estimation problems,
in the framework of moving horizon estimation, nonlinear constrained optimization prob-
lems are transformed into bilinear constrained optimization problems by linearizing the
nonlinear system via Carleman linearization. For ensuring the consistency of the linearized
system with the original nonlinear system, the linearized model is continuously updated as
the window slides forward. The joint state and parameter accurate estimation is realized by
solving the bilinear constrained optimization problem. Moreover, a CKF-based arrival cost
update algorithm is also introduced to improve the estimation accuracy. Simulation results
demonstrate that the proposed joint state and parameter estimation algorithm greatly
improves the estimation accuracy while significantly reducing the time cost of tracking.

2. Problem Formulation

In this section, the maneuver characteristics are analyzed using the dynamics model,
and the maneuver characteristic parameters that reflect the maneuver laws are extended
into the state vector to construct an applicable dynamic tracking model that can be ap-
plied to various hypersonic glide vehicles. In flight, the vehicle is subject to numerous
constraints, such as path constraints. Meanwhile, the maneuver characteristic parameters
change slowly during flight, and their variation amplitudes are limited [9,10]. Therefore, to
improve the estimation accuracy, the constraints and the variation amplitude of characteris-
tic parameters in flight are considered, and the estimation problem is transformed into a
nonlinear constrained optimal estimation problem.
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2.1. System State Model

Hypersonic glide vehicle is mainly dominated by Earth’s gravity and aerodynamic
force. The corresponding dynamics model is described as [35]:

..
r =

R
m

+
G
m
−ωe × (ωe × r)− 2ωe ×

.
r (1)

where m is the mass of the vehicle, ωe denotes the self-rotation angular rate of the Earth,
and the gravitational G of the earth is determined by the position of the vehicle r.

R = −Di + L(j sin γ + k cos ν) (2)

where L and D denote the aerodynamic lift and drag, respectively. ν is the bank angle. The
traditional dynamic pressure model is used to describe the aerodynamic force [36]

D ≈ 1
2

ρv2SCD(α, Ma) (3)

L ≈ 1
2

ρv2SCL(α, Ma) (4)

where ρ represents atmospheric density, v is the vehicle velocity, and S is the reference area
of the vehicle. CL and CD denote the aerodynamic coefficients, which are functions of the
angle of attack α and Mach number Ma.

The vehicle’s maneuver is mainly determined by the characteristic parameters uL, uD,
and γ. uL and uD are defined as: {

uD = SCD
m

uL = SCL
m

(5)

By extending the characteristic parameters into the state vector, the following joint
state and parameter estimation model is constructed:

.
r = v

.
v = CP

v (θ, σ, γ)


− 1

2 ρv2uD
1
2 ρv2uL

0

+ g− 2ωe × v−ωe × (ωe × r)


.
uD.
uL.
γ

 =

 wD
wL
wγ


(6)

where Cv
p(θ, σ, γ) is the conversion relationship between the velocity coordinate system

and the radar coordinate system, state variable x = [r, v, uD, uL, γ], the sampling period is
T, and wD, wL, and wγ are Gaussian white noise.

In consideration of the detection system, the system state model can be described as:{ .
x = f (x) + w
y = h(x) + v

(7)

where f (x) is the joint state and parameter estimation model shown in Equation (6), h(x)
denotes the system measurement equation, w and v represent Gaussian white noises, and
the covariances of system noise w and measurement noise v are Q and R, respectively.

2.2. Inequality Constraints

In flight, the vehicle is subjected to numerous constraints. Taking constraints into
consideration in the estimator can help to improve the estimation accuracy. Generally,
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flight path constraints are the most commonly considered. There are three typical path
constraints: the heating rate

.
Q, the dynamic pressure q, and the aerodynamic load n:

.
Q = KQ

(
ρ

ρ0

)0.5( v
vc

)3.15
≤

.
Qmax (8)

qmin ≤ q =
1
2

ρv2 ≤ qmax (9)

n = q
√

uD2 + uL2 S
mg
≤ nmax (10)

where Equation (8) is the Kemp–Riddell formula, ρ0 is the sea-level atmospheric density, vc
is the first cosmic velocity of the Earth, and KQ is a constant.

