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Abstract: Honeycomb sandwich composite structures are widely used in various aircraft structures
due to their unique performance. However, honeycomb sandwich composite structures are prone to
lightning damage that threatens the structure safety. Therefore, it is necessary to assess the residual
mechanical properties of honeycomb sandwich composite structures after a lightning strike. In this
study, simulated lightning strike tests were first conducted for honeycomb sandwich panels with and
without carbon nanotube film (CNTF) to obtain different damage scenarios and study the protection
effect of CNTF. Then, the residual compressive strength of the panels with lightning strike damage
was predicted using a progressive damage analysis method and verified with the experimental results.
It was found that the numerical prediction results agree with the experimental results. The size and
extent of lightning damage have an important effect on the compression damage mode of honeycomb
sandwich panel with closed edges.

Keywords: honeycomb sandwich composite structures; simulated lightning strike tests; residual
compressive strength; progressive damage analysis; compression damage mode

1. Introduction

Aircraft are prone to lightning strikes when flying. According to relevant flight statis-
tics, the frequency of a commercial aircraft struck by lightning is about every 1000 to
10,000 h of flight [1]. In the past, the metallic fuselage and wing structures could quickly
dissipate the lightning current and protect the aircraft from lightning damage. However,
composite materials with excellent performance have gradually replaced traditional metal-
lic materials and become one of the basic materials of aerospace structures [2]. For example,
in the Boeing 787 Dreamliner, composite materials account for 50% of the total weight
of the structure [3]. Compared with metals, composite materials have lower electrical
conductivity, and thus are more sensitive to lightning damage. Without proper lightning
protection, the resistive heat generated by the Joule effect can severely damage the integrity
of the structure, reduce the mechanical strength and threat flight safety [4,5]. Therefore,
it is very important to study the lightning protection methods and residual mechanical
properties of composite structures after a lightning strike.

Researchers have already performed many studies on lightning strike protection for
composite structures [6–10]. For example, Zhang et al. [11] embedded lightning protec-
tion film prepared by mixing CNT and polyether ketone into the interlayer of composite
materials and combined a simulated lightning test and numerical simulation to study
its protection effect. Liu et al. [12] conducted a numerical study on the direct effect of
a lightning strike on composite material with a combination of electro-thermal analysis
and blowing out pulse (BOI) analysis. By comparing the results of BOI analysis and a
lightning strike test, they found that the strain field corresponds with the damage mode of
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the lightning strike sample. Ogasawara et al. [13] conducted thermal-electrical coupling
analysis of carbon fiber reinforced polymer (CFRP) under simulated lightning current and
compared the numerical results with the experimental results. Based on the numerical re-
sults and the thermal decomposition behavior of CFRP, the delamination area and damage
depth of CFRP were estimated, and the damage area was found to be in good qualitative
agreement with the experimental results. To clarify the damage caused by a lightning strike
to composite materials, Qi et al. [14] introduced numerical calculation of the resin pyrolysis
degree into electrical-thermal numerical analysis and found that this simulation method is
very effective through comparative analysis with a simulated lightning strike experiment.

To evaluate the protection effects and the structural integrity, some researchers have
not only studied the lightning damage of composite materials, but also studied their resid-
ual mechanical properties after a lightning strike [15–19]. For example, Wang et al. [20]
conducted a numerical simulation study on lightning damage characteristics of composite
laminates through electrical-thermal-structural analysis and element deletion, while pre-
dicting the residual tensile strength of the specimen after a lightning strike with proper
failure criterion. The results showed that the residual tensile strength decreases with the
increase of the peak value of lightning current under static tensile load. Kumar et al. [21]
prepared four types of CFRP plates with different thickness conductivities by replacing
traditional epoxy resin with conductive resin and applying simulated lightning current to
them. The bending tests after the lightning strike showed that the residual bending strength
of specimens with a thickness conductivity of 110 S/m can maintain 92% after lightning
strike. Zhao et al. [22] prepared a lightweight conductive veil and interwove it with carbon
fiber composite material, which increased its thickness conductivity to 27.9 S/m, and the
compression strength retention rate reached 79% after a lightning strike. Wang et al. [23]
used different progressive damage analysis methods to simulate the compression failure
process of composite laminates after a lightning strike. The results showed that the Hashin
criterion had the highest accuracy, and the stress concentration occurred mainly in the
angle between the fixed end of composite laminates and the lightning damage zone.

