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Abstract: This paper introduces a novel intelligent sliding mode predictive fault-tolerant control
method based on the Dynamic Information Exchange Coyote Optimization Algorithm (DIECOA),
which is applied to a quad-rotor UAV system with multi-delay and sensor fault. First, the system
nonlinearity and sensor fault are dealt with by means of interpolation transformation and system state
expansion, and an equivalent system is obtained. Second, the quasi-integral sliding mode surface is
used to construct the prediction model so that the initial state of the system is located on the sliding
mode surface, and the global robustness is guaranteed. Third, this paper introduces an improved
fault and disturbance compensation term, which effectively weakens the adverse effect of time delays
and enhances the FTC performance of the system. Fourth, the Dynamic Information Exchange (DIE)
strategy is designed to further improve the coyote individual replacement mechanism and speeds up
the solution and convergence speed of the method in this paper. Finally, the simulation is carried out
on the fault-tolerant simulation platform of the quad-rotor Unmanned Aerial Vehicle (UAV), and the
results show the rationality of the method.

Keywords: fault-tolerant; sliding mode prediction; multi-delay; UAV; DIECOA

1. Introduction

In recent years, the rapid development of control theory and industrial automa-
tion has made the requirements for high-performance control methods more and more
stringent [1,2]. However, traditional control methods have gradually failed to meet the
needs of high-tech control systems, especially in aerospace control systems, such as quad-
rotor UAV (Unmanned Aerial Vehicle) systems. Currently, quad-rotor UAVs are widely
used in various fields due to their lightweight, flexibility, and ease of operation. However,
the ubiquitous parameter uncertainties and external disturbance in the quad-rotor UAV
system will make the initial environment of the system very complicated. In addition,
incalculable losses will occur in the quad-rotor UAV system when specific components,
such as actuators and sensors, inevitably break down due to long-term work [3,4]. In
conclusion, how to design an FTC (fault-tolerant control) method that can solve the above
problems in the quad-rotor UAV system is crucial [5,6].

There have been a large number of studies at home and abroad on robust fault-tolerant
control. FTC is the ability of a system to maintain its original performance and continue
to operate after a fault occurs, possibly at a reduced level of performance depending on
the severity of the fault. Sensor fault generally affects the control effect indirectly, and it is
usually the wrong measurement value that causes the system to produce the wrong control
output. The actuator fault generally directly affects the control effect. The additive fault of
the actuator refers to the deviation of the output torque of the actuator from the normal
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value, and the multiplicative fault of the actuator affects the output gain of the actuator. The
FTC system refers to a kind of control system that uses a new control method to deal with
the existing faults of the system while maintaining the robust stability and ideal state of
the system. Researchers have proposed many techniques, the traditional methods include
PID, H∞ control [7,8], and the emerging methods include predictive control, sliding mode
control(SMC), adaptive control, and the fuzzy neural network [9–12].

In the above methods [9–12], the combination of different methods will also pro-
duce nice FTC performance, such as adaptive sliding mode and sliding mode prediction
(SMP) [13,14]. Ref. [15] proposes an adaptive SMC allocation scheme that can maintain the
tracking performance of the system by adjusting the control gain of the high-order module
in the case of the same group of actuators failing simultaneously. The rationality of the
method is verified on the octocopter. However, this article has not considered time delays.
Ref. [16] introduces an SMC method based upon an adaptive fuzzy compensator for a
nonlinear quad-rotor attitude control system with model uncertainties and actuator fault.
The adaptive fuzzy system compensates for the nonlinear function and fault estimation
error, and the parallel fuzzy system improves the attitude control speed. For UAV systems
with external disturbance, parameter uncertainties, time-variable state delay, and actuator
fault, Ref. [17] proposes a sliding mode predictive fault-tolerant control method based on
whale optimization algorithm (WOA). The global sliding mode surface is used to establish
the prediction model to ensure global robustness, and the WOA is used in the rolling
optimization part to accelerate the convergence speed of the method. Aiming at an actuator
fault in the aircraft system, Ref. [18] proposes a sliding mode FTC method based upon
multi-objective optimization. Ref. [19] forms an actuator fault detection system based on
the observer, which can locate the actuator with abnormal behavior by comparing the
actual value and observed value of pitch displacement and roll displacement. The adaptive
fault-tolerant scheme based on terminal sliding mode control (TSMC) proposed in [20]
can make the quad-rotor system with external disturbances, parametric uncertainties, and
actuator fault realize finite-time stability. A finite-time exact observer (FEO) is designed to
estimate disturbances and reduce the conservatism of disturbances.

However, most of the existing FTC research focuses on actuator faults, and there is
relatively little research on sensor faults. Ref. [21] studies nonlinear systems affected by
noise and proposes a proportional multiple-integral sliding mode observer (PMISMO) that
can simultaneously observe state, actuator, and sensor faults. Finally, the effectiveness of
the method is verified in the simulator of an octocopter-type UAV. In [22], the Cubature
Kalman filter (CKF) is used to detect and isolate sensor faults. Compared with several
nonlinear Kalman filters (KFs), CKF has the smallest estimation error. Then, two active
fault-tolerant methods are designed. In [23], the author designs an active FTC method that
uses a multi-dimensional generalized fuzzy observer to estimate faults for nonlinear T–S
(Takagi–Sugeno) fuzzy systems with cascaded sensor faults, which effectively avoids the
coupling effect between faults and enhances the robustness of the system. For discrete
switching systems with the sensor fault, Ref. [24] designs a discrete switching generalized
observer to solve the problem of simultaneous estimation of the system state and the sensor
fault, and finally uses the estimated information to compensate for the failure. However,
none of the above references considers time delays.

Actuators, sensors, and communication networks involved in the feedback loop in the
control system usually generate delays [25], and such delays usually make it difficult for
the controlled variable to respond significantly to external disturbances in a short period
of time, which in turn induces a response overshoot. As is known to all, the existence of
time delay may make the control system oscillate or reduce the system performance [26].
Therefore, the study of robust control for systems with time delays is also critical in practical
applications. For T–S fuzzy systems with an unbounded sensor fault and state delays,
Ref. [27] designs a fuzzy augmented state and fault estimation observer for estimating the
system state and sensor fault at the same time. Then, a dynamic output feedback controller
is designed to compensate for the sensor fault based on the estimated information. This



Aerospace 2022, 9, 207 3 of 21

paper has not considered input delays. In [28], an adaptive memory-free state feedback
fault-tolerant controller is designed for a class of systems with actuator fault, multiple
time-varying state delays, mismatched parameter uncertainties, and external disturbances.
The proposed method makes the tracking error asymptotically converge to zero and the
dynamic signal robust tracking effect is better. For a type of continuous system with multi-
delay and sensor fault, Ref. [29] first designs an observer for estimating both sensor fault
and system state and then designs a controller to handle the fault based on the observer.
This paper successfully extends the existing methods to systems with multiple time delays.