During the flight, the maneuver characteristic parameters uL, uD change slowly, and
their variation amplitudes are limited [9,10]. Therefore, the characteristic parameter con-
straints can be taken into account in the estimator:

uDmin ≤ uD ≤ uDmax (11)

uLmin ≤ uL ≤ uLmax (12)

Furthermore, with the continuous decrease in the vehicle’s speed, the maximum
variation amplitude of the bank angle decreases gradually. The bank angle symbol can also
be judged according to the vehicle’s turning direction:

0 < γ ≤ |γ(v)|max or − |γ(v)|max < γ ≤ 0 (13)

2.3. Nonlinear Constrained Optimal Estimation Problem

The essence of the estimation problem is to design an estimator that can output the
estimated value x̂k of the system state xk according to the input measurement at time k. The
following requirement must be met by the estimator [11]:

ek := xk −
^
xk → 0, k→ ∞, (14)

The inequality constraints cannot be considered in traditional Kalman filter algorithms
based on model recurrence, and the character of the error ek cannot be directly judged.
Therefore, the feedback correction idea of the control system is used for reference, and the
moving optimization principle of model predictive control (MPC) is adopted to design the
estimator. Then, the estimation problem in Equation (7) is transformed into the following
finite-time constrained optimization problem.

Problem 1
Φ∗t := min

x0,{wk}t−1
k=0

ΦT({wk}t−1
k=0, x0) (15)

s.t.
Dynamic constraints: Equation (7).
Inequality constraints: Equations (8)–(13).
where x̂0 is a priori estimated value of the system’s initial state and P0

−1 is a symmetric
positive definite weight matrix:

Φt({wk}t−1
k=0, x0) =

∥∥∥∥x0 −
^
x0

∥∥∥∥2

P−1
0

+
t−1

∑
k=0

(‖vk‖2
R−1 + ‖wk‖2

Q−1) (16)
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where 
‖vk‖2

R−1 = vk
TR−1vk

‖wk‖2
Q−1 = wk

TQ−1wk

‖x0 − x̂0‖2
P−1

0
= (x0 − x̂0)

T P−1
0 (x0 − x̂0)

(17)

{wk}t−1
k=0 := {w0, w1, · · · , wt−1} (18)

Problem 1 is known as full information estimation because it utilizes all measured
data to estimate the system state and disturbance. However, with the continuous increase
in tracking time T, the amount of input measured data gradually increases, resulting in an
increasing amount of calculation for solving optimization Problem 1. Especially, the amount
of calculation and time cost will significantly increase when there are inequality constraints.
When t→ ∞, the input and amount of calculation will increase infinitely, resulting in a
‘data explosion’ and the inability to solve Problem 1. As a result, full information estimation
is difficult to meet engineering application requirements, and moving horizon estimation
has been proposed.

3. Moving Horizon Estimation Algorithm via Carleman Linearization

Although the moving horizon estimation algorithm effectively solves the ‘data ex-
plosion’ problem of full information estimation, its time cost is still high due to the need
to continuously solve the nonlinear optimization problem, especially when inequality
constraints are taken into account. Adding inequality constraints will increase the time cost
significantly. To solve the problem of high time cost for solving the nonlinear constrained
optimal estimation problem, Carleman linearization is utilized in this section to transform
the nonlinear constrained optimal estimation problem into a bilinear constrained optimal
estimation problem. The linearization model is continuously updated in the framework
of moving horizon estimation to ensure the consistency of the bilinear system with the
original nonlinear system. The joint state and parameter accurate estimation is realized
through solving the bilinear constrained optimization problem.

3.1. Moving Horizon Estimation Principle

For avoiding the ‘data explosion’ problem of full information estimation and reducing
the time cost, the measured data sequence is divided into historical data {0 ≤ k ≤ t − N − 1}
and window data {t − N ≤ k ≤ t − 1} by introducing a sliding window with a data length
of N as shown in Figure 1. Then, Equation (16) can be rewritten as:

Φt

(
{wk}t−1

k=0, x0

)
= ‖ x0 − x̂0 ‖2

P−1
0

+
t−1

∑
k=0

(
‖ vk ‖2

R−1 + ‖ wk ‖2
Q−1

)
= ‖ x0 − x̂0 ‖2

P−1
0

+
t−N−1

∑
k=0

‖ vk ‖2
R−1 +

t−N−1

∑
k=0

‖ wk ‖2
Q−1+

t−1

∑
k=t−N

‖ vk ‖2
R−1 +

t−1

∑
k=t−N

‖ wk ‖2
Q−1

= Φt−N

(
x0, {wk}T−N−1

k=0

)
+

t−1

∑
k=t−N

‖ vk ‖2
R−1 +

t−1

∑
k=t−N

‖ wk ‖2
Q−1

(19)

Since the system in Equation (7) has Markov characteristics, the last two terms on the
right side of the above equation are only determined by the state xt−N at time t − N and
the noise sequence {wk}t−1

t−N . According to the first term on the right side of Equation (19),
the following constrained optimization problem is defined.
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Figure 1. Sliding window.

