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Abstract: Road traffic elements comprise an important part of roads and represent the main content
involved in the construction of a basic traffic geographic information database, which is particularly
important for the development of basic traffic geographic information. However, the following
problems still exist for the extraction of traffic elements: insufficient data, complex scenarios, small
targets, and incomplete element information. Therefore, a set of road traffic multielement remote
sensing image datasets obtained by unmanned aerial vehicles (UAVs) is produced, and an improved
YOLOv4 network algorithm combined with an attention mechanism is proposed to automatically
recognize and detect multiple elements of road traffic in UAV imagery. First, the scale range of
different objects in the datasets is counted, and then the size of the candidate box is obtained by
the k-means clustering method. Second, mosaic data augmentation technology is used to increase
the number of trained road traffic multielement datasets. Then, by integrating the efficient channel
attention (ECA) mechanism into the two effective feature layers extracted from the YOLOv4 backbone
network and the upsampling results, the network focuses on the feature information and then trains
the datasets. At the same time, the complete intersection over union (CIoU) loss function is used to
consider the geometric relationship between the object and the test object, to solve the overlapping
problem of the juxtaposed dense test element anchor boxes, and to reduce the rate of missed detection.
Finally, the mean average precision (mAP) is calculated to evaluate the experimental effect. The
experimental results show that the mAP value of the proposed method is 90.45%, which is 15.80%
better than the average accuracy of the original YOLOv4 network. The average detection accuracy
of zebra crossings, bus stations, and roadside parking spaces is improved by 12.52%, 22.82%, and
12.09%, respectively. The comparison experiments and ablation experiments proved that the proposed
method can realize the automatic recognition and detection of multiple elements of road traffic, and
provide a new solution for constructing a basic traffic geographic information database.

Keywords: road traffic elements; channel attention mechanisms; UAV imagery; YOLOv4

1. Introduction

Information on road traffic elements, including road centerlines, road intersections,
zebra crossings, bus stations, roadside parking spaces, etc. are an important part of
roads. The accurate recognition and detection of road traffic elements provide an essential
decision-making basis for automatic driving, improving intelligent transportation systems,
promoting smart cities, and updating basic traffic geographic information databases [1].
For the automatic recognition and detection of road traffic elements, the recent research of
most scholars has been based on the detection and recognition of roadside traffic signage
of a single element [2–4]. Inevitably, this approach has many shortcomings, such as the
small amount of information acquired, the single element, and the large interval distance.
This approach cannot provide a good solution for updating the basic traffic geographic
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information database. Due to the limited shooting range, traditional vehicle-mounted
cameras can obtain only a small portion of the road traffic element information. This is
not conducive to the acquisition of large-area traffic element information; alternatively,
unmanned aerial vehicles (UAV) images have the advantages of convenient acquisition
and high resolution, providing favorable conditions for the acquisition of large-area traffic
element information. Therefore, the automatic recognition and detection of multiple
road traffic elements are studied through UAV remote sensing images in this paper to
improve the efficiency and reduce labor costs for updating the basic traffic geographic
information database.

Many studies have been carried out on target detection and recognition. With the
development of deep learning, target detection methods have started changing from
classical machine learning methods to deep learning methods, representing a new paradigm
of machine learning. Target detection has been widely used in face detection [5], automatic
driving [6], text detection [7,8], and other fields. Traditional target detection methods are
based on color or shape features for target extraction. For example, Li et al. [3] proposed the
method of detecting traffic signs through color and shape features; however, this method
had a poor recognition effect and insufficient overall detection accuracy. Zhao et al. [4]
used the Hough transform and shape analysis to detect and recognize road traffic signs;
however, this method had an insufficient recognition rate and poor recognition effect.
Berkaya et al. [9] used a shape algorithm and color threshold technology to detect and
recognize circular traffic signs; however, this method only realized the recognition and
detection of circular traffic signs, and its application scope was limited. Shi et al. [10] used
a split-space Hough transformation method to achieve road boundary detection, and this
method was suitable for boundary detection algorithms for straight and curved roads
in general scenes. It is difficult to detect road boundaries in complex environments. He
et al. [11] used shape information to detect triangular traffic signs; this method was only
suitable for the detection of clear objects and did not detect the presence of fragments or
occlusions in natural scenes. Creusen et al. [12] proposed an extended algorithm for traffic
sign detection using information from multiple color channels. Most of these traditional
methods use the special color and shape of traffic signs for feature extraction and rely on
classifiers for classification. These methods generally suffer from slow detection speeds
and insufficient detection accuracies, making it difficult to achieve the desired goal.

