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Abstract: Cooperative orbit determination (OD) using inter-spacecraft optical measurements is an im-
portant technology for space constellation missions. In this paper, the observability of a two-spacecraft
cooperative OD system is investigated. The influence of geometric configuration on the observabil-
ity is analyzed, and two special unobservable configurations are identified. Then, an approach to
improve the observability by involving an additional spacecraft is proposed. Comparative analysis
of system observability shows that an extra spacecraft in the system could change the coplanar and
symmetric configuration and improve the observability of the cooperative OD system. Monte-Carlo
simulations are carried out, and results verify the observability improvement conclusion.

Keywords: cooperative orbit determination; optical measurements; observability analysis;
orbit configuration

1. Introduction

Autonomous orbit determination (OD) is one of the basic technologies to ensure the
completion of space missions. With the dramatic increase of the number of spacecraft
and the development of space cooperative behaviors, such as space constellation and
formation missions [1,2], OD based on inter-spacecraft measurement becomes an important
feature [3–6]. The techniques for estimating the absolute orbits of both the observer and the
target using the inter-spacecraft measurements, which is called the cooperative OD, are
increasingly desired.

The work on cooperative OD can be traced back to the 1980s, when Markley and Psi-
aki [7] proposed the OD method for two spacecraft using inter-spacecraft relative position
measurements. The relative position measurement includes both distance and direction in-
formation, which requires several types of sensors, such as a laser sensor measuring relative
distance and an optical camera measuring the relative direction [8]. With the miniaturiza-
tion development of spacecraft, the onboard sensors are limited [9–11]. Another two widely
used methods for cooperative OD are based on range-only measurements [12–16] and
line-of-sight (LOS) measurements [17–19]. Ranging information can be obtained through
radio, radar, or laser, and thus range measurements are hardly affected by the complex
space environment and low cost [20]. However, the lack of angle information inevitably
leads to overall rotation of the constellation, and absolute OD is unavailable [21,22]. The
LOS measurement can be easily obtained using optical cameras with the advantages of long
observation arc, high measurement accuracy and long detection range [23–25]. Moreover,
the optical measurement, including the right ascension and the declination [26,27], can
provide more information than the relative range. Therefore, angle-only measurements are
of great value in the cooperative OD problem.

Regarding the cooperative OD problem based on inter-spacecraft optical measure-
ments, observability analysis is particularly important [28–32]. It has been demonstrated
that an OD system including one observer and one target is observable using inertial LOS
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measurements [33–35]. The inertial LOS measurements can be obtained by combining
the relative LOS information and attitude of the observer in the inertial coordinate. The
cooperative OD system using inertial LOS measurement is first analyzed by Yim et al. [33].
The conclusion that the two spacecrafts are observable was obtained through numerical
simulations. Hu further investigated the observability of an inertial optical cooperative
OD system with three spacecraft using the Lie-derivative criterion [34,35]. It was declared
in Hu’s work that the three-spacecraft system is third-order locally, weakly observable.
However, the previous conclusion does not hold in some cases. Specifically, the inertial
cooperative OD system is unobservable under certain orbital geometric configurations,
and observability of the OD system is poor when configuration is close to those special
cases. Thus, it is necessary to further investigate the influence of orbital configuration on
observability of a cooperative OD system.

This paper investigates the observability of the cooperative optical OD system. Dif-
ferently from the previous studies of this problem focusing on the measurements and
dynamics, this paper handles the problem in view of the orbit configuration. The contribu-
tions of this paper are summarized as follows. Firstly, the observability of a two-spacecraft
optical cooperative OD system with different configurations is analyzed based on the
observability matrix (OM). Several unobservable configurations are dug out and the corre-
sponding unobservable elements are discussed. Secondly, an observability improvement
strategy for the unobservable configurations is proposed by adding an additional observer.
Simulations are performed to verify the enhancement effect on observability, and OD
accuracy is analyzed and compared in conditions with and without the additional observer.

This paper is organized as follows: In Section 2, the observability of the inertial
optical cooperative OD is analyzed. In Section 3, the observability improvement method is
proposed and studied. Numerical simulations are implemented for comparisons through
the Monte-Carlo method for accuracy analysis.