Problem 2
Θτ(χ) := min

x0,{wk}τ−1
k=0

Φτ({wk}k=τ−1
k=0 , x0) (20)

s.t.
Dynamic constraints: Equation (7).
Inequality constraints: Equations (8)–(13).
The optimal value of Equation (20) is the first term on the right side of Equation (19),

which represents the necessary condition for the system to transfer from the initial state x0
to the state χ, which is called the arrival cost. Based on the forward dynamic programming
principle, Problem 1 can be transformed into the following form.

Problem 3
Φ∗t := min

xt−N ,{wk}k=t−1
k=t−N

Φt({wk}k=t−1
k=t−N , xt−N) (21)

s.t.
Dynamic constraints: Equation (7).
Inequality constraints: Equations (8)–(13)

where

Φt(xt−N , {wk}k=t−1
k=t−N) = Θt−N(xt−N) +

t−1

∑
k=t−N

‖vk‖2
R−1 +

t−1

∑
k=t−N

‖wk‖2
Q−1 (22)

In the above equation, Θt−N(xt−N) is the arrival cost of state xt−N , that is, the opti-
mization value of Problem 2 at time t − N. The introduction of the arrival cost ensures
the consistency between moving horizon estimation and full information estimation. The
detailed steps of the moving horizon estimation are shown in Figure 2. When t ≤ N,
the state estimation can be realized by solving the full information estimation problem
(Problem 1). When t > N, first, the arrival cost Θt−N(xt−N) at time t is updated, and then
the system state at time t − N is estimated by solving Problem 3. Then, the window slides
forward; that is, the measured data at time t − N is discarded, and the measured data at
time t + 1 is imported. When N = 1, the moving horizon estimation is equivalent to the
Kalman filter for an unconstrained linear system.

3.2. Carleman Linearization

To facilitate the introduction of the Carleman linearization method, the following
nonlinear dynamic systems is defined:

.
x = f (x) (23)
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Figure 2. Moving horizon estimation flowchart.

The nonlinear functions f (x) in Equation (23) is approximated at a specified point x0
by Taylor expansion:

f (x) = f (x0) +
η

∑
k=1

1
k!

∂ f[k]
∣∣∣
x=x0

(x− x0)
[k] (24)

where η denotes the expansion order, and x[k] is the kth Kronecker product.
∂f [k] is the kth partial derivative of f (x) at x = x0 and can be calculated by:

∂ f[k] =


∂ f
∂x k = 1
∂
∂x ⊗ ∂ f[k−1] k > 1

(25)

To facilitate the derivation without loss of generality, it is assumed that the expansion
point x0 = 0. Thus, nonlinear dynamic systems in Equation (23) can be approximated by a
polynomial form:

.
x ' A0 + A1x + A2x2 + · · ·+ Aη xη

'
η

∑
k=0

Akx[k] (26)

where

Ak =
1
k!

∂ f[k]

∣∣∣∣
x=0

, A0 = f (0) (27)

To realize Carleman linearization, the state vector of the system is extended to x⊗:

x⊗ = [xT (x[2])
T
· · · (x[η])

T
]
T

(28)

For verifying whether the extended state x⊗ is consistent with the original state x, the

higher-order term of the original state x is differentiated based on Equation (26).
.
x[k] is

represented as:
.
x[k] = x[k−1]

k−1
∑

l=0
I[l]n ⊗

.
x⊗I[k−1−l]

n

= x[k−1]
k−1
∑

l=0
I[l]n ⊗ (

η

∑
n=0

Anx[n])⊗I[k−1−l]
n

(29)

It can be seen from the above equation that
.
x[k] is the function of the polynomials x[k–1],

x[k], . . . , x[η + k–1], and the maximum order of the polynomials is η + k − 1. However, in
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the extended state, the highest order polynomial is x[η]. Therefore,
.
x[k] is truncated at the

polynomial x[η]:
.
x[k] = x[k−1]

k−1
∑

l=0
I[l]n ⊗ (

η−k+1
∑

n=0
Anx[n])⊗I[k−1−l]

n

=
η−k+1

∑
i=0

ak,ix[k+i−1]

