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Abstract: In order to determine the average behavior time of widespread fatigue damage (WFD) in
an aircraft multi-site damage (MSD) structure and complete the fatigue analysis of WFD sensitive
parts, this paper adopts a probabilistic method to analyze the crack initiation and crack propagation
of a single row of collinear seven-hole plates. The simulation analysis of the whole process from
crack initiation to structural failure is realized. First, through statistical analysis of the test data of
the LY12-CZ alloy single-detail plate with hole, the probability distribution of crack initiation life
and growth rate is obtained, and this probability distribution is expressed by the randomization of
variables. Then, using the related theories of fracture mechanics and fatigue statistics, the whole
process of initiation, propagation, and connection of multiple cracks in the MSD structure to the
occurrence of WFD was realized through the Monte Carlo method. Finally, a group of single-row
seven-hole plate examples are used to verify the accuracy of the calculation results. The results show
that the calculated results in this paper are in good agreement with the experimental data, and can
accurately predict the life of MSD structures under a certain reliability.

Keywords: widespread fatigue damage; probabilistics; fatigue crack growth; Monte Carlo method

1. Introduction

Widespread fatigue damage (WFD) refers to the simultaneous occurrence of cracks
with sufficient size and density in multiple detailed parts of the structure, so that the
structure cannot meet the residual strength requirements [1]. In April 2006, the FAA
published the “Aging Aircraft Plan: Widespread Fatigue Damage, Revised Draft”, requiring
analysis of safety factors before widespread fatigue damage occurs, and requiring WFD
assessment related to initial operational limits for existing aircraft and aircraft under
review [2]. The key to the widespread fatigue damage assessment is to determine the
average time of WFD behavior.

Since the Aloha accident in 1988, researchers at home and abroad have carried out
a great deal of research on WFD and multi-site damage (MSD). A series of achievements
have been made in multi-crack initiation and mechanisms, calculation methods of the
stress intensity factor, crack propagation and connectivity, residual strength, probability
assessment methods, and so on. On the basis of deterministic analysis theory, using the
method of probability and statistical analysis to solve the problem and obtain the fatigue
life under a certain reliability is the research direction of WFD. In this paper, fracture
mechanics and fatigue statistics are combined, and then the randomness of the process of
initial crack initiation and crack propagation is simulated with the help of finite element

Aerospace 2022, 9, 215. https://doi.org/10.3390/aerospace9040215 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9040215
https://doi.org/10.3390/aerospace9040215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://doi.org/10.3390/aerospace9040215
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9040215?type=check_update&version=2


Aerospace 2022, 9, 215 2 of 21

analysis software and the Monte Carlo method, so as to realize the random initiation
and propagation of multiple cracks and simulate the occurrence process of widespread
fatigue damage.

For the crack initiation of an MSD structure, it is generally considered that the cracks
do not affect each other. The crack initiation life of an MSD structure is predicted by
comprehensively analyzing the geometric characteristics, material parameters, and test
data of the structure. For determining the initial crack initiation position and sequence,
there are mainly three random crack initiation methods: the random crack initiation
method based on the fatigue test results of a single-detail structure, the random crack
initiation method based on the material S-N curve, and the random crack initiation method
based on the equivalent initial defect size (EIFS). According to the crack initiation life of a
single-detail structure, Xi [3] established the probability calculation model of multi-detail
crack initiation life, which was verified by experiments. Considering the dispersion of
materials, Yan [4] used the Monte Carlo method to analyze the probability of widespread
fatigue damage of a five-hole plate. Ai [5] proposed a probabilistic model to illustrate the
impact of manufacturing defects on fatigue life based on the size and location of defects.
Kim et al. [6] considered the uncertain factors such as initial defects, material variability,
and crack growth rate, and combined the Gaussian process response model with the
propagation finite method to obtain the response surface and sensitivity factors of multiple
crack propagation in the structure under a complex environment, so as to consider the
randomness of crack initiation.

