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Abstract: Considering the high-efficient trajectory planning requirements for hypersonic vehicles,
this paper proposes a real-time trajectory optimization method based on a deep neural network.
First, the trajectory optimization model of the hypersonic vehicle reentry phase is developed. The
pseudo-spectral method is used to perform the trajectory optimization offline, and multiple optimal
trajectory data are obtained. In addition, based on the inherent relationship between the state and
control variables of a trajectory, a neural network is established to predict the current control outputs.
The sample library of optimal trajectory data is used to train the parameters of the deep neural
network to obtain an optimal neural network model. Finally, the simulation verification of the
hypersonic vehicle reentry phase is performed. The simulation results show that under the condition
of the initial value deviation and environmental interference, the proposed deep learning-based
method can achieve a fast generation of hypersonic vehicle optimal trajectories, while achieving
the advantages of high computational efficiency and reliability. Compared to traditional trajectory
optimization algorithms, the proposed method has the generalization capability that satisfies the
accuracy requirements and meets the demands of online real-time trajectory optimization.

Keywords: hypersonic vehicle; pseudo-spectral method; trajectory optimization; deep learning;
reentry phase

1. Introduction

In recent years, hypersonic vehicles have become one of the development directions in
the aerospace field. A hypersonic vehicle is a vehicle that moves through the atmosphere at
a height of below 90 km at a speed of above Mach 5. Under extreme and variable flight
conditions, such as nonlinear aerodynamic parameters and high heat load, the dynamical
system of a hypersonic vehicle is uncertain, coupled, and highly nonlinear. Accordingly,
how to manipulate and control a hypersonic vehicle to meet particular requirements
denotes a highly constrained nonlinear optimization problem.

In general, trajectory optimization of a hypersonic vehicle represents a process of
designing a trajectory that minimizes (or maximizes) certain performance measures, while
satisfying a set of constraints. Many numerical methods have been proposed to transform
the continuous-time optimal control problem into an approximate, finite space, and pre-
cision range optimization problem in a certain way. Typically, there are two types of
traditional methods to solve the optimal control problem: indirect methods and direct
methods [1]. The indirect methods transform the optimal control problem into a Hamilton
Boundary Value Problem (HBVP) using the Pontryagin minimum principle, and an optimal
numerical solution of a trajectory can be obtained by solving the boundary value prob-
lem. Indirect methods have been used for solving hypersonic vehicle trajectory planning
problems, which could provide a high accuracy solution [2–5]. However, due to the well-
known drawbacks of complex implementation and high sensitivity to the initial condition

Aerospace 2022, 9, 188. https://doi.org/10.3390/aerospace9040188 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9040188
https://doi.org/10.3390/aerospace9040188
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://doi.org/10.3390/aerospace9040188
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9040188?type=check_update&version=1


Aerospace 2022, 9, 188 2 of 17

of the indirect methods, direct methods have been widely used since they do not require
optimal necessary conditions. Namely, the direct methods discretize and parameterize the
continuous optimal control problem and use numerical methods to find the optimal per-
formance index [6]. Several popular direct methods, including the collocation method [7],
and the pseudo-spectral method [8–11], have been extensively used for solving a variety
of trajectory optimization problems. The direct methods have the advantages of a robust
convergence domain and flexible applicability to practical complex problems. However,
dealing with transformed numerical equations on each of the collocation points introduces
much computation load, which cannot meet the computational efficiency requirements of
online trajectory generation applications.

Due to the increasingly high demand on real-time engineering, how to provide a sig-
nificant improvement in the algorithm calculation speed has become a challenge. Many
studies have focused on exploration and improvement in real-time trajectory optimization
based on the existing numerical methods. Antony [12] developed a graphical processing
unit accelerated indirect ballistic optimization method using the multiple shot method and
the extended method, which can maximize the computational efficiency, while taking full
advantage of the parallelism characteristic of the indirect targeting method. To improve
the computational efficiency of the Chebyshev pseudo-spectral method, Wang [13] used
the differential flatness theory to solve the trajectory problem of hypersonic vehicles by
reducing kinetic differential constraints, and the results showed that the solution time of
a single trajectory was effectively reduced, compared with the traditional pseudo-spectral
methods. In recent years, convex optimization techniques have attracted great attention
due to their advantages of efficient solution and convergence property [14–20]. Wang [21]
proposed two improved algorithms for the hypersonic vehicle’s reentry trajectory optimiza-
tion, named the line search sequence convex optimization and the trust domain sequence
convex optimization, using the predictive correction method to find the initial 3D trajectory,
which improves the convergence of the solution process. In addition, a robust trajectory
optimization method combining chaotic polynomials and convex optimization techniques
was proposed in [22,23]. This method exploits the high accuracy of chaotic polynomial
algorithms for solving highly nonlinear dynamics problems and the high efficiency of
convex optimization algorithms for solving optimal control problems. However, the con-
vexification of the trajectory planning problem is still a challenge, especially for systems
with high nonlinear dynamics and constraints. As mentioned above, most studies have
improved the algorithm solution efficiency through mathematical processing using convex
optimization methods, pseudo-spectral methods, or indirect methods. The principle of
the improved algorithms still relies on the iterative convergence framework, where the
selection of the iterative initial conditions directly affects the algorithms’ convergence.
Moreover, these solutions limit the online application of the algorithm to a certain extent.