According to our knowledge, there are rarely related research on discrete uncertain
quad-rotor UAV systems with state delay, input delay, and sensor fault. Aiming at this and
comparing it with [30,31], this paper proposes a sliding mode predictive fault-tolerant con-
trol method based on the DIECOA. The innovations and main contributions are as follows:

1. The above two papers deal with the actuator fault of the system, and this paper deals
with the sensor fault. In the system model, Ref. [31] has not considered time delays
and the parameter uncertainties of the system, and Ref. [30] only considered state time
delay. First, the augmented system is constructed in system structural transformation,
and the sensor fault is added to the system state.

2. About the design of sliding mode controller, different from the linear sliding surface
in the predictive model [30] and the delta operator approach [31], the quasi-integral
sliding mode surface is adopted in this paper to deal with discrete sliding mode
control problems which can eliminate the sliding mode approach process and ensure
the global robustness of the system.

3. For the sensor fault, various disturbances, and multiple time delays, this paper
designs an intelligent double-power function reference trajectory considering fault
and disturbance compensation term, which effectively reduces the adverse effect of
multi-delay and improves the precision of fault-tolerant control.

4. Regarding the design of rolling optimization, which is what [31] lacks, this paper
adopts the dynamic information exchange coyote optimization algorithm (DIECOA),
which introduced a dynamic information exchange strategy (DIE) to further improve
the individual change mechanism of the coyote optimization algorithm (COA). Com-
pared with the multi-agent particle swarm optimization algorithm (MAPSO) proposed
in [31], DIECOE improves the local solution capability of the control law optimization
in this paper and has the advantages of faster convergence and higher accuracy.

The remaining sections of this article are arranged as follows. In Section 2, the mathe-
matical model of the quad-rotor UAV is established. In Section 3, the fault-tolerant control
method is designed. Firstly, a sliding mode prediction model of the quasi-integral type
is established. Then, the reference trajectory of the double power function with fault and
disturbance compensation is designed. In the rolling optimization part, the DIECOA is
designed. In Section 4, the stability of the method is proved. In Section 5, simulation experi-
ments are carried out to illustrate the practicability of the method, and further comparative
experiments verify the superiority of the method. Section 6 summarizes the whole paper.

2. Problem Statement and Preliminaries

Consider the following discrete system with multi-delay, parameter uncertainties, and
external disturbance:

x(k + 1) = (A + ∆A)x(k) + (Ad + ∆Ad)x(k− τ1)+
(B + ∆B)δ[x(k), u(k)] + (Bd + ∆Bd)δ[x(k), u(k− τ2)] + ϑ(k)
y(k) = Cx(k)

(1)

where x(k) ∈ Rn, u(k) ∈ Rp, y(k) ∈ Rq, ϑ(k) ∈ Rn, respectively, are state, input, output,
and external disturbance; δ is nonlinear function. A ∈ Rn×n, B ∈ Rn×p, Ad ∈ Rn×n,
Bd ∈ Rn×p, C ∈ Rq×n are constant matrices, ∆A, ∆Ad, ∆B, ∆Bd are parameter uncertainties
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of the system, τ1 ∈ R+, τ2 ∈ R+ are respectively state and input time delays, and they both
have upper bounds τ1up, τ2up.

Comment: For the selection of parameter uncertainty, please refer to [17].
The quad-rotor UAV has the characteristics of high real-time performance, and when

the motor is in a high-frequency working state for a long time, it will cause the body
to shake, which will cause the deviation of the accelerometer (sensor). Commonly used
accelerometers include capacitive accelerometers, which can measure the value of accelera-
tion through the output voltage. When the UAV is displaced, the capacitance between the
sensors will change. If the change in the sensor’s output voltage is measured, it is equiva-
lent to measuring the displacement of the UAV. Therefore, the fault of the accelerometer
affects the displacement (flight trajectory) of the UAV. According to the fault causes, sensor
faults can be divided into stuck faults, bias faults, loss of effectiveness, periodic interference
faults, etc. According to the fault modeling angle, sensor faults can be divided into additive
faults and multiplicative faults. From the modeling point of view, the sensor additive fault
is studied in this paper.

When the sensor of the system fails, the system model changes into the following form:
x(k + 1) = (A + ∆A)x(k) + (Ad + ∆Ad)x(k− τ1)+
(B + ∆B)δ[x(k), u(k)] + (Bd + ∆Bd)δ[x(k), u(k− τ2)] + ϑ(k)
y(k) = Cx(k)+D fs(k)

(2)

D ∈ Rq×m is a constant matrix, and fs(k) ∈ Rmis an additive fault function.
System (2) can be rewritten as follows:

x(k + 1) = Ax(k) + Adx(k− τ1)+
Bδ[x(k), u(k)] + Bdδ[x(k), u(k− τ2)] + ω(k)
y(k) = Cx(k)+D fs(k)

(3)

where ω(k) = ∆Ax(k) + ∆Adx(k − τ1) + ∆Bδ[x(k), u(k)] + ∆Bdδ[x(k), u(k− τ2)] + ϑ(k)
represents the sum of system uncertainties and external disturbance. The following as-
sumptions will help obtain the results of this article.

Assumption 1. The function δ : Rn×m → Rr satisfies Lipschitz condition for x(k), that is, for
any x1(k), x2(k) ∈ Rn and any u(k) ∈ Rm, the existence of Lipschitz constant χ > 0 enables:
‖δ[x1(k), u(k)]− δ[x2(k)− u(k)]‖ ≤ χ‖x1(k)− x2(k)‖.

The Stirling interpolation formula is used to perform linear approximation on the nonlinear
term in Equation (3). First, define the following function:

χδ(x) = δ
(

x +
ι

2

)
− δ
(

x− ι

2

)
, µδ(x) =

δ
(
x + ι

2
)
+ δ
(
x− ι

2
)

2
(4)

where δ() is a nonlinear function, ι ∈ (0, 1) is an adjustable real number, χ is a differential operator,
and µ is an average operator. Let pι = x̃ = x− x̄, and the Stirling interpolation formula is used to
expand δ(x) at x = x̄, and its first-order terms are retained, its high-order terms are ignored, and
then we can obtain:

δ(x) ≈ δ(x̄) + δι(x̄)pι = δ(x̄) + δι(x̄)x̃ (5)

where δι(x̄) = δ(x̄+ι)−δ(x̄−ι)
2ι ; then, we expand Equation (5) to a vector form as follows:

δ(x) = δ(x̄) + Ĩσxδ +
1
2!