For MSD structures, the interaction between multiple cracks will affect the crack
growth rate. When the crack grows to a certain size, the influence between cracks intensifies,
and the crack interference leads to a sharp increase in the crack growth rate. Wang et al. [7]
proved that MSD crack interference would accelerate crack propagation in long crack
propagation through fatigue tests and numerical analysis on a three-row plate with holes.
At present, many scholars have carried out a great deal of research on the random process
of WFD crack propagation. Ray A. [8] randomly modeled the Paris formula based on the
fatigue model of probabilistic fracture mechanics. In this method, the material parameter
C in the Paris formula is regarded as a random variable to simulate the randomness of
crack propagation, which makes the model have a simpler mathematical form and more
truly reflect the dispersion of structural crack propagation. H. Riahi, Ph. Bressolette, etc. [9].
proposed a new random configuration method to solve the problem of mixed-mode fatigue
crack growth with random parameters. This method has higher numerical calculation
efficiency. The response surface method (RSM) and the direct coupling method (DCM) were
used by Edson et al. [10] to solve the random crack propagation problem. The boundary
element method (BEM) was used to simulate the crack propagation effectively and avoid
the re-meshing. At present, Monte Carlo simulation is often used to simulate the random
fatigue crack growth. Salimi et al. [11] simulated the uncertainty of crack growth model
parameters by the Monte Carlo simulation method, and analyzed the random crack growth.

The stress intensity factors of multi-crack and single-crack structures are quite different.
Because the multi-crack structure is affected by the interaction between cracks, the stress
intensity factor will change under the interaction of cracks. In addition, crack connectivity
will have a great impact on the stress intensity factor. For the problem of multiple cracks
around the hole, the randomness of crack distribution increases the complexity of solving
the stress intensity factor. In engineering, the finite element method is more used to calculate
the stress intensity factor of multiple cracks. Atluri et al. [12] proposed the finite element
alternating method (FEAM) and elastic–plastic finite element alternating method (EPFEAM)
in solving stress intensity factors. The two methods can save the time of redrawing the mesh
and reconstructing the stiffness matrix, and ensure the calculation accuracy. Wu L. et al. [13]
studied the calculation of the stress intensity factor of multiple cracks near collinear holes,
and developed a set of semi-analytical numerical calculation methods.

At present, a variety of strength criteria and models have been developed for the
study of residual strength. The core problem in MSD is to study the residual strength
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of the structure. The connection between cracks is a special failure phenomenon in an
MSD structure. When two adjacent collinear cracks expand to a certain extent, they will
be connected with each other. Swift et al. [14] proposed and applied a new ligament yield
criterion in the plastic zone when studying the crack connectivity criterion, and found
that the result was accurate by comparing it with the test results. Later, Chinese scholars
Ge S. and Li Z. [15] used the swift failure criterion to study the residual strength of butt
skin connection. The results show that the accuracy of the calculation results of the swift
connection criterion deviates, so the swift criterion needs to be corrected. Bert et al. [16]
modified the crack connectivity model through tests, and the modified crack connectivity
model has a wider area of application. Wang et al. [17] tested an MSD structural aluminum
plate and verified five failure criteria. The results show that there is a large difference
between the net section criterion and CTOA criterion; the plastic zone connectivity criterion
and average displacement criterion are more accurate, and the fracture mechanics criterion
is more suitable for the case of obvious main cracks.

In this paper, the fatigue crack propagation test of a single-row collinear seven-hole
plate structure is carried out. The probability method is used to analyze the crack initiation
and propagation at the hole edge of a single row of seven-hole plates, and the simula-
tion analysis of the whole process from crack initiation to structural failure is realized.
In order to calculate the stress intensity factor at the crack tip, the singularity setting and
meshing of the crack are carried out by ABAQUS, and the stress intensity factor with high
accuracy is obtained. Finally, the average WFD behavior is calculated by the Monte Carlo
sampling method.

2. Fatigue Test of Single-Detail Perforated Plate
2.1. Test Piece Preparation

In order to study the crack initiation life probability distribution and crack propagation
rate of the LY12-CZ aluminum alloy perforated plate with pre-crack, a single-detail plate
test piece with a hole was prepared. We made a circular hole with a diameter of 3 mm in
the center of the test piece, pre-made cuts with a length of 3.5 mm on the left and right
sides of the circular hole, and took the sum of the radius of the hole and the length of the
crack on the side of the hole as the half-crack length. The size of the test piece is shown in
Figure 1. LY12-CZ aluminum alloy was used as the material, and the material parameters
are listed in Table 1. In the table, E is the Young’s modulus, µ is Poisson’s ratio, KC is
fracture toughness, and σs is the yield strength.

Figure 1. Geometric dimensions of single-hole test piece.
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Table 1. Material parameters of LY12-CZ.

E/MPa µ KC σs/MPa

6.8× 103 0.33 100 339

2.2. Test Procedure

The specimens were mounted on a 100 kN MTS fatigue/static testing machine for
the fatigue test, and the cracks were measured with a manual reading microscope. When
a 0.5 mm crack was generated on the basis of the prefabricated crack, i.e., the half crack
length was 5.5 mm, the number of cycles at this time was recorded as the crack initiation
life. After this, the crack growth rate test was continued, and the crack length and cycle
number (ai − Ni) of the test piece were recorded every 5000 cycles until the test piece was
broken. The test piece planning and load spectrum are shown in Table 2.