2. Observability Analysis of the Two-Spacecraft OD System
2.1. System Description
2.1.1. State Model

The cooperative OD system includes two spacecraft orbiting around Earth, known
as the observer spacecraft (SO) and the target spacecraft (ST), with the Keplerian orbit
elements given as:

EO = [aO, eO, iO, ωO, ΩO, nO]
ET = [aT , eT , iT , ωT , ΩT , nT ]

(1)

where the subscripts O and T represent the two spacecraft, SO and ST, respectively. The
observation spacecraft can actively observe the target with onboard camera, while the
target spacecraft is passively observed and is usually a non-cooperative target. For each
spacecraft, the orbit elements denote semi-major axis, eccentricity, inclination, argument of
the periapsis, longitude of the ascending node, and true anomaly, respectively. The goal of
a cooperative OD system is to determine the orbit elements of both SO and ST. The system
state vector x is given by:

x = [aO, eO, iO, ωO, ΩO, nO, aT , eT , iT , ωT , ΩT , nT ]
T (2)

Considering point-mass two-body dynamics without any non-gravitational pertur-
bation [36], the size, shape, and spatial position of each orbit described by the first five
parameters of EO and ET are time-invariant [35–38]. The true anomaly, which represents the
position of the spacecraft in orbit, is time varying. Then, the state model of the cooperative
OD system is given by:

.
x = f (x) = [ 0, 0, 0, 0, 0,

.
nO, 0, 0, 0, 0, 0,

.
nT ]

T (3)
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.
nO =

√
µ

aO(1−e2
O)

(1+eO cos(nO))2

aO(1−e2
O)

.
nT =

√
µ

aT(1−e2
T)

(1+eT cos(nT))
2

aT(1−e2
T)

(4)

2.1.2. Measurement Model

Space-based optical measurements use optical cameras to obtain images of the sur-
rounding environment, and the measurement information is then passed through a signal
processor to extract the target. For a distant space target, its image is often seen as a
light spot on the image plane, so that we can obtain only the target’s line-of-sight (LOS)
information relative to the observation spacecraft. Combining the attitude of SO received
via star sensors, the inertial LOS measurement can be obtained.

The inertial LOS measurement model is given as:

h(x) =
rT − rO
‖rT − rO‖

+ υ (5)

where rO and rT represent the inertial position vectors of SO and ST at the time of measure-
ment regardless of the time it takes for the light to travel, and υ is the measurement noise.
The LOS measurement is defined in the Earth centered inertial frame (OE − XEYEZE), and
a schematic diagram of the measurement model is shown in Figure 1.
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Figure 1. Orbits and inertial LOS Measurement.

To analyze the effect of orbital configurations, the LOS measurement should be ex-
pressed as a function of the system state variables, and we should describe the inertial
position vectors by the orbit elements. The coordinate transformation is the same for each
spacecraft, so the subscripts are omitted during the derivation of the inertial position vector.

The near-focal coordinate system (O − xyz) describes the natural properties of an
orbit [39], which takes the focus of the orbit (center of the earth for earth-orbiting spacecraft)
as the origin, and the orbital plane is the reference plane. The x-axis points to the perigee
direction from the center of the earth, the y-axis is obtained by rotating the x-axis by 90◦

along the motion direction in the orbital plane, and the O− xyz system is a right hand
coordinate system.

In the O− xyz system, the position vector of a spacecraft can be expressed by the orbit
elements as follows:

rx =
a(1− e2)

1 + e cos n

 cos n
sin n

0

 (6)
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where the subscript x represents the O− xyz system, and rx is the position vector in O− xyz
system. The orthogonal transformation matrix from OE − XEYEZE to O− xyz is:

QXx = Tz(ω)Tx(i)Tz(Ω) (7)

where Tz and Tx are Euler orientation cosine matrixes.
Then the transformation matrix from O− xyz to OE−XEYEZE is the transpose of QXx,

that is:

QxX = QT
Xx =

 cos(Ω) sin(Ω) 0
− sin(Ω) cos(Ω) 0

0 0 1

 1 0 0
0 cos(i) sin(i)
0 − sin(i) cos(i)

 cos(ω) sin(ω) 0
− sin(ω) cos(ω) 0

0 0 1

 (8)

The inertial position vector r can be described by the orbit elements as:

r = QxXrx = QxX
a(1− e2)

1 + e cos n

 cos n
sin n

0

 (9)

2.1.3. Observability Matrix

The measurement model only reflects the relationship between the observation and
the spacecraft state at a certain observation moment. The spacecraft state changes with
time during the whole observation period, and its changing rule is described by the
dynamic model. The observability matrix (OM) combines the measurement equation and
the dynamics equation, and thus characterizes the relationship between observations and
states over the entire observation period [18].