Recently, taking the advantages of good generalization ability and rapidity, many
mature machine learning methods have been proposed to achieve onboard application
in order to meet the requirements for high autonomy, required optimality, and real-time
performance [24–26]. Yin [27] proposed a DNN- (Deep Neural Network) based method for
low-thrust orbit transfers, where the fast generation of optimal trajectories was achieved by
the advantages of high computational efficiency and reliability. For the online trajectory
planning for moon landings, Furfaro [28] proposed a deep convolutional neural network
model to predict fuel-optimal control actions, using raw images taken by onboard optical
cameras. Shi [29] proposed a deep learning-based approach for real-time trajectory opti-
mization of hypersonic vehicles, and the trained DNN-based trajectory was demonstrated
to be capable of generating optimal control commands onboard, while achieving good real-
time performance and stable convergence. However, only a 2D flight dynamics model was
considered, but it cannot fully describe 3D trajectories of hypersonic vehicles. Moreover,
the terminal states of the trajectory planning problem were set as certain values, where the
uncertainties of terminal states in different flight missions were ignored.
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In this study, following the success of the machined learning method in the fast gener-
ation of optimal controls, a real-time DNN-based method is proposed to solve the optimal
trajectory generation problem of a three-DOF (Degrees of Freedom) hypersonic vehicle
reentry model. The proposed method has the generalization capability that satisfies the
accuracy requirements and meets the demands of online real-time trajectory optimization
better than the traditional trajectory optimization.

The contribution of this work is threefold. First, a DNN-based optimal control method
that has the potential to address the long-standing challenge of solving highly nonlinear
trajectory optimization problems for hypersonic vehicles, while achieving good real-time
performance is proposed. Second, the pseudo-spectral method is used to generate optimal
trajectories for network training efficiently. Third, extensive simulation results are provided
to validate the performance of different DNN-based models in learning the nonlinear rela-
tionship to solve the trajectory optimization problem, and the accuracy of the trained DNN
models is verified through the comparison with the direct approaches. The reference [29]
proposed a real-time trajectory optimization method for hypersonic vehicles based on
DNN models, which is potentially capable of near-optimal control with real-time perfor-
mance and stable convergence. However, the proposed method only focused on the 2D
(two-dimensional) trajectory optimization problem, and the trajectory end point was set to
be fixed. The method proposed in [29] is limited to 3D trajectory optimization with random
endpoint cases. To solve the problem, this paper proposed the 3D real-time trajectory
optimization method based on the pseudo-spectral method and the DNN models, where
the pseudo-spectral method is used to generate large-scale 3D optimal trajectory training
data, and DNN models are designed and trained to predict optimal actions according to
the flight states.

The remaining paper is organized as follows. Section 2 presents a continuous-time
optimal control problem of a three-dimensional (3D) hypersonic flight, with nonlinear dy-
namics and terminal constraints, and introduces the research idea for solving the trajectory
optimization problem of hypersonic vehicles. Section 3 describes the DNNs trained using
the optimal trajectories obtained by the pseudo-spectral method. Section 4 provides the
numerical simulation results to evaluate the performance of the proposed DNN-based
trajectory optimization method. Section 5 concludes the paper and presents future work
directions.