With the development of deep learning [13], increasing numbers of scholars are using
deep learning for target detection. Target detection based on deep learning can be divided
into two types: one-stage detection represented by a single-shot detector (SSD) [14], with
a “You Only Look Once” (YOLO) algorithm [15–19], and two-stage detection represented
by a region-based convolutional neural network (R-CNN) [20], Fast R-CNN [21], Faster R-
CNN [22], etc. For example, a small traffic sign detection algorithm based on an improved
SSD was proposed by Shan et al. [23], which achieved high accuracy in the test set but
was not very applicable to the detection of other road traffic elements. Chen et al. [24]
proposed an improved Mask R-CNN method to achieve road traffic sign recognition;
however, this the method had a single recognition element and little information. Lodhi
et al. [25] proposed a convolutional neural network (CNN)-based traffic sign recognition
system. The authors integrated multilayer convolutional features and multilayer contextual
information through a CNN framework for feature extraction. Guo et al. [26] used Faster
R-CNN to implement a systematic approach for end-to-end traffic sign recognition. The
method had good performance in small target detection and classification. Jin et al. [27]
proposed an improved solution to the problem of insufficient average detection accuracy
and missed detections during target detection in real road scenes. The authors improved
the detection accuracy of road targets with the YOLOv3 improvement algorithm.

The problems and solutions proposed by the above scholars are useful for updating
the basic traffic geographic information database on transportation. However, most schol-
ars perform target detection based on a single element, which cannot satisfy the practical
application needs for the detection of multielement road traffic. Therefore, a YOLOv4 [15]
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network improvement algorithm combining the attention mechanism of efficient channel
attention (ECA) [28] is proposed in this paper to achieve the automatic recognition and
detection of multielement road traffic in UAV images. First, this paper manually labels
a set of road traffic multielement datasets on UAV images captured by roLabelImg [29]
(downloadable from https://github.com/cgvict/roLabelImg, accessed 23 June 2020). Sec-
ond, the optimal candidate box size of the target object is obtained by k-means clustering
analysis. Then, by integrating the ECA mechanism into the YOLOv4 backbone network,
dataset training is conducted to detect the accuracy of multiple road traffic elements. At
the same time, the complete intersection over union (CIoU) loss function [30] is introduced
to reduce the error detection rate of juxtaposed dense elements side by side and greatly
improve the detection accuracy.

In order to recognize automatic multiple elements and detect road traffic, it is possible
to provide a service for updating the basic traffic geographic information database. The
main contributions of this paper are as follows:

(1) In response to the problems related to few road traffic multielement datasets, single
elements, and lack of road information, a set of UAV image road traffic multielement
datasets are produced in this paper.

(2) Aiming to solve the problem of the insufficient detection accuracy of road ele-
ments and the difficult identification of juxtaposed dense elements, the YOLOv4 algorithm
integrating the ECA mechanism is proposed.

(3) The comparative experiment and ablation experiment prove the superiority of
this method in detecting multiple elements of road traffic and provide a new solution for
updating the basic traffic geographic information database.

The rest of this paper is organized as follows. Section 2 describes the related work.
Section 3 details the proposed method, followed by the experiments and results in Section 4.
The discussion is presented in Section 5. Finally, our conclusion is outlined in Section 6.

2. Related Work

In recent years, UAVs have shown a wide range of advantages in the field of trans-
portation. In particular, they play an important role in road traffic monitoring, navigation,
road damage detection, vehicle tracking for identification, road maintenance, and other
traffic components [31–42]. With the advantages of fast data collection, high image qual-
ity, minimal cost, light weight, and great adaptability, UAVs can be used in road traffic
inspection to greatly improve efficiency and reduce maintenance and manpower costs.

Research in the field of transport drones has focused on the problem of cruise route
planning for UAVs, road vehicle detection, and the extraction of road information. The
following scholars have addressed the problem of UAV cruise-route planning. Liu et al. [31]
proposed a multi-objective optimization model for UAV cruise path planning. Additionally,
an improved algorithm was designed to solve the UAV cruise path planning problem.
Cheng et al. [32] proposed an algorithm for optimizing and modifying the optimal paths
for UAVs. The authors also developed a multibase, i.e., a rechargeable and refillable UAV
road patrol task allocation model to solve the problem of poor endurance associated with
UAVs. Other academics have contributed to the traffic control field by completing real-time
monitoring of road traffic information through UAVs. Elloumi et al. [33] proposed a road
traffic detection system based on several UAVs. The authors monitored the traffic on urban
roads with several UAVs in real time and sent the information to a traffic processing center
for traffic control. Yang et al. [34] proposed an artificial intelligence-based solution to imple-
ment multi-object detection for intelligent road monitoring. The method provides a good
solution for future road monitoring and control of intelligent transportation by combin-
ing UAVs, wireless communication, and Internet of Things technologies. Wang et al. [35]
proposed a method for handling the loss of contact between a UAV and its operator based
on probabilistic model detection. The method enables the UAV to perform surveillance
tasks in dangerous environments. Huang et al. [36] proposed a distributed navigation
scheme. This scheme achieved road traffic condition detection in different modes by means