Table 2. Fatigue test plan for single-detail perforated plates.

Pmax/kN R f Number Number of Test
Pieces

15.20 0.1 5 Hz k1–k5 5
18.24 0.1 5 Hz k6–k10 5
19.76 0.1 5 Hz k11–k15 5

A total of 15 fatigue tests were completed. Figure 2a shows the crack initiation life point
and S-Ninit curve. Figure 2b–d are the crack growth curves at 15.20 kN, 18.24 kN, and 19.76
kN stress levels, respectively. It can be seen that the crack initiation and propagation
between different test pieces have a certain degree of dispersion.
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Figure 2. (a) Crack initiation life and S-Ninit curve. (b) Crack growth curve of 15.20 kN. (c) Crack
growth curve of 18.24 kN. (d) Crack growth curve of 19.76 kN.
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3. Random Crack Initiation Model of MSD Structure

For an MSD structure, it is assumed that there are T details (as shown in Figure 3),
which may initiate collinear cracks. Because of the dispersion of crack initiation, the location
of crack initiation is random [18].

Figure 3. MSD structure chart.

The most commonly used form to describe the S-N curve of materials is the power
function, which is

SmN = C (1)

and among them, m and C are parameters related to the material, stress ratio, and loading
mode. For the crack initiation life curve at position i of the MSD structure, it can be
expressed by the following equation:

SmNi
init = Ci (2)

where Ni
init is crack initiation life at position i, and Ci is a random variable used to simulate

the dispersion of crack initiation life. In fatigue statistics [19], it is generally believed that
the lognormal distribution can be used to describe the distribution of life N. Since the crack
initiation life accounts for a large part of the entire fatigue life, it is believed that the crack
initiation life also obeys the lognormal distribution.

Under the same stress level, Sm in Equation (2) is a constant. Therefore, in order to
ensure that Ni

init obeys lognormal distribution, we only need to make the logarithm of Ci
obey normal distribution, i.e.,

log Ci = log Ci + Slog Ci
C0i (3)

In the formula, log Ci is the logarithm mean of Ci, Slog Ci
is the logarithmic standard

deviation of Ci, and C0i is a random variable, which obeys the standard normal distribution.
By Equation (2), we have

log Ci = log Ni
init + m log S (4)

Since m log S is a constant, we obtain that

Slog Ci
= Slog Ni

init
(5)

where log Ni
init is the logarithmic mean value of crack initiation life Ninit and Slog Ni

init
is the

logarithmic standard deviation of crack initiation life Ninit.
By substituting Equations (4) and (5) into Equation (3), Ci can be obtained. Then, substi-

tuting Ci into Equation (2), the crack initiation life Ni
init at different positions i(i = 1, 2, · · · , T)

under the MSD structure can be obtained. By sorting the crack initiation life at different
positions i, the order of crack initiation and the crack initiation life at each position in the
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MSD structure can be obtained. The smallest crack initiation life is the crack initiation life of
the structure Nmin.

Nmin = min{Ni
init, Ni

init, · · · , NT
init} (6)

log Ni
init is obtained by statistical analysis of crack initiation life in Figure 2. Then, the values

of log Ci and Slog Ci
are obtained by Equations (4) and (5), as shown in Table 3.

Table 3. Random crack initiation parameters of LY12-CZ.

m log Ci Slog Ci

4.93 13.12 0.05

4. Random Crack Propagation in MSD Structure
4.1. Crack Propagation Model Based on Random Variables

The crack growth rate (da/dN) of fatigue cracks has a certain relationship with the
magnitude of the stress intensity factor (∆K). Paris [20] proposed the famous Paris formula
in 1963 to describe the relationship between da/dN and ∆K:

da/dN = D(∆K)n (7)

The above formula points out that the stress intensity factor amplitude ∆K is the main
control parameter of the fatigue crack growth rate da/dN. When ∆K increases, the crack
growth rate da/dN increases. D and n are the basic parameters describing the fatigue crack
growth performance, which are determined by tests.