(30)

where

ak,i =
k−1

∑
ς=0

I[ς]n ⊗ Ai ⊗ I[k−1−ς]
n (31)

Due to the truncation in the above equation, the high-order terms x[η + 1], . . . , x[η + k − 1]

are lost. Therefore, the algebraic relationship between the extended and the original states
has changed, and there is a large deviation between them. The truncated polynomial
increases as k increases, as does the deviation between the extended state and the original
state. The deviation accumulates in the high-order state over time and propagates back
to the original state. Therefore, in Carleman linearization, it is necessary to continuously
update the extended state according to the original state to maintain the approximation
accuracy for a long period. The bilinear system after Carleman approximation can be
expressed in the following compact form using the Kronecker product

.
x⊗ = Ax⊗ + Ar (32)

where

A =

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 · · · a1,η
a2,0 a2,1 · · · a2,η−1
0 a3,0 · · · a3,η−2
...

...
. . .

...
0 0 · · · aη,1

∣∣∣∣∣∣∣∣∣∣∣
, Ar =

∣∣∣∣∣∣∣∣∣∣

a1,0
0
0
0
0

∣∣∣∣∣∣∣∣∣∣
(33)

3.3. Application of Carleman Linearization in Moving Horizon Estimation

Converting a nonlinear constrained optimization problem into a bilinear constrained
optimization problem can improve solving speed significantly. Therefore, Carleman lin-
earization in Section 3.2 is adopted to approximate the nonlinear system state model in
Equation (7). In order to facilitate the derivation without loss of generality, it is also assumed
that the expansion point x0 = 0. Thus, the nonlinear system state model in Equation (7) can
be approximated by: 

.
x⊗ ' Ax⊗ + Ar +

l
∑

j=1
(Djx⊗ωj + Dj0ωj)

y ' Cx⊗ + ν

(34)

where ωj = ω(j), A and Ar are determined by Equation (33), and Dl and Dl0 are expressed as:

C =

∣∣∣∣∣∣∣∣∣∣∣

c1,1 c1,2 · · · c1,η
c2,0 c2,1 · · · c2,η−1
0 c3,0 · · · c3,η−2
...

...
. . .

...
0 0 · · · cη,1

∣∣∣∣∣∣∣∣∣∣∣
, Dj =

∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0 0
dj,2 0 · · · 0 0
0 dj,3 · · · 0 0
...

...
. . .

...
...

0 0 · · · dj,η 0

∣∣∣∣∣∣∣∣∣∣∣
, Dj0 =

∣∣∣∣∣∣∣∣∣∣∣

dj,1
0
0
...
0

∣∣∣∣∣∣∣∣∣∣∣
(35)
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where

dj,k =
k−1
∑

ς=0
I[ς]n ⊗ Γj ⊗ I[k−1−ς]

n

ck,i =
k−1
∑

ς=0
I[ς]n ⊗ Ci ⊗ I[k−1−ς]

n

Ci =
1
i! ∂h[i]

∣∣∣
x=0

(36)

Γj is a vector with zero elements except the jth element, which is equal to unity, and l
denotes the original state dimension.

According to Equation (28), the first l dimensions of the extended state vector are
the original system state. The linearized system state model is applied in the moving
horizon estimation framework, and the moving horizon estimation algorithm via Carleman
linearization is formed. Namely,

Problem 4
Φ∗t := min

xt−N ,{wk}k=t−1
k=t−N

Φt({wk}k=t−1
k=t−N , xt−N) (37)

s.t.
Dynamic constraints: Equation (34).
Inequality constraints: Equations (8)–(13)
where

Φt(xt−N , {wk}k=t−1
k=t−N) = Θt−N(xt−N) +

t−1

∑
k=t−N

‖vk‖2
R−1 +

t−1

∑
k=t−N

‖wk‖2
Q−1 (38)

The above Carleman linearization process is carried out around the origin to simplify
the derivation process. Because the linearization approximation error increases with time,
the expansion point is continuously updated with the forward movement of the sliding
window in the proposed moving horizon estimation algorithm via Carleman linearization
to reduce the approximation error. In addition, the linearization approximation error is
also caused by the inconsistency between the original states and the extended states. Thus,
in the proposed moving horizon estimation algorithm via Carleman linearization, the
extended state is updated according to the estimated original state continuously to reduce
the approximation error.