Ĩ2
σxδ + · · · ≈ δ(x̄) + Ĩσxδ (6)
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where Ĩσxδ = 1
ι

(
n
∑

i=1
∆xiµiεi

)
δ(x̄). Therefore, the Stirling interpolation formula is used to expand

δ[x(k), u(k)] and δ[x(k), u(k− τ2)] in system (3) at (x0, u0) and (x0, u0), respectively, we can
obtain:

δ(x(k), u(k)) ≈ δ(x0, u0) +
1
ι

µ1χ1(x(k)− x0)δ(x0, u0) +
1
ι

µ2χ2(u(k)− u0)δ(x0, u0) (7)

δ(x(k), u(k)) ≈ δ(x0, u0) + I1
′(x(k)− x0) + I2

′(u(k− τ2)− u0) (8)

Define I1 = χ1µ1δ(x0,u0)
ι , I2 = χ2µ2δ(x0,u0)

ι , I1
′ = χ1

′µ1
′δ(x0,u0)

ι , I2
′ = χ2

′µ2
′δ(x0,u0)

ι ; then,
Equations (7) and (8) can be rewritten as (9) and (10):

δ(x(k), u(k)) ≈ δ(x0, u0) + I1(x(k)− x0) + I2(u(k)− u0) (9)

δ(x(k), u(k)) ≈ δ(x0, u0) + I1
′(x(k)− x0) + I2

′(u(k− τ2)− u0) (10)

Therefore, the nonlinear terms (9) and (10) are approximate to (11) and (12), respectively:

δ(x(k), u(k)) ≈ I1x(k) + I2u(k) + I0 (11)

δ(x(k), u(k− τ2)) ≈ I1
′x(k) + I2

′u(k− τ2) + I0
′ (12)

where I0 = δ(x0, u0) − I1x0 − I2u0, I0
′ = δ(x0, u0) − I1

′x0 − I2
′u0, then system (3) can be

approximate to the linear system (13):
x(k + 1) = Ax(k) + Adx(k− τ1)+
B[I1x(k) + I2u(k) + I0] + Bd

[
I1
′x(k) + I2

′u(k− τ2) + I0
′]+ ω(k)

y(k) = Cx(k)+D fs(k)
(13)

where Ap = A + BI1 + Bd I1
′, Bp = BI2, Bp

′ = BI2
′, ωp(k) = ω(k) + BI0 + BI0

′, then we can
obtain the following system (14):{

x(k + 1) = Apx(k) + Adx(k− τ1) + Bpu(k) + Bp
′u(k− τ2) + ωp(k)

y(k) = Cx(k)+D fs(k)
(14)

Assumption 2. ωp(k) = ω(k) + BI0 + BI0
′ has upper and lower bounds, and the rate of change

is bounded:
ωmin ≤

∣∣ωp(k)
∣∣ ≤ ωmax (15)∣∣ωp(k + 1)−ωp(k)
∣∣ ≤ ω0 (16)

Make a system transformation for system (14), then let: x̄(k) =

[
x(k)
fs(k)

]
, x̄(k− τ1) =[

x(k− τ1)
fs(k)

]
, ω̄p(k) =

[
ωp(k)

0

]
, ȳ(k) = y(k), Ā =

[
Ap 0
0 `1

]
, B̄ =

[
Bp 0
0 1

2 Im

]
,

Ād =

[
Ad 0
0 `2

]
, B̄d =

[
Bp
′ 0

0 1
2 Im

]
, C̄ =

[
C D

]
, and let θ(k) = fs(k + 1) −

(`1 + `2) f (k), where `1, `2 is new state degrees of freedom. System (14) can be equivalently
written as follows:

x̄(k + 1) = Āx̄(k) + Ād x̄(k− τ1) + B̄
[

u(k) + KYy(k)
0

]
+B̄d

[
u(k− τ2) + KYy(k− τ2)

0

]
+ θ(k)

[
0
Im

]
+ ω̄p(k)

ȳ(k) = C̄x̄(k)

(17)
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Let ū(k) =

[
u(k) + KYy(k)

0

]
, ū(k − τ2) =

[
u(k− τ2) + KYy(k− τ2)

0

]
, ξ̄(k) =

ω̄p(k) + D̄θ(k), D̄ =

[
0
Im

]
.

System (17) is simplified as follows:{
x̄(k + 1) = Āx̄(k) + Ād x̄(k− τ1) + B̄ū(k) + B̄dū(k− τ2) + ξ̄(k)
ȳ(k) = C̄x̄(k)

(18)

The one-step delay estimation method is used for the estimation of ξ̄(k), and let the estimate
error be ˜̄ξ(k):

ˆ̄ξ(k) = ξ̄(k− 1) = x̄(k)− Āx(k− 1)− Ād x̄(k− τ1 − 1)− B̄dū(k− τ2 − 1)− Bdū(k− 1) (19)

˜̄ξ(k) = ˆ̄ξ(k)− ξ̄(k) = ξ̄(k− 1)− ξ̄(k) (20)

Assumption 3. System faults and uncertainties ξ̄(k) are bounded: ξ̄L ≤
∣∣ξ̄(k)∣∣ ≤ ξ̄U .

Assumption 4. The rate of change of system faults and uncertainties are bounded:
∣∣ξ̄(k)− ξ̄(k− 1)

∣∣
≤ ξ̄0.

Lemma 1 (Schur’s Complement Theorem). For a given symmetric matrix
[

Λ11 Λ12
Λ21 Λ22

]
< 0,

where Λ11
T = Λ11, Λ22

T = Λ22, Λ12
T = Λ21. Then, the above equation is equivalent to 1)

Λ11 < 0, Λ21Λ11
−1Λ12 < 0; 2)Λ22 < 0, Λ12Λ22

−1Λ21 < 0.