2. Materials and Methods
2.1. Three-DOF Dynamic Model Development

In this paper, the trajectory of a hypersonic vehicle is considered as a three-DOF
reentry motion model of a rotating sphere, where the sideslip angle is zero. The position
parameters, including the geocentric distance r, longitude θ, and latitude ϕ, are defined
in the geocentric spherical fixed coordinate system. The velocity parameters include the
velocity v, track angle γ, and course angle ψ. The undynamic three-DOF reentry motion
equations expressed by the above-listed parameters are as follows:

dr
dt

= V sin γ (1)

dθ

dt
=

V cos γ sin ψ

r cos ϕ
(2)

dϕ

dt
=

V cos γ cos ψ

r
(3)

dV
dt

= −D
m
− g sin γ (4)

dγ

dt
=

1
V

[
L cos σ

m
+

(
V2

r
− g
)

cos γ

]
(5)
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dψ

dt
=

1
V

(
L sin σ

m cos γ
+

V2

r
cos γ sin ψ tan ϕ

)
(6)

where the Earth rotation acceleration is assumed to be zero, and g, σ, L, D represent the
gravitational acceleration, roll angle, lift, and drag, respectively.

In order to improve the efficiency of the optimization process, a dimensionless method
is applied to the undynamic three-DOF reentry model. The dimensionless geocentric
distance z, velocity u, and flight time τ are, respectively, defined as:

z = r/R0, u =
V
Vc

, τ = t/
√

R0/g0 (7)

R0 is the radius of the earth, and g0 is the gravitational acceleration. The dimensionless
three-DOF reentry equations can be obtained by substituting the above variables into
Equations (1)–(6), which yields:

dz
dτ

= u sin γ (8)

dθ

dτ
=

u cos γ sin ψ

z cos ϕ
(9)

dϕ

dτ
=

u cos γ cos ψ

z
(10)

du
dτ

= −D− sin γ

z2 (11)

dγ

dτ
=

1
u

[
L cos σ +

cos γ

z

(
u2 − 1

z

)]
(12)

dψ

dτ
=

1
u

[
L sin σ

cos γ
+

u2

z
cos γ sin ψ tan ϕ

]
(13)

The dimensionless lift and drag are, respectively, defined as follows:

L = ρ(uVc)
2Sre f CL/(2mg0) (14)

D = ρ(uVc)
2Sre f CD/(2mg0) (15)

ρ, m, Sre f , CL and CD represent the air density, the mass, aerodynamic reference area,
lift and drag coefficients of the aircraft, respectively, and Vc =

√
g0R0. The control vector is

expressed as U = [α, σ], which represents the generalized lift coefficient and heeling angle,
respectively, and the fight trajectory can be generated after designing the changing curve of
the control vector.

2.2. Problem Statement

The trajectory planning problem for a typical hypersonic vehicle is considered in this
paper. It can be described as an optimization problem, the core of which is to choose
optimal or suboptimal control parameters such that the objective function is minimized,
while under constraints including boundary constraints, path constraints and constraints
of control.

It is worth pointing out that the initial and final states in this research are considered
random, which is more closer to the actual flight environment. Namely, the initial conditions
S0 = [r0, θ0, ϕ0, V0, γ0, ψ0], which represent initial geocentric distance, longitude, latitude,
velocity, track angle and course angle, respectively, and the final conditions S f =

[
θ f , ϕ f

]
,

which represent the terminal longitude and latitude, respectively, are given as random
values within a certain range, and the solutions of the problem are proposed to gain the
optimal or suboptimal trajectory based on the random cases.
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In general, several types of performance indices to specify different optimization
objectives exist, such as the maximum range, minimum heat load, and minimum time. In
this paper, for the mission to reach the desired area fast, the total flight time is considered
to be an important performance index, and the objective function is given by min t f .

The process constraints mainly include the dynamic pressure constraint, heat flow
constraint, and overload constraint. In view of the severe flight environment of a hypersonic
vehicle, the following constraints need to be satisfied rigorously.

2.2.1. Dynamic Pressure Constraint

Dynamic pressure refers to the kinetic energy of a fluid per unit volume. In the field
of hypersonic vehicles, the dynamic pressure is proportional to the aerodynamic force and
torque. Considering the influence of the dynamic pressure on the requirement for lateral
stability of the control system, the dynamic pressure in the reentry process needs to meet
the following constraint:

q =
1
2

ρV2 ≤ qmax (16)

2.2.2. Heat Flow Constraint

Considering the stagnation point is an area where a vehicle is heated more severely,
the heat flow of the stagnation is generally taken as a constraint. The heat flow constraint is
given by:

.
Q = K

(
ρ

ρ0

)n( V
Vc

)m
(17)