In order to describe the dispersion of crack growth, D and n are used to randomize
into Di and ni (i = 1, 2, · · · , T) by using the method of random variables, and Equation (7)
is expressed in logarithmic form, i.e.,

log (da/dN) = log Di + ni log (∆K) (8)

The three-parameter lognormal distribution can better represent the variability of
random parameters [4]. The variable ui is introduced, namely

ui =
Di
Di

(9)

where Di is the mean value of the random parameter Di, obtained by tests.
Therefore, the probability density function of ui satisfies the three-parameter lognormal

distribution, as follows [18]:

f (ui) =
0.43429

(ui − τ)
√

2πβ
exp

−1
2

[
log (ui − τ)− α√

β

]2
 (10)

In the formula, τ is the position parameter, α is the dispersion parameter, and β is the
shape parameter. According to the properties of the three-parameter normal distribution,
the following formula can be obtained.

log (ui − τ) = α +
√

βD0i (11)

where D0i is a random number that obeys the standard normal distribution, which is
generated by a random generator. Substituting Formula (9) into (11) can obtain the value
of Di:

Di =
Di

10α+
√

βD0i+τ
(12)
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Because there is a strong linear relationship [21] between log Di and ni, the two
parameters were analyzed by linear regression.

log Di = l0 × ni + l1 (13)

The value of ni can be obtained.

ni =
log Di − l1

l0
(14)

where l0 and l1 are regression parameters.
Finally, after the random crack growth parameters are obtained by Equations (12)

and (14), the crack growth rate da/dN can be obtained by Equation (8).

4.2. Calculation of Stress Intensity Factor by FEM

The accuracy of solving the stress intensity factor is related to the accuracy of crack
propagation analysis and calculation. In this paper, the stress intensity factor is calculated
by ABAQUS software. Its essence is to calculate the stress intensity factor by the finite
element method (FEM). Since the stress intensity factor needs to be calculated continuously
in the process of crack propagation, ABAQUS CAE is redeveloped in this paper to improve
the calculation efficiency.

For the finite element model with cracks around the hole, it is necessary to focus on
the definition of cracks and the division of the mesh at the crack tip. In ABAQUS, defining
a crack requires two steps: 1. the line segment as the crack is first defined as the “seam”,
and the meshes on both sides of the line segment defined as the “seam” will be separated
to simulate the cracking of the crack during calculation; 2. we determine the area of the
contour integral and the direction of crack propagation by creating a “crack” (as shown in
Figure 4).

Figure 4. Hole crack definition model diagram.

Due to the stress concentration phenomenon of the crack tip with a large geometric
deformation gradient, it is necessary to define a circle of 1/4 singularity elements surround-
ing the crack tip, and collapse the crack tip location element node into a node, which is
used to approximate the crack tip location with singularity. In ABAQUS, there are special
options for crack editing to set the singularity of the crack tip. Generally, the grid element
of the crack tip is specified as an eight-node quadrilateral element, and the node is offset by
1/4 to simulate the singularity of the crack tip.

Figure 5 shows the schematic diagram of singularity grid node offset and relevant
settings in ABAQUS. In Figure 5a, nodes a, b, and c are close to the crack tip, so the three
nodess will collapse into one node. It is necessary to set the option “collapsed element side,
single node” in the ABAQUS singularity setting dialog box. At the same time, in order to
describe the singularity of the crack tip, points d and e are offset 1/4 toward the crack tip.

As the model is a flat plate structure with holes and cracks at the edge of the hole,
the meshing of different areas is different. The crack tip area is taken as the key assessment
area, and the quality of meshing determines the accuracy of solving the stress intensity
factor. It is necessary to densify the mesh and adopt the sweeping mesh generation
technology in the contour area of the crack tip. We then divide other areas into a structured
mesh. The element type is CPS8. The meshing of the crack tip is shown in Figure 6.
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(a) (b)

Figure 5. (a) Node offset of 8-node element. (b) ABAQUS crack singularity setting.

Figure 6. Meshing of crack tip.

In order to prove the accuracy of the finite element method to calculate the stress
intensity factor, the single-hole plate shown in Figure 7 was analyzed, and the calculated
stress intensity factor results were compared with the Handbook of Stress Intensity Factor.
The tensile stress of the single-hole plate in the vertical direction is 100 MPa, and the crack
length a is 2 mm, 5 mm, and 10 mm, respectively.

Figure 7. Single-hole plate geometry model.

Figure 8 shows the stress distribution of the single-hole plate with a value of 2 mm,
5 mm, and 10 mm, respectively. As the crack length increases, the net cross-section area of
the plane where the crack is located gradually decreases, resulting in an increasing stress
concentration at the crack tip. Table 4 shows the comparison between the value of the stress
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intensity factor calculated by FEM described in this paper and obtained by querying the
Handbook of Stress Intensity Factor. The results show that the value of the stress intensity
factor calculated by FEM is approximately 1% different from that in the Handbook of Stress
Intensity Factor, indicating that the stress intensity factor calculated by FEM in this section
has high accuracy.