https://github.com/cgvict/roLabelImg
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of real-time UAV detection. Liu et al. [37] proposed a real-time UAV rerouting model and a
decomposition-based multi-objective optimization algorithm. The model took the dynamic
requirements of traffic monitoring into account to achieve dynamic route planning for UAV
cruising, making it more suitable for real-life traffic monitoring. UAV technology has the
advantages of low cost, high flexibility, and good quality of collected image data. The
growing number of UAV applications in the field of transport is reflected based on the
increasing amount of road image information collected with UAVs. Pan et al. [38] detected
asphalt pavement deterioration through drone imagery to provide decision support for
road maintenance practices. The paper proposes that a combination of machine learn-
ing algorithms, such as support vector machines, artificial neural networks, and random
forests, can be used to differentiate between normal and damaged pavements for pavement
damage identification. Saad et al. [39] used UAV images to identify ruts and potholes in
road surfaces. The authors identified the ruts and potholes extracted from UAV images
through site survey and planning, data acquisition, data processing and results, and data
analysis to achieve road condition detection. Roberts et al. [40] proposed a method for
generating 3D pavement modeling using UAV images. These models were used to monitor
and analyze the pavement condition and to automate the detection of pavement deteriora-
tion. Wang et al. [41] proposed a UAV-based target tracking and recognition system. This
system implemented the functions of target tracking, target recognition and detection, and
image processing. Liu et al. [42] processed UAV images through a target detection network
with multiscale feature fusion, improving the ability to detect small targets while reducing
resource consumption makes the network lighter.

The above paragraph describes the main research on UAVs in the field of transporta-
tion. Similar to the abovementioned scholars, this paper also collects information through
UAVs. Most scholars currently collect road image information through UAVs primarily
to research road damage. However, this paper mainly collects information on road traf-
fic elements, including road centerlines, road intersections, zebra crossings, bus stations,
roadside parking spaces, and other similar information. A review of a large amount of
literature shows that there is little research on the automatic identification and detection of
road traffic elements. However, the extraction of road traffic element information is of great
significance for updating the basic traffic geographic information database. Determining
how to extract road traffic elements in a low-cost and high-efficiency way is particularly im-
portant. Therefore, this paper proposes a deep learning method by fusing the multielement
images of road traffic obtained by UAVs. It can achieve the effect of automatic identification
and detection with high efficiency, low cost, and high accuracy. The proposed method can
provide technical support for updating the basic traffic geographic information database.

3. Research Method

YOLOv4 is an algorithm that combines a number of previous research techniques,
combined with innovation. YOLOv4 enables efficient target detection tasks while using
only a single GPU. In the YOLOv4 network, the training process can be optimized to
improve accuracy. Better performance can also be achieved by sacrificing a little amount of
inference time. The YOLOv4 network achieves the perfect balance of speed and accuracy
in target detection tasks.

YOLOv4 has the advantages of fast detection and high speed. Therefore, a YOLOv4
network incorporating the ECA mechanism [28] is proposed. First, the k-means [43] cluster-
ing method is used to calculate the matching candidate box size in the datasets. Second, the
mosaic data augmentation method is used to increase the number of training samples for
multiple elements of road traffic on the training datasets. Then, the ECA module is fused
into the YOLOv4 network for data training. Finally, the detection results are obtained, and
the accuracy is evaluated. Figure 1 displays a flow chart of the proposed method.



Aerospace 2022, 9, 198 5 of 19

Aerospace 2022, 9, 198 5 of 19 
 

 

Second, the mosaic data augmentation method is used to increase the number of training 

samples for multiple elements of road traffic on the training datasets. Then, the ECA 

module is fused into the YOLOv4 network for data training. Finally, the detection results 

are obtained, and the accuracy is evaluated. Figure 1 displays a flow chart of the proposed 

method. 

 

Figure 1. Flow chart of proposed method. 

3.1. Overall Framework 

In this paper, the YOLOv4 network model is selected as the base algorithm model. 