3. SMP-FTC Method Design
3.1. SMP Model Analysis

The design of the quasi-integral switching function is as follows. Compared with the
linear sliding surface used in [30], the quasi-integral sliding surface can make the system
state be located on the sliding surface from the beginning, eliminating the approaching
stage of sliding mode and better maintaining the overall robustness. This paper studies the
discrete sliding mode control problem. In the discrete sliding mode control system, the state
trajectory of the system only moves in the neighborhood of the switching surface, forming
a kind of quasi-sliding mode. Therefore, the current research results of continuous system
sliding mode control cannot be simply extended to discrete systems. The merits of the quasi-
integral sliding surface are that the state trajectory of the system is located on the sliding
surface from the initial moment, thereby eliminating the approaching process of the sliding
surface. Therefore, the robustness of the system in the whole space is better guaranteed:{

s(k) = <x̄(k) + ℵ(k)−<x̄(0)
ℵ(k + 1)− ℵ(k) = <x̄(k)−<Āx̄(k)−<Ād x̄(k− τ1)

(21)

where ℵ(0) = 0, ℵ ∈ Rp×n represents a constant matrix, which satisfies that <B is nonsin-
gular. We can obtain the following predicted output at the moment (k + P) according to
(18) and (21):

s(k + P) = <
[

ĀP x̄(k) +
P
∑

i=1
Āi−1 Ād x̄(k + P− i− τ1)

+
M−1
∑

i=1
ĀP−i B̄ū(k + i− 1) +

P−M
∑

i=1
Āi B̄ū(k + M− 1)

+
M+τ2(k)−1

∑
i=1

ĀP−i B̄dū(k + i− 1− τ2)

+
P−M−τ2(k)

∑
i=1

Āi B̄dū(k + M− 1)

]
+ ℵ(k + P)−<x̄(0)

(22)
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where P represents the prediction time horizon, and M represents the control time horizon.
The vector form of (22) is as follows:

SPM(k) = ΓXd(k) + ΞX(k) + ΥUd(k) + ΩU(k) + Θ(k) (23)

where

SPM(k) = [s(k + 1), s(k + 2), ..., s(k + P)]T ;

Ξ =
[
(<Ā)

T , (<Ā2)
T , ..., (<ĀP)

T
]T

;

Xd(k) = [x̄(k− τ1(k)), x̄(k + 1− τ1(k + 1)), ..., x̄(k + P− 1− τ1(k + P− 1))]T ;
X(k) = [x̄(k + 1), ..., x̄(k + P)]T ;
Ud(k) = [ū(k− τ2(k)), ū(k + 1− τ2(k + 1)), ..., ū(k + M− 1)]T ;
U(k) = [ū(k), ū(k + 1), ..., ū(k + M− 1)]T ;
Θ(k) = [ℵ(k + 1)−<x̄(0),ℵ(k + 2)−<x̄(0), ...,ℵ(k + P)−<x̄(0)]T ;

Γ =



<Ād 0 · · · · · · 0
<ĀĀd <Ād 0

...
...

. . .
...

...
...

. . .
...

<ĀP−1 Ād <ĀP−2 Ād · · · · · · <Ād

;

Υ =



<B̄d 0 · · · · · · 0
<ĀB̄d <B̄d 0 · · · 0

...
... · · · · · ·

...
<ĀM−1B̄d <ĀM−2B̄d · · · <ĀB̄d <B̄d
<ĀM B̄d <ĀM−1B̄d · · · <Ā2B̄d <ĀB̄d +<B̄d

...
... · · ·

...
...

<ĀP−1B̄d <ĀP−2B̄d · · · <ĀP−M+1B̄d
P−M

∑
i=0
<Āi B̄d


;

Ω =



<B̄ 0 · · · · · · 0
<ĀB̄ <B̄ 0 · · · 0

...
... · · · · · ·

...
<ĀM−1B̄ <ĀM−2B̄ · · · <ĀB̄ <B̄
<ĀM B̄ <ĀM−1B̄ · · · <Ā2B̄ <ĀB̄ +<B̄

...
... · · ·

...
...

<ĀP−1B̄ <ĀP−2B̄ · · · <ĀP−M+1B̄
P−M

∑
i=0
<Āi B̄


.

3.2. Stability Analysis of the SMP Model

According to s(k + 1) = s(k) = 0, the corresponding equivalent control law can be
derived as (24):

ueq(k) = −(<B̄)−1<ξ̄(k) = −(<B̄)−1<
[
ω̄p(k) + D̄θ(k)

]
(24)

Substitute (24) into system (18), the ideal sliding mode equation can be obtained
as (25):

x̄(k + 1) = Āx̄(k) + Ād x̄(k− τ1) + B̄dū(k− τ2) +
[

I − B(<B)−1<
]
ξ̄(k) (25)
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Theorem 1. For the system (18), the quasi-integral SMP model is determined by (21), if there is a
positive definite matrix Hi, (i = 1, 2, 3), which satisfies the inequality (26), then the Equation (25)
is globally asymptotically stable:

∆1 0 0 0 0
∗ ∆2 0 0 0
∗ ∗ ∆3 0 0
∗ ∗ ∗ 4H1

√
2H1B̄

∗ ∗ ∗ ∗ −B̄TH1B̄

 < 0 (26)

where ∆1 = 5ĀTH1 Ā − H1 + H2, ∆2 = 4ĀT
d H1 Ād + ĀT

d H2 Ād − H2, ∆3 = 4B̄T
d H1B̄d +

ĀT
d H2 Ād −H3.

Proof. Choose the Lyapunov function (27) for Equation (25):

V(k) = x̄T(k)H1 x̄(k) +
k−1

∑
i=k−τ1(k)

x̄T(i)H2 x̄(i) +
k−1

∑
j=k−τ2(k)

ūT(j)H3ū(j) (27)

Choose < = B̄TH1, which can guarantee that <B is nonsingular, and let Q =
(B̄TH1B̄)−1B̄TH1.

The difference equation of the Lyapunov function along the state trajectory of the ideal
sliding mode (25) satisfies:

∆V(k) = V(k + 1)−V(k)

= x̄T(k + 1)H1 x̄(k + 1) +
k
∑

i=k+1−τ1(k+1)
x̄T(i)H2 x̄(i)− x̄T(k)H1 x̄(k)

+
k
∑

j=k+1−τ2(k+1)
ūT(j)H3ū(j)−

k−1
∑

i=k−τ1(k)
x̄T(i)H2 x̄(i)−

k−1
∑

j=k−τ2(k)
ūT(j)H3ū(j)

= x̄T(k)ĀTH1 Āx̄(k) + x̄T(k)(H2 −H1)x̄(k) + 2x̄T(k)ĀTH1 Ād x̄(k− τ1)
+2x̄T(k)ĀTH1B̄dū(k− τ2) + x̄T(k− τ1)ĀT

d H1 Ād x̄(k− τ1)− x̄T(k− τ1)H2 x̄(k− τ1)
+2x̄T(k− τ1)Ād

TH1B̄dū(k− τ2) + ūT(k− τ2)B̄T
d H1B̄dū(k− τ2)