Using the method in [14], the OM of the two-spacecraft OD system, signed as M, is
constructed based on the state equation in Equation (3) and the observation equation in
Equation (5). The partial differential matrix of the measurement model at the observation
time ti is given by:

Hi(x) =
[

∂h
∂x

]
i

(10)

For each observation time ti, Hi(x) is a 3 by 12 matrix, and it should be mapped to the
initial epoch t0 through the state transformation matrix (STM), given as:

H̃i(x) = Hi(x)Φ(ti, t0) (11)

where Φ(ti, t0) is the STM from t0 to ti, and given as:{ .
Φ(ti, t0) =

[
∂f(x1)

∂x1

]
i
Φ(ti, t0)

Φ(t0, t0) = I12×12
(12)

In the cooperative OD system, the STM has the following format:

Φ(ti, t0) =

[
AO 06×6

06×6 AT

]
(13)

where Ak(k = O, T) is derived as:

Ak =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

Φ
nk
ak (ti, t0) Φ

nk
ek (ti, t0) 0 0 0 Φ

nk
nk (ti, t0)

 (14)
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The elements in matrix Ak shows the state transformations for specific orbit elements.
For the time-invariant elements, the state transformations caused by themselves are equal
to 1, showing as the diagonal elements in the first five rows. The state transformations
caused by the irrelevant orbit elements are equal to 0. It is known from Equation (4) that

.
n

is relevant to a, e and n for each spacecraft, so the state transformations of nk are expressed
in the differential equations as:

.
Φ

nk
ak
(ti, t0) =

∂
.
nk

∂ak
+ ∂

.
nk

∂nk
Φ

nk
ak (ti, t0), Φ

nk
ak (t0, t0) = 0

.
Φ

nk
ek
(ti, t0) =

∂
.
nk

∂ek
+ ∂

.
nk

∂nk
Φ

nk
ek (ti, t0), Φ

nk
ek (t0, t0) = 0

.
Φ

nk
nk
(ti, t0) =

∂
.
nk

∂nk
Φ

nk
nk (ti, t0), Φ

nk
nk (t0, t0) = 1

(15)

where Φ
nk
ak (ti, t0) describes the state transformation of nk (marked by the superscript)

caused by ak (marked by the subscript). Similarly, Φ
nk
ek (ti, t0) and Φ

nk
nk (ti, t0) represent the

state transformation of nk caused by ek and nk.
Then, the OM is updated with observation in the form of:

M =

 H̃1(x)
H̃2(x)

...

 (16)

For each observation time ti, H̃i(x) is also a 3 by 12 matrix. It can be seen that H̃i(x)
makes up M over time, and each column of M corresponds to the orbital element.

Further mathematical analysis based on OM is implemented to investigate the observ-
ability of an OD system. In the first place, checking the rank condition of OM is necessary
for qualitatively analyzing the observability of the system. A full rank OM means the
OD system is observable, while when OM is not full rank, we can draw the conclusion
that the system is not observable. The rank of OM represents the number of observable
states or state combinations. Secondly, the quantitative analysis of system observability is
important for checking the degree of system observability, which is generally based on the
computation of the condition number (CN). CN is the ratio of the singular values of OM,
given by:

CN =
max(σ(OM))

min(σ(OM))
(17)

A larger CN indicates a less observable problem, and the estimation problem is
ill-conditioned when its value exceeds a certain limit. An OD system is regarded as
unobservable if the condition number is greater than 1016 [32].

2.2. Observability of the Angle-Only Cooperative OD System

In this subsection, the influence of geometric configuration on the observability of the
two-spacecraft system is discussed, and two unobservable configurations, including the
symmetric case and the same circular orbit case, are analyzed. Numerical simulations are
implemented to verify the observability results for different orbit configurations.