Bochkovskiy et al. [15] proposed that the YOLOv4 network is a one-stage target detection 

network. The YOLOv4 network is primarily composed of components related to the 

CSPDarknet53 [15], spatial pyramid pooling (SPP) [44], feature pyramid networks (FPNs) 

[45], and path aggregation network (PAN) [46]. Among these components, the 

CSPDarknet53 structure consists of 5 content security policy (CSP) [47] modules, which 

are made to act as downsampling modules using a convolutional kernel with a step size 

of 2 and a size of 3 × 3 in front of each CSP module. Thus, when the input feature image is 

416 pixels × 416 pixels in size, the image is downsampled after 5 CSP modules to obtain a 

feature map with a size of 13 × 13. CSPDarknet53 reduces the computational consumption 

and memory costs while also enhancing the learning capability of the CNNs and ensuring 

computational accuracy. The SPP structure is mainly used to solve the problem of the 

nonuniform size of the input image. The SPP structure directly pools the feature maps of 

any size to obtain a fixed number of features. FPN+PAN draws on the approach of PANet 

[46] by adding a feature pyramid to the tail of the FPN structure. This includes the two 

PAN structures to enable bottom-up communication of strong localization features, 

enabling easier reception of bottom-level information at the top of the hierarchy, and top-

down communication of enhanced semantic features in combination with the FPN 

structure layer. The combination of these two components enables feature aggregation 

from different backbone layers and between detection layers, thus improving the feature 

extraction capability in the backbone network. 

The YOLOv4 method of the fused ECA mechanism is proposed in this paper, which 

adds the ECA mechanism to the two effective feature layers extracted from the backbone 

network and to the result after upsampling, as shown in the YOLOv4 model with ECA in 

Figure 2. 

Datasets Mosaic  data enhancement

Integrate into ECA feature 

extraction network

SPP+PANet YOLO head Detection results Precis ion evaluation

YOLOv4

k-means clustering to obtain candidate frame sizes

Figure 1. Flow chart of proposed method.

3.1. Overall Framework

In this paper, the YOLOv4 network model is selected as the base algorithm model.
Bochkovskiy et al. [15] proposed that the YOLOv4 network is a one-stage target detection
network. The YOLOv4 network is primarily composed of components related to the CSP-
Darknet53 [15], spatial pyramid pooling (SPP) [44], feature pyramid networks (FPNs) [45],
and path aggregation network (PAN) [46]. Among these components, the CSPDarknet53
structure consists of 5 content security policy (CSP) [47] modules, which are made to act as
downsampling modules using a convolutional kernel with a step size of 2 and a size of 3 × 3
in front of each CSP module. Thus, when the input feature image is 416 pixels × 416 pixels
in size, the image is downsampled after 5 CSP modules to obtain a feature map with a
size of 13 × 13. CSPDarknet53 reduces the computational consumption and memory costs
while also enhancing the learning capability of the CNNs and ensuring computational
accuracy. The SPP structure is mainly used to solve the problem of the nonuniform size of
the input image. The SPP structure directly pools the feature maps of any size to obtain
a fixed number of features. FPN+PAN draws on the approach of PANet [46] by adding a
feature pyramid to the tail of the FPN structure. This includes the two PAN structures to
enable bottom-up communication of strong localization features, enabling easier reception
of bottom-level information at the top of the hierarchy, and top-down communication
of enhanced semantic features in combination with the FPN structure layer. The com-
bination of these two components enables feature aggregation from different backbone
layers and between detection layers, thus improving the feature extraction capability in the
backbone network.

The YOLOv4 method of the fused ECA mechanism is proposed in this paper, which
adds the ECA mechanism to the two effective feature layers extracted from the backbone
network and to the result after upsampling, as shown in the YOLOv4 model with ECA in
Figure 2.

3.2. Datasets and Scale Statistics
3.2.1. Introduction to the Datasets

At present, there is a lack of sufficient datasets for multiple road traffic elements,
and most of the existing publicly available datasets are roadside traffic signage datasets
or road traffic datasets. To meet the demand for updating the basic traffic geographic
information database and to solve the problem of an insufficient number of datasets for
road traffic elements, a set of datasets for multiple road traffic elements is produced in this
paper, including zebra crossings, roadside parking spaces, and bus stations, as shown in
the sample datasets in Figure 3. The UAV images were captured by the Hava MEGA-V8
and DJI FC6310. Harwar MEGA-V8 is equipped with a five-tilt camera, supporting the
BeiDou, global positioning system (GPS), GLONASS, and seven real-time kinetic (RTK)
Samsung frequencies. The horizontal positioning accuracy reaches ±2 cm, and the vertical
positioning error reaches ±5 cm. This equipment is characterized by high efficiency, long
endurance, and high-precision map formation. The DJI FC6310 UAV has 6 vision sensors, a
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main camera, 2 sets of infrared sensors, 1 set of ultrasonic sensors, a GPS/GLONASS dual-
mode satellite positioning system, an inertial measurement unit (IMU), and compass dual
redundant sensors. This equipment can help the drone acquire real-time images and depth
and positioning information while flying, as well as build a 3D map around the vehicle
and determine its position. The image size of remote sensing is 7146 pixels × 5364 pixels
and 5472 pixels × 3648 pixels, respectively. The spatial resolutions are 0.05 m and 0.1 m,
respectively. A total of 16,872 images were taken, duplicate areas and areas without road
traffic elements were removed from the images, and 1128 of these images were finally
selected manually as the original dataset. The road traffic elements were manually marked
with the image labeling software roLabelImg, which is used to mark rotated rectangular
boxes or square rectangular boxes. The function used in this article involves the marking of
positive rectangular boxes. There are many elements that constitute road traffic information,
including road centerlines, road intersections, zebra crossings, bus stations, and roadside
parking spaces. The main purpose of this paper is to achieve the automated construction
of a basic traffic geographic information database. The research results of the automatic
identification and detection of road traffic multi-elements are relatively few. Therefore, the
representative traffic road elements are selected as research objects. Likewise, in this paper,
zebra crossings, roadside parking spaces, and bus stations are selected as research objects.
More types of automated detection and recognition will also be added in subsequent
research. Among the research objects in this work, zebra crossings, roadside parking spaces,
and bus stations are named zebra_crossings, parking_spaces, and bus_stations, respectively.
The training data account for 90% of all data, and the rest are test data.
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3.2.2. Clustering of the Anchor Box