Nonetheless, most of the research objects in previous studies were small-size com-
posite laminates, and there were also some shortcomings in the corresponding lightning
protection methods, such as the structural weight increase of metallic protection materi-
als [24,25], galvanic corrosion [26,27] and large-scale manufacturing of lightning protection
materials [28,29], which have to be considered. In this study, simulated lightning strike tests
were first conducted for honeycomb sandwich panels with and without carbon nanotube
film (CNTF) to obtain different damage scenarios and study the protection effect of CNTF.
Then, the residual compressive strength of the panels with lightning strike damage was
predicted using a progressive damage analysis method and verified with the experimental
results. The prediction results of the residual strength of specimens after a lightning strike
agree with the results of axial compression experiments, verifying the accuracy of the finite
element prediction method.

2. Simulated Lightning Strike Test
2.1. Materials and Specimens

Compared with traditional composite laminates, honeycomb sandwich composite
structures have good impact resistance and weight reduction characteristics and have been
widely used in various aircraft structures [30]. For example, in the Airbus A380, the belly
fairing, the nacelles, the front landing gear doors, some ailerons and the rudder are all made
with sandwich structures [31]. The honeycomb sandwich panel in this study was mainly
composed of carbon fiber preimpregnated cloth with about a 40% resin volume fraction
(T300, Jiangsu Tian Niao High-tech Co., Ltd., Wuxi, China), Nomex paper honeycomb
(JY1-3.2-48, Jiangsu Jun Yuan New Materials Co., Ltd., Nantong, China) and epoxy resin
adhesive film (TS-JM-200, Shandong Wei Hai Guang Wei Composites Co., Ltd., Weihai,
China), as shown in Figure 1.
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rial properties characterized by scanning electron microscopy (SEM) and Raman spectros-
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was relatively uniform and smooth, its thickness was about 12μm and its conductivity 
was about 1.1 × 105 S/m. Figure 2b shows the random staggered entanglement of CNTs in 
CNTF and its high porosity, which can help infiltration of resin improve the binding be-
tween the film and the panel. Raman spectra of CNTF in Figure 2c showed that the value 
of ID/IG was small, and the G peak was sharper and denser than the D peak, indicating that 
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(c) RS result. 

Two specimens of honeycomb sandwich composite panels were used in this study. 
One was the unprotected specimen (designated as NS80), and the other was the protected 
specimen (designated as PS80) containing CNTF on the surface. The fabrication process 
of the two specimens was consistent, and the configurations and dimensions of the two 
specimens are shown in Figure 3. 
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Figure 1. Main materials of honeycomb sandwich panel: (a) carbon fiber preimpregnated cloth;
(b) nomex paper honeycomb; (c) epoxy resin adhesive film.

In this study, CNTF (JCNTF-20C, Jicang Nanotechnology Co., Ltd., Nanjing, China)
was fabricated by the floating catalytic chemical vapor deposition (FCCVD) method. FC-
CVD is a relatively simple and low-cost method to produce CNTF. The hydrocarbon source,
iron source and sulfur source were continuously injected by flowing hydrogen-carrying
gas into the reaction furnace above 1000 ◦C. Then, CNTs started to grow and entangle
together due to Van der Waals forces to form an aerogel sock, which was collected in reels
and then densified into CNTF. The as-received CNTF and its related material properties
characterized by scanning electron microscopy (SEM) and Raman spectroscopy (RS) are
shown in Figure 2. As can be seen from Figure 2a, the surface of the CNTF was rela-
tively uniform and smooth, its thickness was about 12µm and its conductivity was about
1.1 × 105 S/m. Figure 2b shows the random staggered entanglement of CNTs in CNTF
and its high porosity, which can help infiltration of resin improve the binding between the
film and the panel. Raman spectra of CNTF in Figure 2c showed that the value of ID/IG
was small, and the G peak was sharper and denser than the D peak, indicating that the
graphitization degree of CNT was good.