2.2.3. Overload Constraint

The overload constraint needs to be considered in the reentry process for the purpose
of structural safety. The overload constraint is defined as follows:

n =

√
L2

+ D2
= q

√
C2

D + C2
L

S
mg
≤ nmax (18)

2.3. Research Ideas

In this paper, the DNN-based real time trajectory planning method is proposed. The
whole process of the DNN-based real-time trajectory optimization is shown in Figure 1.
First, the Chebyshev pseudo-spectral method is used to generate the optimal state–action
samples [x,a]. In this way, the generation of large-scale optimal sample data, which is time
consuming, is performed offline. Moreover, by normalizing and interpolating the discrete
state and action data, the resulting optimal samples are obtained and sent to the neural
network. Finally, the network is designed to learn the nonlinear functional relationship
between the state and action. With the training process, the network that can output the
optimal controls in accordance with the current flight state is derived. Based on the derived
deep neural work, the trajectory planning and control can be performed online, since the
calculation load of a network is quite acceptable as real-time output.
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Figure 1. DNN-based real-time trajectory optimization.

3. Sample Data Generation Method Based on Chebyshev Pseudo-Spectral Method
3.1. Chebyshev Pseudo-Spectral Method

The basic solution steps of the Chebyshev pseudo-spectral method are as follows.
Choose discrete continuous-time state and control variables over a series of CGL (Chebyshev–
Gauss–Lobatto) points and construct the Lagrange interpolation polynomials using these
discrete points as nodes to approximate the real state and control. Next, approximate the
derivatives of the state variables over time by deriving global interpolated polynomials to
convert differential equation constraints to algebraic constraints. Then, integrate the terms
in the efficacy indicators, calculated by Clenshaw–Curtis numerical integration. Using the
Chebyshev pseudo-spectral method, the optimal control problem can be transformed into
an NLP (Nonlinear Programming) problem with a set of algebraic constraints.

Time-domain transformation:
The CGL points in the Chebyshev pseudo-spectral method are in the interval of

[−1, 1], so the time variable t can be transformed to τ as follows:

τ =
2t

t f − t0
−

t f + t0

t f − t0
(19)

Calculation of discrete nodes:
In the Chebyshev pseudo-spectral method, discrete nodes are selected as extremal

points of a Chebyshev polynomial of the Nth order, i.e., the CGL points that are unevenly
distributed in the range of [−1, 1]. For the standard CGL points, the definition of Legendre–
Gauss point τk is as follows:

τk = cos
(

πk
N

)
, k = 0, . . . , N (20)

Approximate interpolation of state and control variables:
The Lagrange interpolation polynomial is constructed as an approximation of the

above state and control variables at (N + 1) discrete points. The approximate expressions of
the real state and control variables are, respectively, as follows:

x(t) ≈ xN(t) = ∑N
j=0 xjφj(t)

u(t) ≈ uN(t) = ∑N
j=0 ujφj(t)

(21)

The Lagrange interpolation base function is defined as:

φj(t) =
(−1)j+1

N2cj

(
1− t2) .

TN(t)
t− tj

(22)
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In Equation (22), cj =

{
2, j = 0, N
1, 1 ≤ j ≤ N − 1

, tj(j = 0, · · · , N) represents the CGL points.

Based on the nature of the Lagrange interpolation, the state approximation at a discrete node
is equal to the actual state, while the control approximation is equal to the actual control.

Dynamic constraint processing:
Based on Equation (20), an approximate expression of the derivative of the state vector

at time tk is given as:

.
x(tk) ≈

.
xN

(tk) = ∑N
j=0 xj

.
φj(tk) = ∑N

j=0 Dkjxj (23)

where Dkj represents elements in a row k and column j of a (N + 1)× (N + 1) differential
matrix D that is expressed as:

D =



ck
cj

(−1)k+j

tk−tj
k 6= j

− tk
2(1−t2

k)
1 ≤ k = j ≤ N − 1

2N2+1
6 k = j = 0

− 2N2+1
6 k = j = N

(24)

The derivatives of the substituted state variables over time can be obtained by
Equation (23) and discretized at the interpolation node. Thus, the kinetic differential equa-
tion constraints of the original optimal control problem can be converted to the algebraic
constraints for k = 0, 1, · · · , N as follows:

∑N
j=0 Dkjx

(
tj
)
−

τf − τ0

2
f(x(tk), u(tk), tk) = 0 (25)

where f represents the state equation of the system. For the process constraints defined by
the above equation, strict satisfaction at the discrete nodes is required.