The anchor box sizes of the original YOLOv4 network were obtained from the visual
object class (VOC) datasets [48]. The detection was performed for scales of 19 × 19, 38 × 38,
and 76 × 76. The preset candidate boxes were 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146,
142, 110, 192, 243, 459, and 401, whose scale sizes are not applicable to the multielement
datasets of road traffic captured by UAV images in this paper. Therefore, to apply the target
scale range of road traffic multielement datasets, the k-means clustering method was used
to conduct scale statistics on 1128 UAV road traffic multielement remote sensing images.
First, the scale of road traffic elements was defined as 9 clusters, and the cluster centers of
each cluster were randomly selected in each cluster. Then, each data point was associated
to the nearest cluster center, and the center point of each of these 9 clusters was found as
the new cluster center. Thus, the cluster centers were iterated until the points owned by
these 9 clusters no longer change. Finally, the size of the target candidate box was set based
on the clustering result. The k-means results clustering are shown in Table 1. These results
show that the effect after clustering is in line with the target scale of the datasets proposed
in this paper.

Table 1. The results of k-means.

Serial No. 1 2 3 4 5 6 7 8 9

x 11 13 17 25 28 57 60 96 117
y 22 14 33 77 20 119 45 99 59

3.3. Data Augmentation

Mosaic data augmentation is used to enhance the training datasets in the YOLOv4
network. The mosaic data augmentation approach starts by randomly extracting four
images containing the anchor frames of the detectors from the road traffic multielement
datasets; stitching the images into a new image by randomly scaling, cropping, and ar-
ranging them; obtaining the anchor boxes corresponding to this resulting image; and then
passing this processed image into the YOLOv4 network for learning. The data from the
four images can be calculated as one image for the batch normalization calculation [30].
As shown in the workflow of mosaic data augmentation in Figure 4, such mosaic data
augmentation enriches the datasets with background and small sample information of
the detection object. Moreover, mosaic data augmentation training does not require high
computational performance, even when using only the central processing unit (CPU).
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3.4. Efficient Channel Attention

In deep learning, the attention mechanism is a commonly used method and skill.
There are many ways to realize the attention mechanism, but its core is to make the network
focus on feature information. Attention mechanisms can be divided into channel attention
mechanisms, spatial attention mechanisms, and a combination of the two. The mechanism
used in this paper is the ECA mechanism. A local cross-channel interaction strategy without
dimensionality reduction was implemented by one-dimensional convolution as well as an
adaptive selection of the one-dimensional convolutional kernel size. With this method, the
coverage of local cross-channel interactions can be guaranteed, which allows the network
to gain performance improvements while reducing the complexity of the model.

ECANet [28] is an implementation of the channel attention mechanism. ECANet can
be considered an improved version of SENet [49]. The squeeze-and-excitation (SE) [49]
attention mechanism first carries out channel compression on the input feature map; but
this dimension reduction method is not conducive to learning the dependency between
channels. Therefore, the ECA avoids dimensional reduction, uses one-dimensional convo-
lution to efficiently realize local cross-channel interaction, extracts the dependency between
channels, and improves the performance of the YOLOv4 network. This likewise improves
the identification accuracy of the road traffic elements in UAV images. The specific steps of
ECA’s attention mechanism are as follows:

(1) Create a feature map for the global averaging pooling operation.
(2) Carry out a one-dimensional convolution operation with a convolution kernel size

equal to k and obtain the weight ω of each channel through the sigmoid activation function.
The calculation formula of ω is:

ω = σ(C1Dk(y)) (1)

where C1D stands for one-dimensional convolution and k stands for the related parameter
information between the corresponding y and k fields.

(3) The weights are multiplied by the corresponding elements of the original input
feature map to obtain the final output feature image.