−ūT(k− τ2)H3ū(k− τ2) + 2x̄T(k)ĀTH1ξ̄(k)− 2x̄T(k)ĀTH1B̄Qξ̄(k)
+2x̄T(k− τ1)ĀT

d H1ξ̄(k)− 2x̄T(k− τ1)ĀT
d H1B̄Qξ̄(k) + 2ūT(k− τ2)B̄T

d H1ξ̄(k)
−2ūT(k− τ2)B̄T

d H1B̄Qξ̄(k) + ξ̄T(k)H1ξ̄(k)− ξ̄T(k)H1B̄Qξ̄(k)
≤ 5x̄T(k)ĀTH1 Āx̄(k) + x̄T(k)(H2 −H1)x̄(k) + 4x̄T(k− τ1)ĀT

d H1 Ād x̄(k− τ1)
+x̄T(k− τ1)ĀT

d H2 Ād x̄(k− τ1)− x̄T(k− τ1)H2 x̄(k− τ1)
+4ūT(k− τ2)B̄T

d H1B̄dū(k− τ2) + ūT(k− τ2)B̄T
d H2B̄dū(k− τ2)

−ūT(k− τ2)H3ū(k− τ2) + 4ξ̄T(k)H1ξ̄(k) + 2ξ̄T(k)H1B̄Qξ̄(k)

=
[

x̄(k) x̄(k− τ1) ū(k− τ2) ξ̄(k)
]
Φ


x̄(k)

x̄(k− τ1)
ū(k− τ2)

ξ̄(k)


T

(28)

where Φ =


∆1

∆2
∆3

∆4

, ∆4 = 4H1 + 2H1BQ.

From Φ < 0, ∆V(k) < 0 can be obtained. From Lemma 1, Φ < 0 is equivalent to (26).
Therefore, when the inequality (26) holds, the ideal sliding mode (25) is asymptotically
stable. The stability of prediction model is demonstrated.
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3.3. Feedback Correction

s(k|k− P ) is defined as the predictive output of the switching function at the moment
s(k|k− P ), and es(k) is defined as the predictive error at the moment k:

s(k|k− P ) = <
[

ĀP x̄(k− P) +
P
∑

i=1
Āi−1 Ād x̄(k− i− τ1)

+
M−1
∑

i=1
ĀP−i B̄ū(k− P+i− 1) +

P−M
∑

i=1
Āi B̄ū(k− P + M− 1)

+
M+τ2(k)−1

∑
i=1

ĀP−i B̄dū(k− P+i− 1− τ2)

+
P−M−τ2(k)

∑
i=1

Āi B̄dū(k− P+M− 1)

]
+ ℵ(k)−<x̄(0)

(29)

es(k) = s(k)− s(k|k− P ) (30)

Then, the P step predictive output of the switching function after error correction is as
(30), where fp is the correction coefficient. The vector form of (31) is as (32):

s̃(k + P) = s(k + P) + fpes(k) (31)

S̃PM(k) = SPM(k) + FpEs(k) (32)

where
S̃PM(k) = [s̃(k + 1), s̃(k + 2), . . . , s̃(k + P)]T ;

FP =


f1

f2
. . .

fP

, 1 ≥ f1 ≥ f2 ≥ · · · ≥ fP > 0;

ES(k) = [s(k)− s(k|k− 1 ), s(k)− s(k|k− 2 ), . . . , s(k)− s(k|k− P )]T .

3.4. Reference Trajectory Design

Considering that the system has state delay and input delay, this section designs the
reference trajectory of the double power function. Compared with the reference trajectory
of [30], the dynamic convergence speed of the double-power reference trajectory is fast,
and the accuracy is high. The system has sensor fault, parameter uncertainty, and external
disturbances, so the improved fault and disturbance compensation is designed, which
effectively handles faults and various disturbances. First, the design of the improved
fault and disturbance compensation is based on the traditional boundary layer chattering
suppression strategy. Then, the equivalent fault and disturbance rate of change is defined
as the second-order difference of the fault and disturbance. As a result, the quasi-sliding
mode bandwidth is reduced, and chattering is suppressed.

The reference trajectory designed in this paper is as (33):
sre f (k + 1) = (1− qT)sre f (k)− ε1T

∣∣∣sre f (k)
∣∣∣α − ε2T

∣∣∣sre f (k)
∣∣∣βsgn

(
sre f (k)

)
+
(
1− z−1)<[ξ̄(k)− ξ̄(k− 1)

]
sre f (k) = s(k)

(33)

where ε1 > 0, ε2 > 0, q > 0, 1− qT > 0, 0 < α < 1, β > 1, T represents sampling time.
Simplify to obtain the reference trajectory as (34):

sre f (k + 1) = (1− qT)sre f (k)− ε1T
∣∣∣sre f (k)

∣∣∣α − ε2T
∣∣∣sre f (k)

∣∣∣βsgn
(

sre f (k)
)

+=(k)
sre f (k) = s(k)

(34)
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=(k) = <
[
ξ̄(k)− 2ξ̄(k− 1) + ξ̄(k− 2)

]
(35)

Lemma 2. From [32], when the zero-order holder is used for discretization, the equivalent fault and
disturbance ξ̄(k) in the system (18) have the property as: ξ̄(k)− 2ξ̄(k− 1) + ξ̄(k− 2) = O

(
T3),

where O(T) indicates that the magnitude of ξ̄(k) is on the order of magnitude O(T).

Assumption 5. The change rate of equivalent fault and disturbance =(k) defined by (35) is
bounded, and |=(k)| ≤ UpB ≤ min{ε1, ε2}T, and UpB represents the upper bound of =(k).

The traditional change rate of equivalent fault and disturbance =1(k) and its upper bound
UpB1 is as (36) [33]: {

=1(k) = <
[
ξ̄(k)− ξ̄(k− 1)

]
|=1(k)| ≤ UpB1

(36)

3.5. Rolling Optimization Design Based on DIECOA

At time k, the optimization performance indicator is shown in (37), and (38) represents
the vector form of (37):

j(k) =
P

∑
i=1

λi

[
sre f (k + i)− s̃(k + 1)

]2
+

M

∑
l=1

ρl [u(k + l − 1)]2 (37)

J(k) =
[
Sre f (k)− S̃PM(k)

]T
H4

[
Sre f (k)− S̃PM(k)

]
+ [U(k)]TH5[U(k)] (38)

where λi, ρi is the non-negative weight,

H4 =


λ1

λ2
. . .

λP

, H5 =


ρ1

ρ2
. . .

ρM

.

The Coyote Optimization Algorithm (COA) [34] is a new and promising global opti-
mization algorithm based on random populations. Unlike most intelligent optimization
algorithms, the population of COA is subdivided, and each individual is affected by internal
social culture. Moreover, the design of COA requires only a few control parameters, such
as the number of wolves and population size. However, the traditional COA maintains
a constant update mechanism during the solution process, weakening the global search
capability; it is easier to fall into premature convergence when solving complex objective
functions. Therefore, this paper designs DIECOA.