Aerospace 2022, x, x FOR PEER REVIEW 3 of 21 
 

 

fraction (T300, Jiangsu Tian Niao High-tech Co., Ltd., Wuxi, China), Nomex paper honey-
comb (JY1-3.2-48, Jiangsu Jun Yuan New Materials Co., Ltd., Nantong, China) and epoxy 
resin adhesive film (TS-JM-200, Shandong Wei Hai Guang Wei Composites Co., Ltd., Wei-
hai, China), as shown in Figure 1. 

   
(a) (b) (c) 

Figure 1. Main materials of honeycomb sandwich panel: (a) carbon fiber preimpregnated cloth; (b) 
nomex paper honeycomb; (c) epoxy resin adhesive film. 

In this study, CNTF (JCNTF-20C, Jicang Nanotechnology Co., Ltd., Nanjing, China) 
was fabricated by the floating catalytic chemical vapor deposition (FCCVD) method. 
FCCVD is a relatively simple and low-cost method to produce CNTF. The hydrocarbon 
source, iron source and sulfur source were continuously injected by flowing hydrogen-
carrying gas into the reaction furnace above 1000 °C. Then, CNTs started to grow and 
entangle together due to Van der Waals forces to form an aerogel sock, which was col-
lected in reels and then densified into CNTF. The as-received CNTF and its related mate-
rial properties characterized by scanning electron microscopy (SEM) and Raman spectros-
copy (RS) are shown in Figure 2. As can be seen from Figure 2a, the surface of the CNTF 
was relatively uniform and smooth, its thickness was about 12μm and its conductivity 
was about 1.1 × 105 S/m. Figure 2b shows the random staggered entanglement of CNTs in 
CNTF and its high porosity, which can help infiltration of resin improve the binding be-
tween the film and the panel. Raman spectra of CNTF in Figure 2c showed that the value 
of ID/IG was small, and the G peak was sharper and denser than the D peak, indicating that 
the graphitization degree of CNT was good. 

   
(a) (b) (c) 

Figure 2. CNTF fabricated by FCCVD and its related properties: (a) CNTF samples; (b) SEM result; 
(c) RS result. 

Two specimens of honeycomb sandwich composite panels were used in this study. 
One was the unprotected specimen (designated as NS80), and the other was the protected 
specimen (designated as PS80) containing CNTF on the surface. The fabrication process 
of the two specimens was consistent, and the configurations and dimensions of the two 
specimens are shown in Figure 3. 

50 550 1050 1550 2050 2550
Wavenumber (cm-1)

0

20

40

60

80

100

120
G

D

G'

ID/IG=0.194

Figure 2. CNTF fabricated by FCCVD and its related properties: (a) CNTF samples; (b) SEM result;
(c) RS result.

Two specimens of honeycomb sandwich composite panels were used in this study.
One was the unprotected specimen (designated as NS80), and the other was the protected
specimen (designated as PS80) containing CNTF on the surface. The fabrication process
of the two specimens was consistent, and the configurations and dimensions of the two
specimens are shown in Figure 3.
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Figure 3. Specimen configurations and dimensions: (a) unprotected specimen; (b) protected specimen.

To approximate a real engineering situation, the edge zone of the sandwich panel
was set with a bevel cutting treatment, and the upper and lower skins were closed at the
edges, as shown in Figure 3. The thickness of the honeycomb core was 10 mm; the thick-
ness of the single laminated plate at the edges after curing was about 0.21 mm; the laying-
up sequence of the laminated zone was [±45/(0,90)/±45/(0,90)/±45/(0,90)/±45/±45/
(0,90)/±45/(0,90)/±45], while that of the honeycomb sandwich zone was [±45/(0,90)/±45/
(0,90)/±45/C10/±45/(0,90)/±45], as shown in Figure 4.
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Figure 4. Laying sequence of honeycomb panel specimens (not in scale).