Furthermore, the extended state’s dimension is calculated by:

r =
η

∑
i=1

li (39)

It can be seen that extending the state results in a significant increase in the state’s
dimension, which leads to an increase in the amount of calculation. Because the extended
state contains repeated items, the extended state’s dimension is reduced by merging the
same items. The extended state’s dimension is reduced to:

rred =
η

∑
i=1

Cl+i−1
l−1 (40)

For example, the original system state vector is x = [x,1 x2], the expansion order η is set
as 3, and the extended state is x⊗ = [x1, x2, x2

1, x1x2, x1x2, x2
2, x3

1, x2
1x2, x2

1x2, x1x2
2, x2

1x2, x1x2
2,

x1x2
2, x3

2]. After eliminating the repeated states, the state vector is x⊗ = [x1, x2, x2
1, x1x2, x2

2, x3
1,

x2
1x2, x1x2

2, x3
2]. It can be seen that the dimension reduction operation can significantly

reduce the extended state’s dimension. When the dimension reduction operation is per-
formed, the matrix on the right side of Equation (34) should be adjusted accordingly.
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4. CKF-Based Arrival Cost Update

Arrival cost reflects the influence of historical data on state estimation. Its estimation
accuracy directly affects the accuracy and stability of system state estimation. Therefore,
updating the arrival cost is an important part of the moving horizon estimation algorithm.
However, for constrained linear or nonlinear systems, Problem 2 usually does not have an
analytical solution.

Currently, the most common approach for updating the arrival cost is to approximate
it with the estimated covariance matrix of the linear unconstrained system. That is, the
arrival cost is approximated by the following quadratic function [30]:

Θt−N(xt−N) = Φ∗t−N + ‖xt−N − x̃t−N‖2
P̃−1

t−N
(41)

where Φ∗t−N is a constant and represents the optimal solution of Problem 1 at time t − N,
x̃t−N is the estimated system state at time t − N, and P̃−1

t−N
denotes the estimation error

weight matrix. Based on Equation (41), arrival cost update is transformed into the estima-
tion of the system state and error covariance at time t − N.

The arrival cost update can be implemented using a standard Kalman filter or Kalman
smoothing for constrained linear systems. For nonlinear systems, currently, there are
mainly two approaches for updating the arrival cost:

(1) Linearize the nonlinear system, and use the EKF algorithm or convert the arrival cost
update problem into a least-squares problem to solve [16,31];

(2) From the perspective of probability and statistics, the mean and covariance of state
distribution are approximated by random or deterministic sampling [32,33], such as
UKF, particle filter, etc. For strongly nonlinear systems, linearization methods often
lead to large arrival cost update errors. Random or deterministic sampling filtering
algorithms enable accurate mean and covariance predictions; thus, using the sampling
filtering algorithm is beneficial to improve the accuracy of the arrival cost update.

Among the random or deterministic sampling filtering algorithms, CKF makes it pos-
sible to numerically compute multivariate moment integrals encountered in the nonlinear
Bayesian filter based on the spherical–radial cubature rule. CKF is capable of accurately
approximating the first two order statistical moments and has high applicability to high-
dimensional nonlinear systems [34]. Furthermore, in the case of equal accuracy, the amount
of calculation of the CKF algorithm is also less than that of other sampling filters, such as
UKF and particle filter. Therefore, in this paper, CKF is adopted to update the arrival cost.
The flow of the CKF-based arrival cost update is as follows:

Time Update:
Generate a set of 2n cubature points χ

(i)
t−N−1 based on the estimated state x̃t−N−1 and

covariance P̃t−N−1:

χ
(i)
t−N−1 = x̃t−N−1 + St−N−1ξi i = 1, 2, · · · , 2n (42)

where  St−N−1 = chol
(

P̃
t−N−1

)T

ξi =
√

2n
2 [I,−I]

(43)

where chol
(

P̃t−N−1

)
is the square root of the matrix P̃t−N−1, which is obtained by Cholesky

decomposition.
Cubature points propagate in the nonlinear system:

x̂(i)t−N = f
(

χ
(i)
t−N−1

)
i = 1, 2, · · · , 2n (44)
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The prior mean vector and covariance matrix for arrival cost are given as:
xt−N =

2n
∑

i=1
ωix̂

(i)
t−N

Pt−N =
2n
∑

i=1
ωi

[
x̂(i)t−N − xt−N

]
·
[
x̂(i)t−N − xt−N

]T
+ Q

(45)

where
ωi =

1
2n

, i = 1, 2, · · · , 2n (46)