The obstruction of Earth is considered to ensure continuous visibility between the
two spacecraft, and more complex environmental factors such as light conditions are not
considered in this paper. The target spacecraft with an orbital altitude of 5000 km and the
observation spacecraft with the orbital altitude greater than 4000 km is adopted to obtain
continuous observation. The nominal orbital elements for the following three cases are
shown in Table 1.



Aerospace 2022, 9, 166 6 of 16

Table 1. Nominal orbital elements for observability analysis.

Spacecraft a/km e i/deg Ω/deg ω/deg n/deg Annotation

ST1 11,378.137
0.01

45 94.8 199.0 −54.13
Elliptical orbit

ST2 0 Circular orbit
SO1 10,378.137 0.05 45.05 29.93 132.9 −17.74 General case
SO2 11,378.137 0.01 30 94.8 199.0 −54.13 Symmetric case
SO3 11,378.137 0 45 94.8 199.0 −24.13 Same circular case

2.2.1. General Case

Assume that two spacecraft move on orbits with totally different elements that satisfy
Equations (18)–(20):

Ω1 −Ω2 6= 2kπ or i1 6= i2 (18)

Ω1 −Ω2 6= (2k− 1)π or i1 6= −i2 (19)

aT 6= aO, eT 6= eO, eT 6= 0, eO 6= 0 (20)

where k is an integer. Equations (18) and (19) mean that the two orbits are not coplanar,
and Equation (20) reflects that they have different sizes and shapes. The orbits are shown
in Figure 2.
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In this case, the rank of the OM is calculated as 12, illustrating that all states in
Equation (3) are observable, and the OD system is observable. The simulations of the OD
problem are implemented by using the unscented Kalman filter (UKF). For each spacecraft
in the OD system, the initial deviations of the triaxial position and triaxial velocity are set as
10 km and 1 m/s, respectively. Then, the initial covariance of state is defined as a diagonal
matrix whose elements are the squares of the initial deviations. Then, the initial deviations
of the orbital elements are obtained by converting state vectors to the six orbital elements,
and the numerical values are shown in Table 2.
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Table 2. Initial deviations of orbital elements.

Spacecraft a/km e i/deg Ω/deg ω/deg n/deg

SO1 33.3 1.3 × 10−3 8.5 × 10−5 1.2 × 10−3 7.7 × 10−3 0.039
ST1 18.6 2.7 × 10−4 1.1 × 10−4 1.6 × 10−4 0.015 0.129

The standard deviation of measurement noise is set to 0.01 deg for LOS measurements
according to the payload capabilities [40,41]. The process noise of the UKF is set to 10−12,
and the simulation step is 60 s, depending on the measurement frequency. The initial
simulation parameters are shown in Table 3.

Table 3. Simulation parameters used in the UKF.

Name Value

Initial state deviation of each spacecraft (km, km/s) [10, 10, 10, 1 × 10−3, 1 × 10−3, 1 × 10−3]T

Initial covariance of each spacecraft (km2, km2/s2) diag ([100, 100, 100, 1 × 10−6, 1 × 10−6, 1 × 10−6])
Standard deviation of measurement noise 0.01 deg (approximately 40 arcsec)
Process noise diag (10−12)
Simulation step 60 s

Taking the case in which SO1 observes ST1 as a numerical example, the errors of orbit
elements are shown in Figure 3. The estimation errors converge within four hours, and the
sub-windows show the local magnifications of the estimation errors within 8–12 h. The
estimation accuracies of semi-major axes are within 0.1 km, the accuracies of eccentricities
are within 3 × 10−5, the accuracy of i reaches the level of 10−5, the estimated accuracies of
Ω, ω and n reach the level of 10−4.
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The orbit determination precisions are obtained through Monte-Carlo simulations [42].
The final standard deviations (STDs) and convergency ratio (CR) of the ST are shown in
Table 4.
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Table 4. Final STD and CR results for the two-spacecraft OD system in general cases.

Index x/km y/km z/km vx/(km/s) vy/(km/s) vz/(km/s)

STD 0.0306 0.0200 0.0993 3.074 × 10−5 2.9191 × 10−5 2.4185 × 10−5

CR 99.69% 99.80% 99.01% 96.93% 97.08% 97.85%

It can be seen that the states of target spacecraft can be determined in a general case.
The STDs for triaxial position errors are within 0.1 km, and the convergency ratios are higher
than 99%. The STDs for triaxial velocity errors are within 0.1 m/s, and the convergency
ratios are higher than 96%.