3.5. CIoU_Loss

Road traffic elements in UAV images, such as roadside parking spaces, have juxtaposed
dense elements. The intersection over union (IoU) loss function is not a good solution to
this problem; therefore, the CIoU loss function is used to solve this problem. CIoU [30]
improves the function regression accuracy and convergence speed by considering the
distance between the detection frame and target box, overlapping area, aspect ratio, and
other aspects, as shown in Figure 5.
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CIoU, whose penalty items are publicly announced as:

RCIoU =
ρ2(b, bgt)

c2 + αv (2)

where v is the similarity of the metric aspect ratio and α is the weighting function, respec-
tively, defined as:

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(3)

α =
v

1 − IoU
(4)

Thus, the CIoU loss function can be expressed as:

CIoU_Loss = 1 − IoU +
ρ2(b, bgt)

c2 + αv (5)

where c denotes the diagonal distance between the prediction box b and the smallest outer
rectangle of the real box bgt, and d denotes the distance between the centroid of the real box
and the prediction box. IoU is the area intersection ratio of the prediction box and the real
box. ρ2(b, bgt) denotes the Euclidean distance between the prediction box and the centroid
of the real box.

4. Experimental Results and Analysis
4.1. Experimental Environment

The computer configuration used was an i7-9700k CPU running Windows 10 with
a GTX1070Ti GPU and 8 GB of video memory. The experimental training platform was
Pycharm. The training weight decay coefficient was set to 0.0005, the initial learning rate
was set to 0.001, the confidence level was set to 0.5, and the IoU threshold was set to 0.5.
A total of 100 epochs were trained, with 4000 iterations. The datasets were divided into
a training set and a validation set in a 9:1 ratio, and a typical road traffic element was
randomly selected as the test set.

4.2. Evaluation Indicators

In the experiment, the mean average precision (mAP) was calculated as the quantitative
evaluation index of the model to measure the accuracy of the model detection. The mAP is
defined as:

mAP =
∑N

i=1 APi

N
(6)
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where N represents the number of all categories in the test set, i is the ith category, and APi
is the average precision (AP) of the ith category, which is defined as:

AP =
∫ 1

0
p(r)dr (7)

where p is the precision; r is the recall; and p is a function with r as an argument, which is
equal to taking the area under the curve. The recall and precision are defined as:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where TP represents the positive samples detected correctly, characterizing the number
of road traffic elements detected correctly; FP represents the negative samples detected
incorrectly, characterizing the number of targets the were incorrectly detected as classes
other than road traffic element classes; and FN represents the positive samples detected
incorrectly, characterizing the number of other classes detected incorrectly as road traffic
element classes.

4.3. Comparison Experiments

In this paper, the effectiveness of the proposed method is verified for both classical
and state-of-the-art algorithmic networks for target detection. The SSD, RetinaNet, Faster
R-CNN, YOLOv3, YOLOv4, and YOLOv5 networks were used in comparison experiments
to train the road traffic multielement datasets, and their AP, precision, recall, and mAP
values were calculated and compared. As shown in Table 2, the recognition accuracy of
road traffic elements under different network models was counted separately. The rise
points in Table 2 are the mAP calculated by comparing each network with the proposed
methods in this paper.

Table 2. Detection results of different models.

Network Model Transport Elements AP Precision Recall mAP Rise Points

Faster R-CNN
zebra crossings 64.26 59.04 71.43

56.89 33.56bus stations 71.46 73.33 70.97
roadside parking spaces 34.96 31.51 48.75

Retinanet
zebra crossings 70.01 87.82 61.16

57.27 33.18bus stations 67.25 86.36 61.29
roadside parking spaces 34.54 74.28 24.38

SSD
zebra crossings 52.92 76.84 32.59

53.94 36.51bus stations 75.09 100 54.84
roadside parking spaces 33.81 73.37 14.74

YOLOv3
zebra crossings 84.25 87.38 80.36

81.52 8.93bus stations 83.81 88.89 77.42
roadside parking spaces 76.49 76.13 75.86

YOLOv4
zebra crossings 81.82 89.95 79.20

74.65 15.80bus stations 76.77 90.48 61.29
roadside parking spaces 65.35 70.24 70.99

YOLOv5
zebra crossings 93.61 91.82 93.50

86.84 3.61bus stations 73.82 68.51 69.42
roadside parking spaces 93.10 91.41 90.11

Proposed method
zebra crossings 94.34 90.09 93.90

90.45bus stations 99.59 91.30 100
roadside parking spaces 77.44 80.95 78.14

Note: The best results are in bold type.
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To verify the effectiveness of the proposed method, ablation experiments were con-
ducted on the road traffic multielement datasets. Such experiments compared the combi-
nation of k-means, mosaic data augmentation, and other attention mechanisms (such as
the SE [49] attention mechanism, the convolutional block attention module (CBAM) [50]
attention mechanism, and fusing the attention mechanisms into the same layer network
structure as the ECA mechanism), by calculating their AP, precision, recall, and mAP values,
as shown in Table 3.