When preparing specimens, first, a square CNTF was laid at the center of the carbon
fiber preimpregnated cloth (this step can be ignored for unprotected specimens). Then, the
carbon fiber preimpregnated cloth, epoxy resin adhesive film and honeycomb core material
were laid in a certain sequence and encapsulated together into a vacuum bag. Finally, the
specimens were cured and formed under 180 ◦C and 340 kPa. After curing, the specimens
were taken out and machined, and the final specimens are shown in Figure 5.
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2.2. Test Setup

To facilitate unified research and analysis of lightning damage, the Society of Auto-
motive Engineers (SAE) organizes the entire change process of the current of an aircraft
subjected to a lightning strike into four components: A, B, C and D. Their characteris-
tics are shown in Figure 6a. It can be seen from the figure that the peak value of the
A-waveform current component is relatively high, causing more serious damage to the
aircraft. Therefore, the double exponential pulse current with peak value of 80 kA and
waveform parameters of 8/20 µs was used as the simulation simplification of A-wave
lightning current and then applied to two kinds of specimens for the simulated lightning
strike test. The definition of waveform parameters of the double exponential pulse current
t1/t2 are shown in Figure 6b, where t1 represents the time for the current to increase from
10% of the peak value to 90%, while t2 represents the time for the current to increase from
10% of the peak value to the maximum value and then decrease to 50% of the peak value.
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Figure 6. Current waveform standard of simulated lightning strike test: (a) standard current wave-
form Data from [32]; (b) double exponential pulse waveform.

In this study, the high intensity lightning current applied to the specimen was gener-
ated by the pulse current generator and finally released by the conductive copper probe
above the specimen. Due to the large impulse of the excitation current, the left and right
sides of the honeycomb specimen were pressed and fastened with bayonet pliers to the
fixture to avoid the honeycomb sandwich panel being knocked off during the test, thus
affecting the test effect. At the same time, to ensure the safety of the simulated lightning
strike test, grounded copper wire was used to connect with the copper fixture fixed on both
sides of the specimen so that the left and right ends of the specimen were always grounded
during the test process. Meanwhile, conductive copper foil was used to connect the CNTF
and both ends of the specimen to form a current loop.

To facilitate study of the changes of the applied excitation current during the test, an
oscilloscope was used to collect the waveform of the excitation current. The final acquisition
results are shown in Figure 7a. Since the process of a simulated lightning strike test is
very short, we filmed its discharge process by high-speed camera. The result is shown in
Figure 7b. When the excitation current was released, dazzling white light was observed
in the current injection zone of the specimen, followed by a huge sound, and then the
white light gradually disappeared. Burning flames and sputtering sparks were observed
on the surface of the specimen. Finally, the flame gradually decreased or even disappeared,
resulting in white smoke.
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lightning test phenomenon.

2.3. Results and Discussion

The damage of honeycomb sandwich panel caused by lightning mainly includes
visible in-plane damage of skin and invisible damage of inner thickness direction. To
specifically analyze the lightning damage status, visual inspection was carried out on the
surface skin after a lightning strike to determine the approximate in-plane damage range.
Then, an image processing software was used to divide the damaged zone and measure
the size of the damaged zone. The final results are shown in Figure 8. Finally, X-ray CT
scanning technology was used to conduct nondestructive scanning and reconstruct sections
of the damage in the direction of internal thickness of the honeycomb sandwich panel
specimen, and the relevant damage dimensions were marked. The results are shown in
Figure 9.
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It can be seen from Figure 8, with the lightning strike point as the center, the surface
outer skin shows different degrees of lightning strike damage. The damage forms of
external skin caused by the lightning strike mainly include ablative evaporation of epoxy
resin, fiber warping and fracture. Meanwhile, large area tearing and ablative disappearance
of surface CNTF can also be observed for protected specimens. To quantify the degree
of lightning damage, we divided the lightning damage in Figure 8 into different zones
according to the degree of damage. The outermost ellipse represents “resin damage”, while
the inner circular zone represents “fiber damage”. The area of ellipse was measured as
“damage area” for comparative analysis. At the same time, the diameter of the circle was
measured to provide data support for the subsequent numerical simulation of residual
strength. Similarly, the maximum length of delamination damage on the lightning center
point section in Figure 9 was defined as “delamination length” and measured. Finally, the
damage in Figures 8 and 9 was sorted out and summarized as shown in Table 1.
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Table 1. Data of lightning damage extent.