2.2.2. Symmetric Case

In this case, the positions of the two spacecraft always remain symmetric with a
stationary inertial plane. The restrictions in Equations (21) and (22) should be satisfied:

aT = aO, eT = eO, iT 6= iO, nT = nO (21){
ωT = ωO
ΩT = ΩO

or
{
|ωT −ωO| = π

|ΩT −ΩO| = π
(22)

Equation (21) shows that the two orbits have the same semi-major axis and eccentricity,
but different orbital inclinations. The restrictions of ω and Ω in Equation (22) indicate that
the two orbits are mirror image symmetric in inertial space, and the same n means that the
two spacecraft are symmetric with the same inertial plane.

Let SO2 observe ST1, all orbit elements of the two orbits are different except for the
inclinations. Numerical analysis shows that the rank of OM decreases to 6, meaning that
there are 6 observable elements or element combinations. The OM can be simplified to the
reduced row echelon form through Gauss–Jordan elimination method. Only six rows of
the simplified matrix are valid, and the elements in the remaining rows are zero. The first
six rows are shown in Table 5, and the numerical values that are not listed in the table are
all equal to 0.

Table 5. The reduced row echelon in symmetric case.

Row aO eO iO ωO ΩO nO aT eT iT ωT ΩT nT

1 1 −1
2 1 −1
3 1 1
4 1 −1 −1.3
5 1 0.92
6 1 −1

Each row of the simplified matrix has more than one number, indicating that no
independent element is observable, and there are six pairs of observable element combi-
nations. Taking the first row as an example, there are two numbers in the columns that
are corresponding to aO and aT , showing that the combination (aO − aT) is observable.
Similarly, the 2nd, 3rd and 6th rows indicate that the combinations (eO − eT), (iO + iT) and
(nO − nT) are observable. The numbers in the 4th and 5th row show that the remaining
angles, ΩO, ΩT , ωO and ωT , make up two observable combinations in an irregular form.

The estimation errors of orbit elements over time are shown in Figure 4. It can be
known that none of the error’s convergence, which verifies the observability conclusion
that no independent element is observable. The estimation errors of the combinations
(aO − aT), (eO − eT), (iO + iT) and (nO − nT) in Figure 5 are convergent, which proves the
observability results for orbit element combinations.
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From the point of view of OD, this symmetrical configuration is unfavorable. The
LOS direction is always perpendicular to the symmetry plane of the two spacecraft, and
therefore doesn’t contain the information related to the semi-major axis, eccentricity and
the true anomaly. Moreover, the LOS vectors before and after the cross epoch are opposed
to each other. In this case, the drastic changes of the measurements cause the estimations to
diverge (as shown in Figure 4). Although this symmetric case rarely appears in practice,
it is worth investigating because the observability and convergence will also be poor in
configurations close to the symmetric case.

2.2.3. Same Circular Orbit Case

For two spacecraft on the coplanar orbits, the elements should satisfy one of the
following equations:

i1 = i2 and Ω1 −Ω2 = 2kπ (23)

i1 = −i2 and Ω1 −Ω2 = (2k− 1)π (24)
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In this case, the two spacecraft move on the same circular orbit with only different
true anomalies, and the remaining elements should satisfy:

aT = aO, eT = eO = 0, nT 6= nO (25)

Let SO3 observe ST2. The rank of OM becomes 6, and the reduced echelon form is
shown in Table 6. For the 2nd and 6th row, there is only one number in each row, indicating
that the corresponding elements, eO and eT , are independently observable. The numbers
corresponding to the column of aT are in the 1st and 4th row. There is another number
corresponding to aO in the 1st row, and there are 7 numbers in the 4th row. Meanwhile, the
numbers corresponding to iT and ΩT also appear in the 3rd, 4th and 5th rows. Therefore,
the other 4 observable variables are composed of the semi-major axes and the eight angles
in a combinatorial form.

Table 6. The reduced row echelon in same circular orbit case.