Table 3. Results of ablation tests.

Network Model Transport Elements AP Precision Recall mAP Rise Points

YOLOv4+k-means
zebra crossings 85.12 85.58 81.42

80.98 9.47bus stations 83.52 88.89 77.42
roadside parking spaces 74.30 77.94 75.62

YOLOv4+mosaic
zebra crossings 88.31 87.95 87.17

82.44 8.01bus stations 84.93 96.00 77.42
roadside parking spaces 74.08 74.85 75.39

YOLOv4+SE
zebra crossings 91.45 91.43 90.14

84.54 5.91bus stations 81.00 79.31 82.14
roadside parking spaces 81.17 85.06 80.7

YOLOv4+CBAM
zebra crossings 92.07 89.63 90.95

86.92 3.53bus stations 92.01 92.00 88.46
roadside parking spaces 76.68 81.62 77.47

Proposed method
zebra crossings 94.34 90.09 93.90

90.45bus stations 99.59 91.30 100
roadside parking spaces 77.44 80.95 78.14

Note: The best results are in bold type.

To verify the practicality and effectiveness of the presented method in this paper, the
UAV image map of small scenarios and the image map of large complex scenarios were
selected for prediction experiments. The prediction results of the ablation experiment for
small scenarios are shown in Figure 6. The prediction data are selected from the road
traffic multielement datasets with several representative types of element scenarios, namely
the single-element scenario, the multielement scenario, and the juxtaposed dense-element
scenario. The single-element scenario contains only one type of traffic element, and the
bus stations were selected as the detection object in the single-element scenario. The
multielement scenario includes zebra crossings, bus stations, and roadside parking spaces.
The juxtaposed dense-element scenario involves the detection and recognition of roadside
parking spaces. According to the corresponding statistics, there are 2 bus stations in the
single-element scenario; 4 zebra crossings, 3 roadside parking spaces, and 1 bus station in
the multielement scenario; and 17 roadside parking spaces in the juxtaposed dense-element
scenario. The predicted results of the ablation experiments in small scenarios are shown in
Table 4.

Combined with the predicted results in Figure 6 and Table 4, it is clear that the use of k-
means clustering or mosaic data augmentation alone for the detection of multiple elements
of road traffic suffers from leakage, proving that improving the algorithm from one side
alone does not lead to a large improvement in the experimental results. Combined with the
analysis of the ablation experiment detection results, the mosaic data augmentation method
has the worst detection accuracy of only 74.08% for roadside parking spaces, followed by
the k-means clustering method, as confirmed in the prediction results in Figure 6 and Table 4
which show missed detections in the prediction results. In terms of the overall prediction
results, the detection results improve with the addition of the attention mechanism, and the
proposed method has the highest number of optimal detections at four. In particular, the
detection of zebra crossings and roadside parking spaces reaches 98.25% and 99.88% for
the detection of multiple elements and dense side-by-side scenarios, respectively. Although
the detection of bus stations in complex scenarios with the addition of the SE attention
mechanism achieves the best detection, the detection accuracy of the proposed method
reaches 98%, which is only 2% different from the detection method with the addition of the
SE attention mechanism.



Aerospace 2022, 9, 198 12 of 19

Aerospace 2022, 9, 198 12 of 19 
 

 

dense-element scenario. The predicted results of the ablation experiments in small 

scenarios are shown in Table 4. 

 
(a)YOLOv4+k-means 

 
(b) YOLOv4+mosaic 

 
(c) YOLOv4+SE 

 
(d) YOLOv4+CBAM 

 
(e) Proposed method 

Figure 6. Plot of predicted results of ablation experiments for small scenarios, from left to right, 

single-element scenario, multielement scenario, and juxtaposed dense-element scenario. (a) 

YOLOv4 with k-means; (b) YOLOv4 with mosaic; (c) YOLOv4 with SE attention mechanism; (d) 

YOLOv4 with CBAM attention mechanism; (e) proposed method. 

Figure 6. Plot of predicted results of ablation experiments for small scenarios, from left to right,
single-element scenario, multielement scenario, and juxtaposed dense-element scenario. (a) YOLOv4
with k-means; (b) YOLOv4 with mosaic; (c) YOLOv4 with SE attention mechanism; (d) YOLOv4 with
CBAM attention mechanism; (e) proposed method.



Aerospace 2022, 9, 198 13 of 19

Table 4. Predicted results of ablation experiments in small scenarios.