This paper introduces an improved dynamic information exchange (DIE) strategy to
update the individual replacement formula, which effectively strengthens the information
interaction and integration of individuals within the population, and also has a positive
impact on the growth of new coyote individuals, with higher convergence accuracy and
faster speed. Ref. [31] has not yet adopted the optimization algorithm. Compared with the
MAPSO algorithm adopted in [30], DIECOA proposed in this paper has higher convergence
accuracy and faster speed. First, make J(k) take the minimum value U(k), that is, take the
optimized performance (38) as the fitness function of DIECOA.
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The implementation process of DIECOA is as follows:
(1) Coyote population initialization
Set parameters: coyote group Np, number of coyotes per group Nc, dimension D,

and termination condition n f evalMAX. Randomly initializing the group, Equation (40)
represents the social state variable set of the i-th individual in the p group at the t-th time,
and Equation (39) is obtained by assigning the w-th dimension to the i-th individual in the
group p at the t-th time in the variable set:

yp,t
c,w = lbw + rw(ubw − lbw) (39)

yp,t
c =

(
yp,t

c,1, yp,t
c,2, yp,t

c , . . . , yp,t
c,D

)
(40)

where ubw, lbw respectively denote the upper and lower bounds of the w-th dimension
value, and rw ∈ [0, 1] is a random real number.

(2) Evaluation of coyote adaptability
Calculate the fitness value of a coyote individual:

Adaptp,t
i = A

(
yp,t

i

)
(41)

(3) Coyote population evolution trend
First, find the leader Cleadp,t of the pack, and calculate current cultural trends cultp,t

in coyote populations:

Cleadp,t =
{

yi
p,t
∥∥∥arg{i=1,2,...,Nc}min A

(
yi

p,t)} (42)

cultp,t
j =

 Op,t
Nc+1

2 ,w
, Nc is ′odd.

O Nc
2 ,w + Op,t

Nc+1
2 ,w

, others.
(43)

where Op,t
Nc+1

2 ,w
represents the median of the social state of the w-th dimension variable of

all individuals in the group p at the t-th time when Nc is an odd number.
Defining Pe as the probability of coyote group transition, that is, the probability that

they actively or passively departure from the original coyote group:

Pe = 0.005N2
c (44)

Birth and death of individuals: record the age of the coyote (in years) as yearp,t
c .(

pupp,t) represents a coyote newborn, which is written as a combination of the social status
of both parents (selected at random) of the new coyote plus environmental impact:

pupp,t
w =


yp,t

n1,w, rndw<Psor, w = w1

yp,t
n2,w, rndw ≥ Ps + Paor, w = w2

Rw, rndw, else.
(45)

where n1 and n2 are random coyotes from group p, w1, w2 are two random dimensions of
the problem, Rw, rndw ∈ [0, 1], which represent random numbers generated with uniform
probability.

Associated probability Pa and discrete probability Ps can affect the individual richness
and cultural diversity of the coyotes. Define Pa, Ps as follows:

Pa =
(1− Ps)

2
, Ps =

1
D

(46)

ω represents the inertia weight of the individual social state, meaning: after birth, the
newborn’s survival is determined according to the value of Adaptp,t

i : if there is at least one
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individual in the population whose Adaptp,t
i is smaller than that of the newborn, the new-

born survives, and the individual with the smallest Adaptp,t
i dies; if there is no individual

in the population with Adaptp,t
i smaller than that of the neonate, the neonate dies.

Calculate the influence of the leader Cleadp,t and cultural trends cultp,t on the individ-
ual update in the group p at the current moment t, and denote them respectively as In f1
and In f2:

In f1 = Cleadp,t − yp,t
cr1 , In f2 = cultp,t − yp,t

cr2 (47)

where the two random coyotes in the current group are denoted as cr1 and cr2.
(4) Update the coyote individuals in each group
A dynamic information exchange strategy (DIE) is introduced to enhance the infor-

mation integration within the population and then achieve the purpose of promoting
individual growth. DIE improves the limitations of the individual replacement mecha-
nism in the group, expanding the information reserve and interaction degree generated
by new individuals in the group so that the replacement of individuals is no longer solely
affected by the optimal wolf and the current coyote population culture, but, in the process
of change, DIE accepts most of the group of other individuals, the information provided
by the mutual influence, to improve the diversity of the individual change and growth.
From the perspective of the optimization performance of the algorithm, this strategy has a
significant effect on improving the local solution ability of the control law optimization.

The new coyote individual new_yp,t
i is obtained by updating all coyote individuals in

the coyote pack, and then retain the optimal coyote yp,t+1
i :

new_yp,t
i = yp,t

i + κ1R1 + κ2R2 (48)

yx,t+1
i =

{
new_yx,t

i , A
(

new−yx,t
i

)
< A

(
yx,t

i

)
yx,t

i , others
(49)

R1 = κ1

(
Cleadp,t − yp,t

1

)
+ (1− κ1)

(
culp,t − yp,t

2

)
=κ1 In f1 + (1− κ1)In f2 (50)

R2 = yp,t
1 − yp,t

2 (51)

where κ1, κ2 ∈ [0, 1] are random real numbers, which respectively denote the weight of
individual coyotes influenced by the leader Cleadp,t of the pack and cultural trends of
groups. R2 represents information exchange.

(5) Coyote age update
Simulate the entire stages of an individual’s growth over time, age-changing the

individual.
(6) Judge termination conditions
Termination condition judgment. If it is reached, output the individual social state

with the optimal adaptability; otherwise, return to phase (2) to continue.
The flow diagram of SMP method designed in this paper is shown in Figure 1.
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Figure 1. Flow diagram of the SMP method.

4. Stability Analysis

The overview of the overall closed-loop system is illustrated in Figure 2.

Figure 2. Block diagram of the overall closed-loop system.

Making the moment k the current moment, the predicted output at the moment (k + P)
of system (18) is as (22), and the actual predicted output vector form is as follows:

SPM(k) = ΓXd(k) + ΞX(k) + ΥUd(k) + ΩU(k) + Π∂(k) + Θ(k) (52)
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where Π =


< 0 · · · 0
<Ā < · · · 0

...
...

. . .
...

<ĀP−1 <ĀP−2 · · · <

, ∂(k)=

[
ξ̄(k) ξ̄(k + 1) · · · ξ̄(k + P− 1)

]T .