Approximate integration of performance indicators:
When there is an integral term in the optimization performance metric, the Clenshaw–

Curtis numerical integration can be used to approximate it. For a continuous function over
the interval of [−1, 1], its integration can be summed and approximated by the function at
(N + 1) discrete points of the CGL as follows:∫ 1

−1
p(t)dt ≈∑N

k=0 p(tk)ωk (26)

where ωk(k = 0, 1, · · · , N) denotes the Clenshaw–Curtis weight.

J ≈ JN = Φ
[
ζ̃(−1), ζ̃(1), t0, t f

]
+

t0 − t f

2 ∑N
k=0 ωC

k g′(τk)Θ
[
ζ̃(g(τk))

]
(27)

where g′(τk) is the first-order derivative of the conformal map, ωC
k is the Clenshaw–Curtis

weight, and it holds that:

f or N is even,


ωC

0 = ωC
N = 1

N2−1

ωC
s = ωC

N−s =
4
N

N
2
′′

∑
i=0

1
1−4i2 cos 2πis

N , s = 1, . . . , N
2

f or N is odd,


ωC

0 = ωC
N = 1

N2

ωC
s = ωC

N−s =
4
N ∑

(N−1)
2
′′

i=0
1

1−4i2 cos 2πis
N , s = 1, . . . , N−1

2

(28)
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In Equation (28), the two apostrophes above the summation symbol indicate that the
first and last expressions should be divided by two.

3.2. Training Data Generation

The pseudo-spectral method was used to generate plenty of optimal trajectories.
The minimum flight time of the hypersonic vehicle was considered as the optimization
target, and the generalized lift coefficient and bank angle are considered as variables to
be optimized.

Optimal trajectories generated with random initial and terminal states:
Considering the varied and different flight missions of hypersonic vehicles, the infor-

mation of the initial point and terminal point cannot be determined before take-off. The
hypersonic vehicle needs to generate optimal controls in the light of the current mission
and flight environment information; to address the problem of autonomous intelligent
behavior planning of hypersonic vehicles in uncertain flight environments, it is necessary
to design the trajectory generator with strong robustness to generate an optimal or sub-
optimal trajectory with uncertain initial and terminal states. In this paper, a deep neural
network is developed to perform as the real-time trajectory generator with high accuracy
and strong stability. In this sense, a sufficient number of optimal trajectory data samples
are required to train the deep neural network to predict the optimal controls. Therefore,
for the training data generation, the states of the initial point and terminal point for each
sample trajectory are randomly chosen in a certain range, based on which a large number
of optimal trajectories are generated using the Chebyshev method.

The generation of massive optimal trajectories:
For each optimal trajectory generated by the pseudo-spectral method, we obtain the

optimal discrete sequence of control and state variables with respect to discrete CGL time
points. To gain more optimal state–action pairs as the training samples, random initial and
terminal states are set for the Chebyshev method. On account of the inconformity of time
label for each optimal trajectory, each optimal trajectory is interpolated about time.

4. Neural Network Design and Training

The DNN is proposed to predict the optimal trajectory control actions for a hypersonic
vehicle based on its flight mission and current state. The proposed DNN is designed as
a fully connected, feed-forward neural network with one input layer, multiple hidden
layers, and one output layer. The neural network input consisted of six current position
state quantities, six trajectory start position state quantities, and six terminal position state
quantities; that is, Xinput =

{
s0, s f , scurrent

}
. The neural network output consisted of the

trajectory control variables, the generalized lift coefficient and inclination angle, which is
given as Xoutput = {α, σ}.

It is worth pointing out that the input and output of the network should be normalized
for effective training and fast convergence. The normalization process was as follows:

Xnorm =
X− Xmin

Xmax − Xmin
(29)

where X denotes the training dataset, Xmax and Xmin denote the maximum and minimum
in X, respectively, and Xnorm is the normalized training dataset.

The activation function in the neural network model is the sigmoid function, which
performs better than the ReLU function in the problem. The Adam accelerator was used
for its high computational efficiency, and the loss value was calculated as the average of
the expected output value and the squared sum of the errors. The loss value was the mean
squared error and was calculated by:

loss =
1
n ∑n

i=1 [ f (xi)− yi]
2 (30)
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where n is the total number of training samples, and f (xi) and yi are the predicted and true
values, respectively.