Network Model Transport Elements Single-Element Multielement Juxtaposed Dense-Element
Number AP Number AP Number AP

YOLOv4+k-means
zebra crossings - - 4 86.50 - -

bus stations 2 89.50 0 Leakage - -
roadside parking spaces - - 0 Leakage 17 95.71

YOLOv4+mosaic
zebra crossings - - 4 95.50 - -

bus stations 2 64.50 1 94.00 - -
roadside parking spaces - - 0 Leakage 17 99.88

YOLOv4+SE
zebra crossings - - 4 95.50 - -

bus stations 2 67.50 1 100 - -
roadside parking spaces - - 3 87.33 17 99.47

YOLOv4+CBAM
zebra crossings - - 4 96.75 - -

bus stations 1 77.00 1 82.00 - -
roadside parking spaces - - 3 87.68 17 96.29

Proposed method
zebra crossings - - 4 98.25 - -

bus stations 2 98.50 1 98.00 - -
roadside parking spaces - - 3 88.67 17 99.88

Note: “-” in the table indicates that the images measured do not contain this category, and the bolded font is the
best result for each. Number is the number of road traffic elements that have been correctly detected.

The predicted results of the ablation experiment in a large complex scene are shown in
Figure 7. The large scene map is an ortho mosaic image generated from the remote sensing
image captured by the UAV and processed by Pix4D software, which covers a total area of
302,813 m2. Upon counting, it is determined that the large complex scene includes 18 zebra
crossings, 5 bus stations, and 58 roadside parking spaces. The specific prediction results
are shown in Table 5.

Table 5. Predicted results of ablation experiments in large complex scenarios.

Network Model Transport Elements Number AP

YOLOv4+k-means
zebra crossings 17 89.26

bus stations 4 85.75
roadside parking spaces 42 72.49

YOLOv4+mosaic
zebra crossings 18 89.39

bus stations 4 86.00
roadside parking spaces 54 77.02

YOLOv4+SE
zebra crossings 18 89.48

bus stations 5 85.11
roadside parking spaces 56 78.23

YOLOv4+CBAM
zebra crossings 17 92.14

bus stations 5 89.33
roadside parking spaces 43 73.03

Proposed method
zebra crossings 18 92.17

bus stations 5 93.40
roadside parking spaces 48 76.48

Note: The best results are in bold type. Number is the number of road traffic elements that have been correctly
detected.

Combined with the prediction results in Figure 7 and Table 5, it is clear that several of
the above algorithms miss detections in large complex scenarios, especially when detecting
roadside parking spaces. The reason for this is that for large images, roadside parking
comprises a small target detection, and most roadside parking spaces are covered by
greenery; thus, the feature information is not obvious, resulting in missed detection. For
the detection of other objects, the algorithm in this paper can still exhibit good results.
The average detection accuracy of zebra crossings and bus stations in large complex
scenarios can reach 92.17% and 93.40%, respectively, corresponding to the best result in the
ablation experiment.
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5. Discussion

From the above experimental results and analysis, we find that the present method
exhibits a large improvement in the mAP compared to several other methods, with the
increase points ranging from 3.53% to 36.51%, verifying that the YOLOv4 model incor-
porating the ECA mechanism presented in this paper can effectively improve the road
traffic multielement detection accuracy. Consistent with the results of previous studies, the
experimental results of combining other dominant attention mechanism modules in the
same network location are improved compared to the original YOLOv4 network; however,
the improvement is not as good as the present method, indicating that the fused attention
mechanism has a positive effect on the network training model. The proposed YOLOv4
algorithm with the fused ECA mechanism is the best. This demonstrates the practicality
and superiority of the proposed method, which can be directly applied to image maps
in large scenarios and provides a more intelligent and convenient method for updating
the basic traffic geographic information database. Moreover, the proposed method still
achieves better results than several other methods in complex large scenes, which proves its
practicality and superiority. The proposed method can be directly applied to image maps
in large scenarios, thus providing a more intelligent and convenient method for updating
geographic information database. However, in large complex scenarios, there is still a
missing detection phenomenon for roadside parking spaces. This is because in this scenario,
roadside parking spaces are easily obscured, and they are small targets for detection. This
problem requires subsequent research on how to improve the detection of small targets in
large complex scenarios and better extract feature information from small targets.
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6. Conclusions

To address the problems of low data extraction, poor automation, and high demand
for traffic element information, an automatic recognition and detection method based on
YOLOv4 multiple road traffic elements combined with an attention mechanism based on
UAV remote sensing images is proposed in this paper. The method achieves 90.45% mAP
in the detection of multiple road traffic elements, which is 18.80% better than the original
YOLOv4 network. The experimental results verify that the method in this paper provides a
new idea for updating and improving the basic traffic geographic information database.

However, the method in this paper also has shortcomings. The experiment focuses only
on zebra crossings, bus stations, and roadside parking spaces, and the subsequent work will
expand the datasets to complete automatic identification and detection of more elements.
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