(a) (b) (c)

Figure 8. (a) Stress nephogram of a = 2 mm. (b) Stress nephogram of a = 5 mm. (c) Stress nephogram
of a = 10 mm.

Table 4. Comparison of stress intensity factors calculated by ABAQUS and handbook.

a (mm) ABAQUS Handbook Error (%)

2 554.4 548.7 1.04
5 721.7 717.4 0.60
10 1179.0 1173.9 0.43

The above analysis shows that the ABAQUS method described in this section has high
accuracy in calculating stress intensity factors.

4.3. Processing and Statistics of Crack Propagation Test Results

In the first section, the (ai, Ni) data of crack growth are shown in Figure 2b–d. In order
to establish a random crack growth model, statistical analysis of (ai, Ni) data is needed to
obtain the distribution of random parameters Di and ni.

Firstly, the secant method is used to estimate the crack growth rate da/dN. In other
words, the slope of the connecting line between adjacent data points is taken as the crack
growth rate corresponding to the average crack size in the interval.

(da/dN)i = (ai+1 − ai)/(Ni+1 − Ni) (15)

Figure 9a–c show the relationship curve between crack growth rate da/dN and crack
size. It can be seen from these figures that as the crack size increases, the crack growth
rate da/dN is also increasing, and the crack size is positively correlated with the crack
growth rate.

Since the pairs formula is a formula to express the relationship between da/dN and
∆K, it is necessary to obtain the ∆K of the corresponding crack length a after obtaining the
relationship between da/dN and a. Generally, the methods to calculate the stress intensity
factor are the handbook method, weight function method [22], finite element method [23],
etc. In this paper, the finite element method is used to calculate ∆K.
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When the crack size is a, the stress intensity factor (Kmax) corresponding to the maxi-
mum stress is calculated by FEM (see Section 4.2 for FEM), and then ∆K is calculated by
the following formula.

∆K = Kmax × (1− R) (16)

The amplitude of stress intensity factor ∆K corresponding to crack size a of each test
piece is calculated by the above method. Then, according to the relationship between the
crack size a and the crack growth rate da/dN shown in Figure 9a–c, the relationship between
∆K and da/dN is obtained. The log(∆K)-log(da/dN) curve is shown in Figure 10a–c.
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Figure 9. (a) a–da/dN curve of 15.20 kN. (b) a–da/dN curve of 18.24 kN. (c) a–da/dN curve of
19.76 kN.
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Figure 10. (a) log(∆K)–log(da/dN) curve of 15.20 kN. (b) log(∆K)–log(da/dN) curve of 18.24 kN.
(c) log(∆K)–log(da/dN) curve of 19.76 kN.

From Equation (8), it can be seen that log(da/dN) and log(∆K) are linear, so the values
of Di and ni of each test piece can be obtained by linear regression analysis.

Linear regression analysis was carried out on the all test pieces, and the results are
shown in Figure 11. It can be seen from the figures that log(da/dN) has a strong linear
relationship with log(∆K).
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Figure 11. (a) log(da/dN) and log(∆K) linear regression analysis of 15.20 kN. (b) log(da/dN) and
log(∆K) linear regression analysis of 18.24 kN. (c) log(da/dN) and log(∆K) linear regression analysis
of 19.76 kN.

Through linear regression analysis, the crack propagation parameters of all test pieces
are obtained, as shown in Figure 12.
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Figure 12. Values of Di and ni of test pieces.

Figures 11 and 12 show the the correlation of log(da/dN) and log(∆K) regression
analysis and values of Di and ni of all 15 test pieces, respectively. It can be seen from the
correlation that the linear correlation between log(da/dN) and log(∆K) in all test pieces is
very strong, which also proves the validity of the fitted values of Di and ni.

Di = 3.49 · 10−12 can be obtained from Figure 12. Place Di into Equation (9) to obtain
the value of ui. Since ui satisfies the three-parameter lognormal distribution, it is necessary
to estimate the position parameter τ, dispersion parameter α, and shape parameter β of
Equation (10) according to the value of ui. In this paper, the above three parameters are
estimated by the method of moment estimation. The specific method is as follows.