The optimal control law must satisfy ∂J(k)
∂U(k) = 0; for that, ∂J(k)

∂U(k) = 0 is the necessary
condition for J(k) to take the extreme:

U(k) =
(

H5 + ΩT H4Ω
)−1ΩT H4

[
Sre f (k)− ΞX(k)− ΓXd(k)

−ΥUd(k)−Θ(k)− FpEs(k)
] (53)

Substitute Equation (53) into Equation (52); then, taking H5 = 0 means that there is
no limit to the control input U(k), which is reasonable. H4 take the identity matrix of the
corresponding dimension, then:

U(k) =
(

H5 + ΩT H4Ω
)−1ΩT H4

[
Sre f (k)− ΞX(k)− ΓXd(k)

−ΥUd(k)−Θ(k)− FpEs(k)
] (54)

SPM(k) = Sre f (k) + Π∂(k)− FpEs(k) (55)

In the process of solving the control law with rolling optimization, since the control
law is solved in real-time, that is, only the current control input signal is implemented
on the controlled object. The correction factor f1 is generally taken as 1, and then we can
obtain (56) as follows:

s(k + 1) =
[

1 0 · · · 0
]
SPM(k)

= sre f (k + 1)− f1[s(k)− s(k | k− 1)] +<ξ̄(k)
= sre f (k + 1) +<

[
ξ̄(k)− f1ξ̄(k− 1)

]
= sre f (k + 1) +<

[
ξ̄(k)− ξ̄(k− 1)

] (56)

From Assumption 4:
∣∣ξ̄(k)− ξ̄(k− 1)

∣∣ ≤ ξ̄0,

s(k + 1) = sre f (k + 1) +<
[
ξ̄(k)− ξ̄(k− 1)

]
≤ sre f (k + 1) +<ξ̄0 (57)

where

sre f (k + 1) = (1− qT)sre f (k)− ε1T
∣∣∣sre f (k)

∣∣∣α − ε2T
∣∣∣sre f (k)

∣∣∣βsgn
(

sre f (k)
)
+=(k). (58)

From Assumption 5: |=(k)| ≤ UpB, therefore, we only need to verify the boundedness
of the double-power reaching law. Namely, we can only judge the following formula:

sv = (1− qT)sre f (k)− ε1T
∣∣∣sre f (k)

∣∣∣α − ε2T
∣∣∣sre f (k)

∣∣∣βsgn
(

sre f (k)
)

(59)

Proof. Let ∆sv(k) = sv(k + 1)− sv(k), then:

∆sv(k) = −qTsv(k)− ε1T|sv(k)|αsgn(s(k))− ε2T|sv(k)|βsgn(s(k)) (60)

(1) When sv(k) ≥ 0:
∂∆sv(k)
∂sv(k)

= −qT − ε1Tα[sv(k)]
α−1 − ε2Tβ[sv(k)]

β−1

From ε1 > 0, ε2 > 0, q > 0, 1− qT > 0, 0 < α < 1, β > 1, we can obtain ∂∆sv(k)
∂sv(k)

< 0,
that is, ∆sv(k) is a decreasing function of sv(k). When sv(k) ≥ 0, ∆sv(k) ≤ −qTsv(k)−
ε1T[sv(k)]

α − ε2T[sv(k)]
β
∣∣∣
sv(k)=0

= 0, and from ∆sv(k) ≤ 0, we can obtain that sv(k)
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decreases until reaching the state sv(k)= 0. If and only if sv(k)= 0, ∆sv(k)= 0, then
sv(k + 1) ≤ υ.

(2) When sv(k) < 0:
∂∆sv(k)
∂sv(k)

= −qT − ε1Tα[−sv(k)]
α−1 − ε2Tβ[−sv(k)]

β−1

The same as (1), we can obtain ∂∆sv(k)
∂sv(k)

< 0. Namely, ∆sv(k) is a decreasing function

of sv(k). When sv(k) < 0, ∆sv(k) > −qTsv(k)− ε1T[sv(k)]
α − ε2T[sv(k)]

β
∣∣∣
sv(k)=0

= 0,

and, from ∆sv(k) > 0, we can obtain that sv(k) increases until reaching sv(k)= 0. Then,
sv(k + 1) ≤ υ is obtained.

(3) When sv(k) = 0:
According to sv(k + 1) = sv(k) = 0, the system is in a stable state. Then, sv(k + 1) ≤ υ.
In summary, sv(k + 1) ≤ υ is obtained, and, because s(k + 1) ≤ sv(k + 1) + UpB +

<ξ̄0, then |s(k + 1)| ≤ υ + UpB +<ξ̄0 is obtained. Namely, the closed-loop robust stability
of the system is proved.

5. Simulation Settings and Analysis
5.1. Model Introduction and Parameter Settings

In this section, we verify the rationality and effectiveness of the proposed method
through some simulation examples on the fault-tolerant simulation platform of the quad-
rotor UAV. As the name implies, Quad-rotor UAV is composed of four rotors and a rigid
airframe. The motion of the UAV is controlled by controlling the speed of the four rotors,
and the quality of the control method will directly determine whether the UAV system
can maintain robustness when faults or disturbances occur. In this section, the Qball-X4
aircraft produced by QUANSER in Canada is selected as the simulation object, as is shown
in Figure 3.

Since the motion of the x-axis and Y-axis is symmetric, the channel signal of the x-axis
forward direction is selected as the research object for simulation. The mathematical model
of the aircraft body is shown in Table 1 below.

Figure 3. Qball-X4 aircraft.

Table 1. Mathematic model of Qball-X4.

Physical Meaning Expression

Dynamic equation of X-axis MgẌ = 4F sin
(
θ̇
)

Lift generated by the rotor F F = Kg
ω

s+ω u
Actuator dynamics ν ν = ω

s+ω u

State space expression form of ν:
·
ν

·
ν = −ων + ωu

Where the above mathematical model assumes that the quad-rotor UAV flies at a
low speed and a small attitude angle, so the pitch and roll angles are approximately 0,
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and considers the influence of lift and pitch angle. u represents actuator input. The body
parameters of Qball-X4 are shown in Table 2.

Table 2. Body parameters of Qball-X4.

Physical Meaning Value

Body mass Mg= 1.4 kg
The positive gain Kg = 120 N

Actuator bandwidth ω = 15 rad/s

Let sin θ = θ, and the model in the x-axis direction can be derived as (61): Ẋ
Ẍ
ν̇

 =

 0 1 0
0 0 4Kg

Mg
θ

0 0 −ω


 X

Ẋ
ν

+

 0
0
ω

u (61)

Due to external conditions such as vibration and power supply 50 Hz interference, the
measurement of the sensor is affected by periodic interference. Since periodic interference
is one of the more common faults of sensors, a periodic interference fault is taken into
consideration in this paper.