Specimen Damage Area/mm2 Delamination Length/mm

NS80 1313 70
PS80 742 46

Damage reduction rate 43.49% 34.29%

It can be clearly seen from the data in the table that when the peak current was 80 kA,
the surface “damage area” and internal “delamination length” of the honeycomb sandwich
specimen with CNTF on the surface were reduced by 43.49% and 34.29%, respectively,
compared with the unprotected specimen. These data demonstrate the lightning protection
effect of CNTF on honeycomb sandwich panel.

3. Axial Compression Test
3.1. Test Setup

To study the residual mechanical properties of a honeycomb sandwich panel after a
lightning strike, axial compression tests were carried out on the two specimens after a light-
ning strike to measure their residual compression strength. Meanwhile the compression
strength results of the undamaged specimen (NS00) in the existing literature were used as
a reference.

To study the damage distribution of a honeycomb sandwich panel specimen in the
axial compression test process, resistive strain gauges were pasted on the weak zone of the
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specimen for damage detection in the compression process. The final strain gauge layout
of the honeycomb sandwich specimen is shown in Figure 10.
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These strain gauges can be roughly divided into three groups, and the specific strain
numbers and locations are shown in Table 2, where odd numbers represent the longitudinal
strain gauge number and even numbers represent the transverse strain gauge number.
No parentheses represent the strain gauge number on the inner skin side of the specimen,
while the values in parentheses represent the strain gauge number at the corresponding
position on the outer skin side of the specimen.

Table 2. Strain gauge array information.

First Group Strain Second Group Strain Third Group Strain

Number 1(17)\2(18)
15(31)\16(32)

3(19)\4(20)\5(21)\6(22)
11(27)\12(28)\13(29)\14(30)

7(23)\8 (24)
9 (25)\10 (26)

Position Chamfer 1/4 honeycomb core Lightning damage around

As the size of the specimen was relatively large, a special compression test fixture was
manufactured for this purpose. The test status is shown in Figure 11. During the axial
compression test, the displacement was loaded by a multifunctional fatigue testing machine
(Landmark 370.50, MTS Systems Co., Ltd., U.S.A) at a loading speed of 0.5 mm/min.
The strain data of the two specimens during the compression test were collected by a
static strain data acquisition system (JM3813, Yangzhou Jingming Technology Co., Ltd.,
Yangzhou, China).

3.2. Results and Discussion

The load-displacement curves of the unprotected specimen (NS80) and the protected
specimen (PS80) are shown in Figure 12. It can be seen from the figure that the curves of the
two specimens changed approximately linearly before the specimens failed, and the data
in the figure show that the residual compression strength of the protected specimen was
much larger than that of the unprotected specimen. The strain changes of different parts
of the specimen during compression are shown in Figure 13. From the variation trend of
strain in the figure, we can roughly judge the damage initiation, distribution and evolution
in the specimen.
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For the NS80 specimen, it can be seen from Figure 13 that when the compression load
was about 29 kN, the strain gauge (#17) at the chamfering position of the outer skin of the
specimen changed, indicating that local compression failure occurred at the chamfering
position of the outer skin. When the load was about 44 kN, the strain gauges (#3, #5, #11,
#13) at the 1/4 honeycomb position of the inner skin and the strain gauges (#7, #9) around
the lightning damage center of the inner skin all changed, indicating that the yield failure
occurred at the 1/4 honeycomb position and around the lightning damage of the NS80
specimen. As the load continued, when the load value reached 56 kN, the strain gauge
(#31) at the chamfering position changed, indicating that the chamfering position at the
lower part of the outer skin of the specimen was damaged at this time.

For the PS80 specimen with CNTF surface protection, it also can be seen from Figure 13
that when the compression load was about 58 kN, the strain gauge at the inner skin oblique
position (#1, #15), the strain gauge of inner skin (#3, #5, #11, #13) and the strain gauge
around the lightning strike damage center of inner skin (#7, #9) began to change at the
same time, indicating that the overall yield instability of the specimen inner skin occurred
at this time.