Row aO eO iO ωO ΩO nO aT eT iT ωT ΩT nT

1 1 1
2 1
3 1 −0.866 −0.354
4 1 −1 −6.5 × 10−4 −0.5 1 1.319 −1
5 1 0.7071 −0.866
6 1

The estimation errors of orbit elements over time are shown in Figure 6. It can be seen
that the errors of a, i, ω, Ω and n are not convergent, proving that the 10 elements are
unobservable. For the errors of e, there are tendencies of convergence, but the accuracies
are not high due to the influence of other orbit elements.
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3. Improvement Approach for Cooperative Optical Orbit Determination

It can be drawn from the previous section that the observability of a two-spacecraft
cooperative OD system is limited by the relative geometric configuration. To solve this
problem, an observability improvement approach is proposed by adding an additional
observer into the cooperative OD system to obtain more measurement information. In this
section, the optical cooperative OD system with an additional observer is modeled, and the
system observability is analyzed.
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3.1. System Description for the Cooperative OD System with an Additional Observer

In this cooperative OD scenario, each observation spacecraft measures the LOS from
itself to the target spacecraft. The measurement model is given as follows:

h′ =
[

hT
1 hT

2

]T
(26)

where h1 and h2 are the LOS measurements taken by the two-observation spacecraft. The
measurement model is shown in Figure 7, SO1 and SO2 are observation spacecraft.
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The elements of the target and the two observers should be estimated, and there are
six orbital elements for each spacecraft. Then the state variables become:

x′ = [EO1, EO2, ET ]
T (27)

The OM of the cooperative OD system with an additional observer, defined as M′, is
constructed in the same way as in Equations (10)–(16), with the observation matrix Hi(x′)
and the state transformation matrix Φ′ described as:

Hi(x′) =
[

∂h′

∂x′

]
i

(28)

Φ′(ti, t0) =

 AO1 06×6 06×6
06×6 AO2 06×6
06×6 06×6 AT

 (29)

where the matrix Ak(k = O1, O2, T) has the same form shown in Equations (14)–(16).
Then, we can get the intermediate matrix H̃i(x′), and M′ is given as:

M′ =

 H̃1(x′)
H̃2(x′)

...

 (30)

Similarly, the 18 columns of M′ correspond to the 18 orbital elements.

3.2. Observability Analysis for the Cooperative OD System with an Additional Observer

With an additional spacecraft involved in the OD system, not only the measurement
information, but also the number of states, are increased. The observability of the system
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requires further analysis. In this part, three cases corresponding to the configurations in
Sec. II are analyzed to show the observability improvement. The orbital elements of the
additional spacecraft, signed as SO4, are shown in Table 7.

Table 7. Nominal orbital elements for observability analysis.

Spacecraft a/km e i/deg Ω/deg ω/deg n/deg

SO4 11,878.137 0.02 30 0 0 10

3.2.1. General Case

The first scenario considers two general non-coplanar observers. According to the
observability result of the general case in a two-spacecraft system, either of the observation
spacecraft can make up an observable OD system with the target spacecraft, so the cooper-
ative OD system with both observers is completely observable. Therefore, it is feasible to
estimate all orbital elements, although the dimension of the state variables increases.

Let SO1 and SO4 observe ST1, and the orbits are shown in Figure 8. The rank of OM
is calculated to be 18, as expected, and the observability of cooperative OD system is
enhanced, reflected in the fact that the numerical value of CN decreases to 6.7037 × 103.
The errors in Figure 9 show that the accuracies of semi-major axes are around 20 m, the
estimated errors of eccentricities reach the level of 10−6, the estimated accuracies of i and
Ω reach the level of 10−6, and the estimated accuracies of ω and n reach the level of 10−4.
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To validate the advantage of using an additional observer in the inertial LOS coopera-
tive OD system, the OD accuracies of the three-spacecraft system proposed are analyzed.
For the general case with two general observation spacecraft, the STD and CR results of
100 case Monte-Carlo simulations are shown in Table 8. Comparing with the Monte-Carlo
results for two-spacecraft system in Table 4, the values of STDs are much smaller. The STDs
for triaxial position errors are within 0.015 km, and the STDs for triaxial velocity errors are
within 0.01 m/s. The convergency ratios are higher than 99%.
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Table 8. Final STD and CR results for the cooperative OD with an additional observer.