First, find the sample mean A1, the second-order origin moment A2, and the third-
order origin moment A3 of the sample ui, which are equal to the estimated values µ̂1, µ̂2,
µ̂3 of the mean of ui, u2

i , u3
i , respectively;

µ̂1 = A1 = 1
n

n
∑

i=1
ui

µ̂2 = A2 = 1
n

n
∑

i=1
u2

i

µ̂3 = A3 = 1
n

n
∑

i=1
u3

i

(17)

Then, find the mean of the population x, x2, x3:
E(x) =

∫ +∞
τ x f (x)dx = µ1

E(x2) =
∫ +∞

τ x2 f (x)dx = µ2

E(x3) =
∫ +∞

τ x3 f (x)dx = µ3

(18)

where, f (x) is a three-parameter lognormal distribution density function; see Equation (10).
Finally, let the population mean µ1, µ2, µ3 be equal to the sample mean estimated

value µ̂1, µ̂2, µ̂3. 
µ1 = µ̂1
µ2 = µ̂2
µ3 = µ̂3

(19)

Finally, the parameters are estimated as τ = −2.558, α = 0.697,
√

β = 0.134.
From Figure 12, the relationship curve between logDi and ni can be obtained, as shown

in Figure 13. Figure 13 shows that logDi and ni satisfy a linear relationship. The values of l0
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and l1 in Equation (13) can be obtained by linear regression analysis of the two parameters,
l0 = −2.51, l1 = −3.84.

2 . 8 3 . 0 3 . 2 3 . 4

- 1 2 . 0

- 1 1 . 5

- 1 1 . 0
lgD

i

n i

 s a m p l e  r e s u l t
 l i n e r  r e g r e s s i o n  a n a l y s i s
 9 5 %  p r e d i c t i o n  b a n d

Figure 13. logDi and ni linear regression analysis.

After obtaining the above parameters, the values of Di and ni can be randomly ob-
tained by Equations (13) and (14), and the crack growth rate da/dN can be obtained by
substituting Di and ni into Equation (8), and finally random crack growth analysis can
be performed.

5. Residual Strength Analysis of MSD Structure
5.1. Plastic Zone Connectivity Criterion

Crack connectivity is the most common failure form of MSD. When plastic zones at
the tip of two adjacent cracks come into contact, it is considered that the two cracks are
connected. Usually, the structure will be damaged soon after the crack is connected.

As shown in Figure 14, there are two plastic zones at the crack tips. When the
two plastic zones are in contact, i.e., when Equation (20) is satisfied, crack 1 and crack 2
are connected.

R1 + R2 = C (20)

where R1 and R2 are the plastic zone dimensions of crack 1 and crack 2, respectively. C is
the crack tip distance of crack 1 and crack 2.

Figure 14. Diagram of plastic zone at crack tip.

There are two methods to calculate the plastic zone size R: (1) Irwin formula [24];
(2) Dugdale formula [25].

The size of the plastic zone at the crack tip under the plane stress state calculated by
the Irwin formula is: {

R1 = 1
π (K1/σb)

2

R2 = 1
π (K2/σb)

2 (21)
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The size of the plastic zone at the crack tip under the plane stress state calculated by
the Dugdale formula is: {

R1 = π
8 (K1/σb)

2

R2 = π
8 (K2/σb)

2 (22)

where K1 represents the stress intensity factor at the tip of crack 1 and K2 represents the
stress intensity factor at the tip of crack 2. σb is the yield stress of the material.

K1 and K2 in Equation (22) can be obtained by Equation (23):{
K1 = β1σ

√
πa1

K2 = β2σ
√

πa2
(23)

where β1 and β2 are the stress intensity factor correction factors at the tips of crack 1 and
crack 2, respectively. a1 and a2 are the size of crack 1 and crack 2, respectively. σ is the
stress on the structure.

The residual strength of the structure is obtained by the Irwin formula:

σ = σb

√
b

a1β2
1 + a2β2

2β2
h

(24)

The residual strength of the structure obtained by the Dugdale formula is:

σ =
σb
π

√
8b

a1β2
1 + a2β2

2β2
h

(25)

In the equation, βh is the stress intensity factor or the Bowie factor of the MSD
crack [26].

5.2. Structural Failure Criterion

In engineering practice, crack connection does not mean structural failure and destruc-
tion, so other criteria are needed to consider structural failure. In this paper, the fracture
mechanics (KC) method is used to consider the local unstable fracture of a crack, and the
net section criterion is used to consider the failure of a structure.