Measurement Update:
Update cubature points χ

(i)
t−N based on the estimated state xt−N and covariance Pt−N

χ
(i)
t−N = xt−N + St−Nξi i = 1, 2, · · · , 2n (47)

where  St−N = chol
(

Pt−N
)T

ξi =
√

2n
2 [I,−I]

(48)

Cubature points propagate in the nonlinear measurement equation:

y(i)
t−N = h

(
χ
(i)
t−N

)
(49)

Estimate the predicted measurement:

ŷt−N =
2n

∑
i=1

ωiy
(i)
t−N (50)

Predict the covariance matrix and the cross-covariance matrix:
Pyy,t−N =

2n
∑

i=1
ωi

[
y(i)

t−N − ŷt−N

]
·
[
y(i)

t−N − ŷt−N

]T
+ R

Pxy,t−N =
2n
∑

i=1
ωi

[
χ
(i)
t−N − xt−N

]
·
[
y(i)

t−N − ŷt−N

]T (51)

The gain matrix is calculated by:

Kt−N = Pxz,t−N(Pzz,t−N)
−1 (52)

The estimated system state and covariance matrix for arrival cost are given as:

x̃t−N = xt−N + Kt−N
(
yt−N − ŷt−N

)
(53)

P̃t−N = Pt−N − Kt−N Pyy,t−NKT
t−N (54)

The joint state and parameter estimation can be realized by applying the CKF-based
arrival cost update algorithm to the proposed moving horizon estimation algorithm via
Carleman linearization (Carl-CKF-MHE). In the following, the accuracy and effectiveness
of the proposed joint state and parameter estimation algorithm are verified by simulation
analysis.

5. Simulation Results and Discussion

In simulations, the CAV-H model developed in Ref. [37] is adopted to validate the
proposed joint state and parameter estimation algorithm (Carl-CKF-MHE). The mass of the
vehicle is 907.2 kg, and the reference area is 0.4837 m2. The maximal angle of attack and the
angle of attack corresponding to the maximum lift drag ratio are 20◦ and 12◦, respectively.
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Flight path constraints are given as Qmax = 700 kw/m2, nmax = 4 g, and qmax = 60 kPa. The
bank angle is constrained by [−85◦, 85◦]. As a classic nonlinear Kalman filter, EKF and
CKF are used for comparison. Furthermore, moving horizon estimation algorithm using
EKF to update arrival cost (EKF-MHE), moving horizon estimation algorithm using CKF to
update arrival cost (CKF-MHE), and moving horizon estimation algorithm via Carleman
linearization applying the EKF-based arrival cost (Carl-EKF-MHE) are also included for
comparison. To be closer to reality, the following flight mission is proposed.

There are three no fly zones, whose locations are given in Table 1. The initial location
of the vehicle is set as λ0 = –30◦, φ0 = 0◦, and the initial velocity is taken as v0 = 6500 m/s.
The initial altitude is h0 = 50 km. The vehicle’s initial heading angle and the flight path
angle are set as σ0 = –92◦, θ0 = 0.5◦. The location of the target is set as λ0 = 10◦, φ0 = 25◦,
and the predictor–corrector guidance method developed in [37] is employed to complete
flight mission.

Table 1. Locations of no fly zones.

No Fly Zone Central Position
Radius (km)

Longitude (◦) Latitude (◦)

1 –16 18 700

2 1 21 850

3 15 12 700

The vehicle’s ground track and longitudinal trajectory are shown in Figures 3 and 4,
separately. Figures 5 and 6 depict the quasi-ballistic coefficients versus time and the bank
angle versus time in flight, respectively. The inequality path constraints profiles of the
vehicle are shown in Figure 7.

Figure 3. Ground track of the vehicle.
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Figure 4. Trajectory in the longitudinal profile.

Figure 5. Quasi-ballistic coefficients versus time.

Figure 6. Quasi-ballistic coefficients versus time.
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Figure 7. Quasi-ballistic coefficients versus time.

As shown in Figures 3 and 4, the vehicle maneuvered both laterally and longitudinally.
The vehicle performed a wide range of lateral maneuvers to achieve maneuvering penetra-
tion and to avoid the no fly zones with a maneuvering range of thousands of kilometers.
Due to the unbalanced longitudinal force, the flight altitude shows the oscillating drop
characteristics, which also causes periodic oscillations of the pseudo-ballistic coefficients
uL, uD, and path constraints shown in Figures 5 and 7. From Figure 5, it can be seen that
the quasi-ballistic coefficients uL and uD first decrease and then gradually increase after
870 s. This is because the aerodynamic coefficient gradually decreases as the Mach number
decreases during the flight, whereas the atmospheric density gradually increases as the
altitude decreases, resulting in a gradual increase in the aerodynamic coefficient. It can also
be seen that the pseudo-ballistic coefficients uL and uD change slowly and within a narrow
range. Similarly, path constraints reveal periodic oscillation characteristics within a certain
range. As a result, inequality constraints on quasi-ballistic coefficients and path constraints
can be imposed in joint state and parameter estimation.