By comparing the load changes of the two specimens, it can be found that compared
with the unprotected specimen, the critical buckling load of the inner skin of the surface
CNTF protected specimen increased from 48 kN to 58 kN, and its bearing improved to
some extent.
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Figure 13. Strain collection results of specimens: (a) the first group strain results of the NS80 specimen;
(b) the second group strain results of the NS80 specimen; (c) the third group strain results of the NS80
specimen; (d) the first group strain results of the PS80 specimen; (e) the second group strain results of
the PS80 specimen; (f) the third group strain results of the PS80 specimen.

The failure modes of the two types of specimens are shown in Figure 14. It can be seen
from the figure that the compression failure of the honeycomb sandwich panel specimens
with lightning damage mainly occurred in the outer skin, the failure of the unprotected
specimen mainly occurred in the center of the panel, while the failure of the protected
specimen mainly occurred in the chamfer zone of the skin. The main reason is that the
lightning damage at the center of the NS80 specimen is much larger than that of PS80.
Under the application of the axial compression load, the compression failure of the NS80
specimen first occurred at the lightning damage in the center, while the failure of the PS80
specimen first occurred at the weak chamfering zone of the structure.

Finally, the peak loads of the two specimens were compared with the averaged com-
pression strength value of three undamaged specimens in the literature [33]. The undam-
aged specimens were manufactured with the same materials and fabrication methods as
the two specimens used in this study. As shown in Table 3, the compression strength
of the protected specimen was close to that of the undamaged specimen. The residual
compressive strength of the honeycomb sandwich panel specimen protected by the CNTF
was about 20% higher than that of the unprotected specimen, which also indicates that the
surface CNTF can effectively suppress lightning damage and then improve the residual
mechanical properties of the specimens after a lightning strike.

Table 3. Residual compression strength data.

Specimen NS00 NS80 PS80

Peak load/kN 96.05 63.44 83.04
Residual strength 100% 66.05% 86.45%
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4. Numerical Simulation
4.1. Failure Criteria and Material Degradation
4.1.1. Mechanical Properties of Materials

The honeycomb sandwich panel specimen was mainly composed of skin, honeycomb
core and adhesive film. Failure criteria and material degradation modes of these three parts
should be considered respectively during numerical simulation of the specimen. Their
mechanical property parameters are shown in Tables 4–6, respectively.

Table 4. Mechanical properties of skin Data from [33].

E1/GPa E2/GPa G12/GPa G13 = G23/GPa ν12

58 58 5 2.5 0.044

XT/MPa XC/MPa YT/MPa YC/MPa S12/MPa

549 384 504 362 85
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Table 5. Equivalent mechanical properties of honeycomb cores Data from [33].

E1/MPa E2/MPa E3/MPa G12/MPa G13/MPa G23/MPa ν12 ν13 = ν23

0.1953 0.1953 136 0.073 40 23 0.94 0.0003

XTT/MPa SLT/MPa SWT/MPa

1.93 1.26 0.62

Table 6. Mechanical properties of adhesive film Data from [33].

E/GPa G/GPa ν tn/MPa ts = tt/MPa Gn/N·mm−1 Gs = Gt/N·mm−1

3.2 1.23 0.3 58 65 0.744 3.816

4.1.2. Skin Damage

In this study, the skin in the honeycomb sandwich panel was relatively thin, which
can be regarded as the plane stress state, so the two-dimensional Hashin criterion [34,35]
was adopted to determine whether the skin failed and the type of failure mode. Meanwhile,
a stiffness degradation model based on continuous damage mechanics was adopted to
characterize the stiffness degradation of skin.