(1) Fracture mechanics (KC) method.
This method is based on linear elastic fracture mechanics. The basic assumption of

the guidelines is as follows: when the structure undergoes instability fracture under the
applied load, the main crack has a critical stress intensity value. KC is the fracture toughness
of the material. When KI > KC, the structure is considered to undergo failure fracture.
The formula of stress intensity factor KI is as follows:

KI = σ
√

πaβwβα (26)

where βw is the finite width correction factor; βα is the correction factor of crack interaction.
(2) Net section criterion.
The failure predicted by the net section criterion is based on the amount of material

loaded on the structural section. Therefore, the failure load is a function of the yield strength
of the material and the number of defects. When the net section stress σnet > σys, it is
considered that the structure fails to break.

σnet = P/[(W − 2a2 − n× d− 2n× L)× t]
= σ× (W − n× d)/(W − 2a2 − n× d− 2n× L)

. (27)

where σ is the stress; σnet is the net section stress; σys is the yield strength of the material; W
is the width of the metering section; a2 is the half length of the central main crack (when
there is a main crack); n is the number of holes; d is the average diameter of the hole; L is
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the average half crack length of the MSD crack (the crack length is measured from the hole
edge); t is the thickness of the orifice plate.

6. Prediction of Structural Life by Monte Carlo Method

The Monte Carlo method, also known as the random sampling technique or statisti-
cal test method, is a numerical method based on probability and statistics theory, using
random simulation and statistical test methods to find approximate solutions to certain
mathematical, physical, and engineering problems [27].

In this paper, the MSD structure random crack initiation model, random variable-
based crack growth model, residual strength analysis of MSD structure and other methods,
combined with Monte Carlo method, are used to carry out probabilistic analysis of the
MSD structure life. The steps are as follows:

1. Determine basic properties such as geometric configuration, material properties, initial
crack size, and load spectrum size.

2. According to the test data, obtain the distribution of the parameters describing the dis-
persion in the random crack initiation and random crack growth models, and estimate
the parameters that satisfy the distribution.

3. Use a random number generator to generate a set of random numbers Cj
0i that obey

the standard normal distribution. The random number Cj
i simulating the dispersion

of crack initiation is obtained by Equation (3). The initiation life N j
i and initiation

sequence of cracks at each position are obtained by Equations (3) and (6).
4. For the non-initiation position, fatigue damage will continue to accumulate until the

cumulative damage value is 1. For the location of the initiated crack, the random
crack propagation analysis is carried out.

5. The random number generator is used to generate a group of random numbers

Dj
0i that obey the standard normal distribution. The random parameters Dj

i and nj
i

describing the crack growth rate are obtained by Equations (12) and (13), respectively.
Then, the ∆K value of each crack tip is obtained by the finite element solution, and the
crack growth increment ∆a for a given cycle life ∆N is obtained by substituting into
Equation (8).

6. Add ∆a to the original crack length a, update the crack size a, and then give ∆N and
find ∆a, and keep cycling. In the process of this cycle, it is continuously determined
whether the connectivity criterion and failure criterion are met. If the connectivity
criterion is met, the two adjacent cracks are connected. If the failure criterion is met,
the structure breaks and fails, and the calculation stops. The simulated structural life
is obtained N j

WFD.
7. Calculate L times of the above process, i.e., complete L times of Monte Carlo sampling

to obtain the results of L structural lives N j
WFD(j = 1, 2, · · · , L). Through statistical

analysis of the calculation results, the logarithmic life mean log N and logarithmic life
standard deviation Slog N of the structure can be obtained.

7. Analysis Examples
7.1. Seven-Hole Collinear Plate Test

The typical riveted panel MSD structure of aircraft—a single-row seven-hole collinear
panel—was selected for the test, and the calculation method introduced in this paper was
analyzed in order to verify the effectiveness of this method. The geometric dimensions of
the test piece are shown in Figure 15.

The seven-hole collinear plate test was carried out on a 1000 kN Instron8801 hydraulic
fatigue testing machine. There were 9 test pieces in total, and there were 3 test pieces
under three stress levels (Pmax = 82 kN, Pmax = 90 kN, Pmax = 98 kN), respectively. The load
spectrum was a constant-amplitude spectrum, the stress ratio was 0.1, and the test loading
frequency was 5 Hz. See Figure 16 for test photos of the 7-hole collinear plate.
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(a) (b)

Figure 15. (a) Geometric dimensions of 7-hole plate. (b) Physical drawing of 7-hole plate.

Figure 16. Site drawing of seven-hole collinear plate test.