Configuration Index x/km y/km z/km vx/(km/s) vy/(km/s) vz/(km/s)

General orbit
STD 0.0091 0.0010 0.0117 1.1744 × 10−6 6.0360 × 10−6 9.2720 × 10−7

CR 99.99% 99.99% 99.99% 99.88% 99.40% 99.99%

Symmetric orbit STD 0.0018 0.0076 0.113 5.2919 × 10−6 5.0495 × 10−6 7.3012 × 10−6

CR 99.99% 99.99% 99.99% 99.47% 99.50% 99.27%
Same circular

orbit
STD 0.0036 0.0060 0.0105 5.4042 × 10−6 1.3093 × 10−6 4.3750 × 10−6

CR 99.99% 99.99% 99.89% 99.46% 99.87% 99.56%

To compare the OD accuracies with and without the additional observer, the root-
mean-square error (RMSE) of Monte-Carlo simulations are shown in Figure 10. The top
two images are the RMSEs of the case without additional observer (i.e., two-spacecraft
case), and the lower subgraphs show the RMSEs of the case with additional observer
(i.e., three-spacecraft case). For the two-spacecraft case, the RMSEs of the position are
smaller than 1.5 km, and the RMSEs of the velocity are smaller than 8 × 10−4 km/s. For the
three-spacecraft case, the RMSEs of position are within 0.1 km, and the RMSEs of velocity
are within 5 × 10−5 km/s. The OD accuracies of the three-spacecraft system are better.
Moreover, the estimated errors of the three-spacecraft OD system converge after about 2 h,
which are much faster than in the two-spacecraft system.
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3.2.2. Symmetric Case

It has been proven that the cooperative OD system is unobservable with only an ob-
server on the symmetric orbit with the target, and neither of the two orbits can be determined.

Let SO2 and SO4 observe ST1. The OM is calculated to be full rank, meaning that
the system is observable and even the orbit of the symmetric observer is available. The
cooperative OD system determines the orbits of SO1 and ST1 firstly, as in the general OD
case, and then determines the orbit of SO3 based on this reference. The effect of symmetric
configuration has been diminished but not eliminated, and the value of CN in this case is
an order of magnitude larger than that in the general case, indicating that the system is still
observable, but with weaker observability. The errors of orbital elements in Figure 11 show
that the element accuracies can reach the same level, as in general case with an observation
time longer than 3 h. It should be noted that the additional observer cannot be in special
configurations, because the combining of singular cases is not able to break the previous
unobservable configurations.
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The OD accuracy results for the system with a symmetric observer and a general
observer are shown in Table 8. It can be seen that the accuracies reach the same level as the
case with two general observers.

3.2.3. Same Circular Observer Case

Let SO3 and SO4 observe ST. The value of CN increases sharply and reaches the level
of 1016. The rank of OM is calculated to be 16, while the unobservable situation is caused
by the circular orbits, which leads to the combination of (ωO3 + nO3) and (ωT2 + nT2)
observable instead of the four individual elements. Therefore, it is proven that adding a
general observer can make the same circular orbits observable.

The advantage of including two observers is that the observability of the OD system
improves. The orbit configuration between each observation spacecraft and the target is
different, so that the system can obtain more effective information. The analysis above
shows that the combination of various orbital configurations can enrich measurement
information to change the unobservable configurations, and thus improve the system
observability. Same as in symmetric case, an additional observer on the same circular orbit
or symmetric orbit with the target is not able to make the unobservable cooperative OD
system observable.
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4. Conclusions

In this paper, the observability of cooperative orbit determination system was ana-
lyzed based on numerical calculation of OM and analysis of the convergence of the orbit
elements. The general case where the two spacecraft are on orbits with different elements is
proven to be observable, while two unobservable orbit configurations are identified: (1) in
the symmetric case, no independent element but six pairs of element combinations are
observable; (2) in the same circular orbit case, there exist two observable individual ele-
ments and four element combinations. Involving an additional spacecraft has a remarkable
effect on changing unobservable orbital configurations, and thus makes the OD system
observable. For general cases, the numerical value of condition number decreases from
the level of 106 in two-spacecraft system to the level of 103 in a three-spacecraft system. In
terms of OD accuracy, the final STDs for triaxial position errors decreased from 0.1 km in a
two-spacecraft system to within 0.015 km in a three-spacecraft system. The simulations
show that an additional observer can improve the observability and OD accuracy of the
cooperative OD system.
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