The specific expressions of the two-dimensional Hashin criterion are as follows:
Fiber tensile failure:

Ff t =

(
σ11

XT

)2
+ α

(
σ12

SL

)2
= 1 (σ11 ≥ 0) (1)

Fiber compression failure:

Ff c =

(
σ11

XC

)2
= 1 (σ11 ≤ 0) (2)

Matrix tensile failure:

Fmt =

(
σ22

YT

)2
+

(
σ12

SL

)2
= 1 (σ22 ≥ 0) (3)

Matrix compression failure:

Fmc =

(
σ22

2ST

)2
+

[(
YC

2ST

)2
− 1

]
σ22

YC
+

(
σ12

SL

)2
= 1 (σ22 ≤ 0) (4)

where, XT, XC, YT, YC, SL and ST are the fiber tensile and compressive strength, matrix
tensile and compressive strength and longitudinal and transverse shear strength of the skin
material, respectively; σ11, σ22 and σ12 are the effective stress components of the material, α
is influence coefficient of shear stress in the fiber tensile damage, between 0 and 1; Fft, Ffc,
Fmt and Fmc represent the damage failure function values of fiber tensile, fiber compression,
matrix tensile and matrix compression respectively. When the failure function value reaches
1, it indicates that the corresponding damage occurs.

The specific expressions of stiffness degradation model of skin are shown as follows:
dm =

{
dt

m(σ22 ≥ 0)
dc

m(σ22 ≤ 0)
d f =

{
dt

f (σ11 ≥ 0)
dc

f (σ11 ≤ 0)

ds = 1−
(

1− dt
f

)(
1− dc

f

)(
1− dt

m
)
(1− dc

m)

(5)
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Among them:

dj
i =

δi(δ− δ0)
δ
(
δi − δ0

) , (i = f , m; j = t, c) (6)

where, df, dm and ds represent the fiber damage state variable, matrix damage state variable
and shear damage state variable of the skin, respectively; their values are between 0 and 1;
0 represents the intact material and 1 represents complete damage; δ0, δ and δi represent
the initial displacement of damage, the real-time displacement of damage and the final
failure displacement, respectively.

4.1.3. Honeycomb Core Damage

In the finite element model, the equivalent model of honeycomb core in the speci-
men was built based on sandwich plate theory [36,37]. Considering the damage of the
honeycomb core during the compression process, the failure and damage evolution of
the honeycomb core were determined by writing a user-defined field variable subroutine
(USDFLD) based on Besant criterion [38] and direct stiffness degradation theory [39].

The specific form of Besant criterion used to judge honeycomb core failure is as follows:

F2
core =

(
σTT
XTT

)n
+

(
σLT
SLT

)n
+

(
σWT
SWT

)n
(7)

where, σTT, σLT, and σWT represent the normal stress of the honeycomb core in the T
direction and the shear stress in the LT and WT directions respectively. XTT, SLT and SWT
represent the compressive strength and shear strength corresponding to the honeycomb
core, respectively. The value of n is 2, when the value of Fcore reaches 1, the failure of
honeycomb core is considered.

The direct stiffness degradation method of honeycomb core is as follows:(
E′11, E′22, E′33, G′12, G′13, G′23

)T
= λ(E11, E22, E33, G12, G13, G23)

T (8)

where, (E’11, E’22, E’33, G’12, G’13, G’23)T is the material stiffness after degradation, λ is
the corresponding stiffness reduction coefficient, and its value is 0.1 in the numerical
calculation model.

4.1.4. Adhesive Film Damage

In this study, the adhesive film was replaced by the cohesive zone model based on the
bilinear constitutive model. The quadratic nominal stress criterion [40] was used as the
initial damage criterion of the cohesive force model, and the B-K criterion [41] was used to
predict the crack propagation based on the damage evolution mode of energy.

The specific expression of the secondary stress criterion used to judge the damage of
the cohesive zone model is as follows:(

〈σn〉
Nmax

)2
+

(
σs

Smax

)2
+

(
σt

Tmax

)2
= 1 (9)

where, < > is the Macaulay bracket; σn, σs and σt represent the normal stress of the adhesive
film and the nominal stresses in the two shear directions, respectively; while Nmax, Smax
and Tmax are the corresponding peak strengths, respectively.

The specific expression of B-K criterion based on energy damage evolution is as follows:

GIC + (GI IC − GIC)

{
GI I + GI I I

GI + GI I + GI I I

} η

= GC (10)

where, GI, GII and GIII are the strain energy release rates of normal phase and two tangential
directions respectively; GIC, GIIC and GIIIC are the fracture toughness of type I, type II and
type III cracks, respectively; η is an interaction parameter; GC is the critical strain energy
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release rate obtained according to B-K criterion; when the value of G reaches GC, the crack
begins to expand.