Tracking begins when the target enters the blue area, and the tracking time is set
at 100 s. The detection system consists of two sets of infrared detectors on the floating
platform. The sampling period is 0.1 s, the standard deviation of angle measurement
error is 150 µrad. The position error of the floating platforms is 3 m, and the height and
baseline length of the floating platforms are 20 and 300 km, respectively. The following
prior inequality constraints are set according to the ranges of the quasi-ballistic coefficients
and path constraints in Figures 5 and 7, as well as the fact that the vehicle is continuously
turning left:

0 <
.

Q ≤ 700 kW/m2

0 < q ≤ 60 kPa
0.5 g < n ≤ 4 g

0.5× 10−4 ≤ uD ≤ 1.5× 10−4

2.5× 10−4 ≤ uL ≤ 4× 10−4

−70◦ ≤ γ ≤ 0

(55)

Fifty Monte Carlo simulations are carried out to accurately analyze and evaluate the
tracking effect of each algorithm. State and parameter estimation results are shown in
Figures 8–12 and Table 2.
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Figure 8. Position estimation errors.

Figure 9. Velocity estimation errors.

Figure 10. uL estimation errors.
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Figure 11. uD estimation errors.

Figure 12. Bank angle estimation errors.

Table 2. Joint state and parameter estimation results.

Algorithm Geometric
Positioning EKF CKF EKF-MHE CKF-MHE Carl-EKF-

MHE
Carl-CKF-

MHE

Position
Error (m)

X 110.8427 37.1287 35.5224 29.9339 28.0366 29.9192 28.5706
Y 82.4877 27.0623 26.2442 22.6088 21.0697 21.8746 19.8693
Z 119.3177 35.4530 34.4829 29.9074 28.2527 29.6577 27.8555

Total 184.3941 58.5029 56.4538 48.3855 45.4477 47.9055 45.0449

Velocity
Error (m/s)

X 1108.427 20.9352 18.4407 9.4462 8.3630 8.7439 7.9641
Y 824.7765 22.0957 21.5234 16.5552 16.1519 16.9394 16.1097
Z 1193.177 17.9094 15.5532 8.9965 8.2136 8.4998 7.5550

Total 2607.524 44.2712 39.7885 24.9536 23.4272 28.7505 22.6429

Parameter
error

uD (10–5) − 3.3311 2.4196 2.5320 2.0161 2.2380 1.9410
uL (10–5) − 7.1770 6.5862 5.3030 5.0858 5.1732 4.8034

γ(◦) − 4.5833 2.9116 3.5050 2.5398 2.9110 2.1769

Time cost (s) − 2.7181 3.4652 32.2073 27.4869 21.1299 18.5042

From Figures 8 and 9 and Table 2, it can be indicated that compared with the EKF and
CKF algorithms, moving horizon estimation algorithms greatly improve the estimation
accuracy and convergence speed of target position and speed. As shown in Figure 8,
after the algorithms converge, the position estimation errors of Carl-EKF-MHE and Carl-
CKF-MHE are close to those of EKF-MHE and CKF-MHE, respectively, demonstrating
the consistency between the linearized model and the original dynamic model. However,
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in the initial stage, the position estimation errors of the four moving horizon estimation
algorithms diverge to a certain extent, which is due to the large initial position estimation
error. Due to the strong nonlinearity of the systems in the EKF-MHE and CKF-MHE
algorithms, the divergences of these two algorithms are more obvious in the initial stage. It
can be seen from Figure 9 and Table 2 that the speed estimation accuracy of Carl-EKF-MHE
is lower than that of the EKF-MHE algorithm, whereas the speed estimation accuracy of
Carl-CKF-MHE is not lower than that of CKF-MHE. This is because the initial velocity
estimation error is large when the EKF is used to update the arrival cost, and there is
a large deviation between the linearized model and the original dynamic model. The
position and velocity estimation results have indicated that when the initial value and
arrival cost are estimated accurately, the linearized model has high consistency with the
original dynamic model, and the linearization of the nonlinear system does not reduce the
estimation accuracy.