7.2. Simulation Calculation

A series of calculation methods introduced in this paper, such as the random crack
initiation model, random crack propagation model, residual strength analysis, and Monte
Carlo method, were compiled into a set of calculation programs, which was used to predict
the life of the 7-hole plate shown in Figure 15. Fifty simulated samples were taken at three
force levels, Pmax = 82 kN, Pmax = 90 kN, Pmax = 98 kN. The simulation results are shown in
Figure 17a–c.
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Figure 17. (a) Life distribution of Pmax = 82 kN. (b) Life distribution of Pmax = 90 kN. (c) Life
distribution of Pmax = 98 kN.

It can be seen from Figure 17a–c that the life of the 7-hole collinear plate basically
follows lognormal distribution, and the lognormal distribution curve becomes narrower
with the increase in stress level, indicating that the life dispersion becomes smaller with the
increase in stress level.

Table 5 shows the comparison between the calculation results and the test results.
It can be seen from the table that the structural life obtained by simulation calculation
is very close to the test results, indicating that the method described in this paper can
accurately predict the life of MSD structures.

Table 5. Comparison between the calculation results and the test results of the seven-hole plate.

F/kN log N Slog N log N ′ Slog N ′

82 5.381 0.006 5.390 0.014
90 5.225 0.004 5.208 0.027
98 5.114 0.005 5.101 0.030

Figure 18a–c show the cumulative distribution curve of structural life under three stress
levels. The black solid line is the cumulative distribution curve of structural life obtained
by 50 groups of simulation sampling, and the red curve is the lognormal cumulative
distribution function (CDF) curve based on 50 simulation data. The failure probability
and reliability corresponding to a certain life can be obtained through the CDF curve.
In particular, the fatigue life when the failure probability is 50%, i.e., WFD average behavior,
can be obtained. The average behavior of WFD under three stress levels, Pmax = 82 kN,
Pmax = 90 kN, Pmax = 98 kN, is 240,300, 167,900, 129,750, respectively.
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Figure 18. (a) Cumulative life span distribution curve of Pmax = 82 kN. (b) Cumulative life span
distribution curve of Pmax = 90 kN. (c) Cumulative life span distribution curve of Pmax = 98 kN.

The crack growth data obtained from 50 simulations under three stress levels were
processed to obtain 50 crack growth curves corresponding to each crack, and the crack
growth curves corresponding to the maximum life and minimum life under the same stress
level were compared with the test data. Because the cracks in the seven-hole plate were
symmetrical from left to right, half of the cracks were taken for analysis. We selected a
test piece under each stress level for comparison, and the comparison results are shown in
Figure 19.

In Figure 19, “L” stands for left, “R” stands for right, and “crack 1-L” stands for the
crack on the left side of hole 1. “Max life” and “min life”, respectively, represent the crack
propagation data corresponding to the maximum crack propagation life and the minimum
crack propagation life obtained by simulation calculation. It can be seen from the figure
that the test data are basically located between the two lines of “max life” and “min life”,
which shows that the crack growth model based on random variables established in this
paper can successfully predict the actual crack growth.
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Figure 19. (a) Comparison between predicted and experimental values of crack propagation data of
Pmax = 82 kN. (b) Comparison between predicted and experimental values of crack propagation data
of Pmax = 90 kN. (c) Comparison between predicted and experimental values of crack propagation
data of Pmax = 98 kN.

8. Conclusions

1. In ABAQUS, by defining the crack and the crack tip integral region, setting the
singularity of the crack tip, and meshing, the calculation of the stress intensity factor at
the crack tip is realized. Through the statistical analysis of the crack propagation data of
LY12-CZ aluminum alloy single-hole test pieces, it is found that the variables log Di and ni
in the Paris formula log (da/dN) = log Di + ni log (∆K) have a strong linear relationship,
which can be expressed as log Di = l0 · ni + l1, where l0 = −2.51, l1 = −3.84.

2. The fatigue test data of a single-detail perforated plate are used to estimate the
random parameters Ci, Di, and ni in the random crack initiation model and crack propa-
gation model. In order to judge structural failure and crack connectivity, the KC criterion,
net section criterion, and Swift criterion are adopted. Finally, the randomness of crack
initiation and propagation is simulated by Monte Carlo sampling. For the MSD structure,
the calculation results show that the structure life obeys a lognormal distribution.

3. Based on the knowledge of fracture mechanics and fatigue statistics, this paper
analyzes the whole process of crack initiation, fracture, and structural failure of an MSD
structure by using the probability method, and establishes a random crack initiation model
and random crack propagation model. The comparison with the test results of a seven-hole
collinear plate shows that the calculation results of the method described in this paper are
accurate and can accurately predict the life distribution of MSD structures.
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