In the x-axis position control stage, the periodic interference fault is injected into
the system model. Considering the parameter uncertainties, external disturbance, the
sensor fault, input time delay, and state time delay in the system, the values of the matrix
parameters in the quad-rotor UAV system (1) are as follows:

A=

 0 1 0
0 0 12
0 0 −15

, Ad =

 0 0 0
0 0 4
0 0 −5

, B =

 0
0
15

, Bd =

 0
0
1

, C =
[

1 0 0
]
,

constant matrix is D =
[

0.2 0.4 0.1
]

sin(k). The parameter uncertainties of the system
are ∆A = 0.1A, ∆Ad = 0.1Ad, ∆B = 0.1B, and ∆Bd = 0.1Bd; external disturbance takes
the more general white Gaussian noise function, and the sensor fault function is fs(k) = 0.3 sin(6k)

0.2 sin(3k)
0.2 sin(2k)

; sliding mode matrix parameter is σ =
[

1 1 1
]
. The PWM wave

inputs by the system may have a lag. Therefore, the input time delay needs to be considered.
This section takes the input time delay as τ2 = 3. Then, we consider that the signal
transmission in the system is through the wireless network, and the state delay also needs
to be considered. The state delay is taken as τ1 = 3. The prediction time horizon P
represents the number of prediction steps that make the prediction output approach the
expected value; the prediction time horizon in this paper is taken as P = 4. The control time
horizon M represents the number of parameters used to obtain future control trajectories.
The control time horizon in this paper is taken as M = 2. The sampling time and simulation
time horizon are selected as T = 0.02 and k = 1000. All the above matrices have been
discretized during the simulation experiment.

The parameter setting of DIECOA: Dimension D is taken as D = 10, the maximum
number of iterations is set to 50, the coyote group Np is set to 10, and the number of coyotes
per group Nc is set to 10.

5.2. Simulation Results

There is a case in which the initial conditions remain the same, that is, in the nonlinear
discrete quad-rotor UAV system with multiple time delays, parameter uncertainties, ex-
ternal disturbances, and sensor fault. This section will verify and compare the robustness
of the method designed in this paper and the methods in [30,31]. To better illustrate the
FTC capability of our method, we evaluate the complete FTC operation by injecting a fault
into the system at some point after the simulation starts. It is supposed that the periodic
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interference fault occurs on the accelerometer at k = 200 and continues throughout the
considered scenarios.

From Figures 4 and 5, we can easily see that the stability of the method designed in this
paper is obviously better than that of the methods of the comparative references, especially
in the position trajectories of the x-axis (Figure 4), and we can see that the trajectory of the
Qball-x4 aircraft tends to be stable and remains stable when k = 300. Moreover, when the
methods of [30,31] relatively act on the aircraft, the shaking of the aircraft along the x-axis is
more severe. When k = 200, the sensor fails, and the x-axis position of the quad-rotor UAV
under the three methods will have a certain offset. As can be seen from Figures 4 and 5, the
position offset of the quad-rotor UAV under the action of the method in this paper is more
minor, and the fault-tolerant control of the fault can be completed in a faster time.

Figure 4. the position trajectories of the x-axis (1).

Figure 5. the position error of the x-axis.

From Figure 6, it can be seen that the method proposed in this paper can stabilize the
system faster and weaken chattering. Since the method in [30] only considers the single
time delay and the method in [31] has not considered the time delays, the chattering of the
systems is relatively more obvious than the method designed in this paper. In particular,
it can be seen from the actuator dynamics trajectories of the x-axis (Figure 6) that the
method proposed in this paper has an obvious effect on weakening the system chattering.
Compared with [30,31], the chattering amplitude is respectively reduced by more than
50%. Even after the fault occurs, the method in this paper has an obvious effect on fault
compensation and weakens the local chattering caused by the fault.

From Figure 7 to Figure 8, we can see that, even after k = 200, the performance of
the method in this paper is still better than that in [30,31], which is manifested in that the
change of control law is relatively stable and convergence speed is significantly faster. In
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Figure 7, we can see that the method in this paper converges and tends to be stable at
around k = 350, while the method in Refs. [30,31] converges and tends to be stable when
k = 425 and k = 700, respectively. The method in this paper can better compensate for the
fault, weaken the chattering of the control law, and realize the fault-tolerant control more
quickly.

Figure 6. the actuator dynamics’ trajectories.

Figure 7. the trajectories of control law.

Figure 8. enlarged view of control law trajectories.

Figure 8 is an enlarged view of the control law. It can be seen that the proposed method
significantly reduces the amplitude of chattering and makes the change of the control law
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more gentle. Especially from Table 3, it can be concluded that the maximum amplitude of
the method in this paper is weakened by about 68.04% and 57.7% compared with [30,31],
respectively.

Table 3. Control law buffeting amplitude comparison.

Method Maximum Amplitude (×10−3)

Ref. [31] 1.0124
Ref. [30] 0.7649

This paper 0.3235

To further illustrate the advantages of the method designed in this paper in dealing
with input delay and state delay, we separately set up a set of the x-axis position curve
comparison tests for time delays. The above simulation results are obtained when the
state delay is set to τ1 = 3 and the input delay is τ2 = 3. In the case of other simulation
conditions being the same, set τ1 = τ2 = 0.6 and τ1 = τ2 = 5, respectively; then, we obtain
the simulation results in Figures 9 and 10. Compared with Figure 4, we can conclude that,
when the time delay is small, all three methods can stabilize the flight state of the quad-rotor
UAV in a short time; when the time delay is larger, the advantages of the method in this
paper are apparent.

Figure 9. the position trajectories of the x-axis (2).

Figure 10. the position trajectories of the x-axis (3).

6. Conclusions

An intelligent SMP-FTC method has been investigated in this paper for uncertain
discrete systems with sensor fault and external disturbances. In the design of the SMP
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controller, a quasi-integral sliding mode surface has been used to design the SMP model,
which ensures global robustness. Then, a double-power function with a novel compensation
term has been designed as a reference trajectory, which effectively compensates the fault
and time delays. An improved DIECOA of the rolling optimization is designed to guarantee
the rapid convergence of the control law. Simulation results on the fault-tolerant simulation
platform of the quad-rotor UAV show the effectiveness of the proposed method.

In this paper, only sensor faults have been considered; simultaneously, actuator and
sensor faults will be considered in future works. Another direction worthy of research in
the future is to take more challenging trajectories, such as ascending spiral, infinity, and
complete physical verification.
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