As shown in Figures 10–12 and Table 2, the parameters estimation accuracy of moving
horizon estimation algorithms is much higher than that of the EKF algorithm. The parame-
ters estimation accuracy of the CKF-MHE and the Carl-CKF-MHE is also much higher than
that of the CKF algorithm. This is because, unlike the traditional model-based recursive
filter algorithm, in moving horizon estimation algorithms, the parameters are independent
optimization variables, and the prior inequality constraints of the parameters are consid-
ered. The parameter estimation accuracy of the Carl-EKF-MHE and the Carl-CKF-MHE is
higher than that of the EKF-MHE and CKF-MHE, respectively. The reason is that it is easier
to converge to the optimal value when solving the bilinear system optimization problem.
Furthermore, when CKF is used for arrival cost update, the parameter estimation accuracy
is higher than when EKF is used for arrival cost update. This is because using the CKF to
update the arrival cost improves the initial state and arrival cost estimation accuracy, as
well as the consistency between the linearized model and the original nonlinear system.
Moreover, from Table 2, it can be seen that Carl-EKF-MHE and Carl-CKF-MHE algorithms
reduce the tracking calculation time by 34.39% and 32.68%, respectively, when compared
to EKF-MHE and CKF-MHE algorithms, demonstrating the effectiveness of Carleman
linearization in reducing time cost. Carl-CKF-MHE not only has much higher estimation
accuracy than Carl-EKF-MHE but also takes less time. This is because a more accurate
initial state estimation can significantly reduce the optimization problem’s solution time.

Furthermore, from Table 2, it also can be seen that Cal-CKF-MHE is slightly better
than CKF-MHE, the detailed reason is that CKF-MHE realizes joint state and parameter
estimation by solving nonlinear constrained optimization problems, while in Cal-CKF-
MHE, the nonlinear constrained optimization problems are transformed into bilinear
constrained optimization problems by linearizing the nonlinear system via Carleman
linearization. Compared with the nonlinear constrained optimization problem, the bilinear
optimization problem is easier to solve and has a lower time cost. Meanwhile, the linearized
model has been continuously updated as the window slides forward to ensure that it is
consistent with the original nonlinear system and it is easier to converge to the optimal
value for the bilinear system. Thus, the estimation accuracy of Cal-CKF-MHE is slightly
higher than that of CKF-MHE.

The simulation results have indicated that the proposed Carl-CKF-MHE can not only
greatly improve the state and parameter estimation accuracy, but can also significantly
reduce time cost. The proposed Carl-CKF-MHE can effectively solve the joint state and
parameter estimation problems in hypersonic glide vehicle defense. Although the time
cost of the proposed Carl-CKF-MHE is lower than that of other MHE algorithms, it is still
higher than that of the traditional Kalman filter algorithms, which limits this application
to a certain extent. Meanwhile, the proposed Cal-CKF-MHE algorithm needs more prior
information about the target than the traditional Kalman filter algorithms.
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6. Conclusions

The present work aims at developing a novel moving horizon estimation algorithm
via Carleman linearization to solve the joint state and parameter estimation problem in
hypersonic glide vehicle defense. By extending the maneuver characteristic parameters
that can reflect the target maneuver law into the state vector, the dynamic tracking model
applicable to various hypersonic vehicles has been created. To improve the estimation ac-
curacy, the estimation problem has been transformed into a constrained nonlinear optimal
estimation problem considering the constraints during flight. For solving the problem of
high time cost for solving the nonlinear constrained optimal estimation problem, in the
framework of moving horizon estimation, the nonlinear constrained optimal estimation
problems have been transformed into bilinear constrained optimal estimation problems
by linearizing the nonlinear system via Carleman linearization. The linearized model has
been continuously updated as the window slides forward to ensure that it is consistent
with the original nonlinear system. To improve the estimation accuracy of the arrival cost, a
CKF-based update algorithm has also been introduced to improve the estimation accuracy.
The estimation accuracy, applicability, and adaptability of the proposed moving horizon
estimation algorithm via Carleman linearization have been tested and validated by simula-
tions. The simulation results have indicated that the linearized model has high consistency
with the original dynamic model and that the proposed joint state and parameter estimation
algorithm can not only greatly improve the state and parameter estimation accuracy, but
can also greatly reduce the time costs. The proposed moving horizon estimation algorithm
via Carleman linearization is a feasible and effective method to deal with the joint state and
parameter estimation problem in hypersonic glide vehicle defense.
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