The flowchart of the neural network training process is shown in Figure 2.
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12:     put[E, �] into environment(), obtain �)���>&	f! 
13:     store samples [�2, �? , �)���>&	]，[E, �] to ℜ, update �)���>&	 
14: end 

Figure 2. The flowchart of the neural network training process.

The pseudo-code of the Algorithm 1 used in this paper is shown below. Where ω
and α represent the weights and bias of the neural network, lr represents the learning rate
of the neural network, n_epochs represents the total training batch, batch_size represents
the number of samples contained in a training batch; the number of training sessions per
training batch is determined by dividing the total number of training samples by batch_size
rounded up. batch_index represents the index value of the training batch, the network
input contains the initial value of the state s0, final value of state volume s f and current
state scurrent, the network output includes the generalized lift coefficient α and inclination
angle σ. dx_angle represents the range angle and subfunction environment () represents
the hypersonic vehicle reentry segment model, where the input is the current control and
the output is the state at the next moment.

Algorithm 1 Imitation learning

1: Initialize network weighting values ω and α

2: Set lr = 0.0001, n_epochs = 30, batch_size = 256
3: for epoch = 1, n_epochs do
4: for batch_index = 1, n_batches do
5: obtain the optimal sequence of pseudo-spectral method ballistic [s, a]
6: net_in =

[
s0, s f , scurrent], net_out =[α, σ

]
data feature extraction and normalization

7: update network parameters using Adam algorithm:

loss = 1
n

n
∑

i=1
[ f (xi)− yi]

2

8: end for
9: Randomly generate a ballistic path by pseudo-spectral method [s1, a1] set up data buffering <
10: i f dx_angle < 0.1

◦
do

11: use neural network, input
[
s0, s f , scurrent

]
, output [α, σ]

12: put[α, σ] into environment(), obtain scurrent+1

13: store samples
[
s0, s f , scurrent

]
, [α, σ] to <, update scurrent

14: end
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5. Simulations and Result Analysis

The experiments were conducted to verify the effectiveness and generalization ability
of the proposed neural network. The models of a hypersonic gliding vehicle named the
high-lift common aero vehicle (CAV-H) were used to test the effectiveness of the proposed
algorithm. The mass of CAV-H was 907 kg, and its aero reference area was 0.4839 m2.
The CAV-H had a high maximum lift-to-drag ratio of E* = 3.24, and the corresponding
lift coefficient C∗L was 0.45. The pneumatic reference area was sref = 0.8. The gravitational
acceleration was g0 = 9.8 m/s2, and the Earth radius was considered to be R0 = 6378 km.

The parameters of the starting and terminal points of the glide section of a hypersonic
vehicle are given in Table 1. The constraints that the ballistic optimization needs to meet
are listed in Table 2.

Table 1. Initial and termination conditions.

Parameter Value Range

Initial height h0 41 km~46 km
Initial longitude θ0 −2◦~2◦

Initial latitude ϕ0 −2◦~2◦

Initial velocity V0 5300 m/s
Initial track angle γ0 0◦

Initial course angle ψ0 90◦

Final longitude θf 38◦~42◦

Final latitude ϕf 18◦~22◦

Table 2. Process constraints of trajectory planning.

Parameter
.

Q( kW
m2 )max

¯
q(kPa)max n(g0)max

Generalized Lift
Coefficient Heeling Angle (◦)

Value 2000 500 3 0 ≤ λ ≤ 2 −80 ≤ σ ≤ 80

In Table 2,
.

Qmax denotes maximum heat flow density, qmax represents the maximum
dynamic pressure, and nmax is the maximum normal overload.

5.1. Generation of the Training Data

The Chebyshev pseudo-spectral method was used to generate 5000 trajectories, and the
serial variations geocentric distance, longitude, latitude, velocity, control volume, general-
ized lift coefficients, and inclination angles are shown in Figures 3 and 4. The ballistic data
were interpolated to obtain the ballistic states at 1-s intervals, and the 5000 trajectory data
samples were summed to form a total data sample. The sample size was approximately
7.5 million ballistic data states.
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5.2. Training Process of the DNN

The loss value for 10,000 training epochs is shown in Figure 5. When the neural
network was trained using the sigmoid activation function, the loss value could converge
quickly and converge in 0.001. The data of 5000 trajectories were divided into a training
set consisting of 4000 trajectories and a test set consisting of 1000 trajectories. In addition,
the sigmoid and ReLU activation functions were used for comparison.
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The loss values for the ReLU and sigmoid activation functions are shown in Figure 5,
respectively. It can be seen that the loss values were larger on the testing set, but the overall
loss value was stable and at a relatively low level. The results showed that the loss value
on the test set for the sigmoid function was near 0.001, while that of the ReLU function
was above 0.05. Thus, the sigmoid activation function made the loss function converge to
a smaller value, which is chosen as the activation function for the network.

5.3. Random Single Trajectory Error Analysis

In the simulations, the initial and terminal states of the trajectory are randomly gener-
ated in a certain range, and the state sequence is used as the network input. The trained
deep neural network is used to predict the values of the trajectory control variables (gener-
alized lift coefficient and inclination angle), and the predicted values are compared to the
expected values that were obtained by the pseudo-spectral method to verify the effective-
ness of the neural network. The comparison results of the predicted and expected output
values are shown in Figures 6 and 7, where it can be seen that the predicted and expected
output values coincided well during the whole flight, and the error is basically under 0.02,
which verified the deep neural network’s capability in online planning and the prediction
of the generalized lift coefficient and inclination angle values.
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5.4. Validation with Vehicle Dynamics Model

The three-DOF model of the hypersonic vehicle reentry phase was used to further
verify the prediction performance of the proposed model. The neural network consisted of
eight layers, each of which had 500 neurons. There is a total of 40 batches in training, and the
number of samples per batch was set to 256. A single trajectory is taken as an example,
and a random trajectory was generated by the pseudo-spectral method. The start and
end position conditions set by the pseudo-spectral method are substituted into the trained
neural network for testing, and the comparison of the flight paths estimated by the pseudo-
spectral method and those predicted by the neural network is used to analyze the output
error of the neural network model. The generalized lift coefficient and inclination angle
are presented in Figures 8 and 9, respectively, where it can be seen that the predicted and
estimated values coincided well. The error curves of the generalized lift coefficient and
inclination angle are presented in Figures 10 and 11. Based on the results, the error of the
generalized lift was within ±0.01◦, and the error of the inclination angle was within ±0.02◦.
The numerical values of the errors of the neural network prediction are given in Table 3. As
shown in Table 4, the geocentric distance error was within 1 km, the longitude and latitude
errors were 0.1◦ and 0.03◦, respectively, and the velocity error was 4 m/s.
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Table 3. Error statistics.

Actual Vehicle Position Predicted Vehicle
Position Position Error

Altitude (m) 30,151 30,940 789

Longitude (◦) 34.84 34.74 0.10

Latitude (◦) 18.16 18.19 0.03

Velocity (m/s) 2267 2271 4

Table 4. Error statistics of Monte Carlo simulation (90 percent probability).

The Absolute
Terminal Longitude

The Absolute
Terminal Latitude

The Absolute Terminal
Range Angle

error (◦) 0.042 0.125 0.126

5.5. Monte Carlo Simulation Verification

In order to demonstrate the generalization ability of the developed neural network
model, the Monte Carlo ballistic simulation and error analysis were carried out. In the
simulations, random ballistic beginning and end state parameters were used, and there
were 1000 target trajectories. The Monte Carlo simulation was performed using an online
planning method based on the neural network.

The analysis results are shown in the following table.

6. Conclusions

In this study, a deep neural network-based method is developed to achieve fast
prediction of optimal trajectories for a hypersonic vehicle. First, the reentry phase of
a hypersonic vehicle is formulated as an optimal control problem, and the pseudo-spectral
method is developed to provide optimal solutions for DNN training. The developed DNN
model is optimized on the test set regarding the numbers of layers and neurons, learning
rate, and activation functions. Based on the optimized DNN model, the DNN-based
method and improvement techniques are developed and employed to solve the optimal
trajectory problem. The proposed method is verified by numerical simulations, and the
results demonstrate that the DNN-based method has the advantages of fast solving speed
and excellent convergence.
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The proposed method provides an original idea for the online trajectory optimization
of a hypersonic vehicle, and the trajectory optimization of the entire trajectory can be
accomplished accurately in only a few seconds. Similarly, the proposed method can be
applied to other models in the aerospace field, such as lunar landing and asteroid detection
models. In future work, more complex flight missions and more rigorous constraints,
including no-fly zones, are considered to verify the effectiveness of the proposed method.
We will also adopt more elaborate network structures to enhance the learning accuracy.
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