4.2. Finite Element Model and Boundary Conditions

The finite element model of honeycomb sandwich specimen and the setting of rele-
vant boundary conditions are shown in Figure 15. Among them, the arrow T indicates
the 0◦ direction of the skin material. In this finite compression model, continuous shell
element SC8R (green element) is used to simulate the skin, three-dimensional solid element
C3D8 (brown element) is used to simulate the honeycomb core, and the cohesive element
COH3D8 (blue element) is used to simulate the adhesive film. Considering the computa-
tional accuracy and efficiency, the global control size of the mesh seeds was set to 5 mm
while mesh densities in the chamfer and central zones were further increased. To ensure
the continuity of element node displacement, the skin, honeycomb core and adhesive film
were connected through the common node, and the strength failure criterion above was
used to judge the failure of each part of the specimen in the compression process.
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crack begins to expand. 
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As observed in Figures 8 and 9, the outer skins of the honeycomb sandwich specimens
were penetrated by the simulated lightning strike. Thus, in the finite element model, the
lightning damage of the outer skins and outer films are simplified as circular holes, as
shown in Figure 15. The diameters of the holes in outer skins are consistent with the
red fiber damage circles in Figure 8, while the diameters of the holes in outer films are
consistent with the “delamination length” of the specimens in Figure 9. The size data of the
lightning damage for different types of specimens in the models are shown in Table 7.

Taking the clamping state of the specimen in the axial compression test as reference, the
boundary conditions of the finite element model are set as shown in Figure 15. The bottom
of the specimen is fixed, and constraints in the z direction are set in all four sides. First,
based on the buckling module of ABAQUS/Standard solver, the force load was applied to
the top of the specimen for structural linear buckling analysis. According to the analysis
results, the node information obtained was introduced into the postbuckling analysis model
as the initial defect. Then, based on the static general module, the keywords were modified
and the force load was replaced by the displacement load for postbuckling analysis.

Table 7. Damage dimensions of different specimen models.

Specimen NS00 NS80 PS80

Diameter of damage of outer film/mm 0 70 46
Diameter of outer skin damage/mm 0 34 18
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4.3. Results and Discussion
4.3.1. Effect of Lightning Damage Degree on Stability

The linear buckling analysis results of different specimens are shown in Figure 16,
which mainly includes the first-order buckling mode (FBM) and the second-order buckling
mode (SBM) of the specimens. According to the description in relevant literature [42],
the compression instability modes of honeycomb sandwich panel were divided into three
types, namely, global instability, mixed instability and local instability. It can be clearly
seen from the figure that the first two modes of buckling of the NS00 specimen were global
stable, while the first two modes of buckling of the PS80 specimen and the NS80 specimen
were local instable.
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Figure 16. Compressive buckling modes of specimens: (a) first order buckling mode of the NS00
specimen; (b) first order buckling mode of the PS80 specimen; (c) first order buckling mode of the
NS80 specimen; (d) second order buckling mode of the NS00 specimen; (e) second order buckling
mode of the PS80 specimen; (f) second order buckling mode of the NS80 specimen.

4.3.2. Effect of Damage Size and Extent on Residual Strength

To predict the residual compressive strength of the honeycomb sandwich specimen
after a lightning strike, it was necessary to introduce the initial geometric defects into the
nonlinear postbuckling analysis of the specimen. The node displacement data of FBM was
introduced into the nonlinear buckling model as the initial defect for failure analysis, and
then the failure loads and failure modes of specimens were obtained by nonlinear buckling
analysis. The load displacement curves of the NS00 specimen, the PS80 specimen and the
NS80 specimen obtained through numerical simulation are shown in Figure 17. As can be
seen from the curves in the figure, the residual compressive strength of the PS80 specimen
is not significantly different from that of NS00, while the residual compressive strength of
the NS80 specimen decreased significantly.
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Figure 17. Simulated load-displacement curve of specimen.

The failure load calculated by nonlinear buckling analysis was compared with the test
value, and the results are shown in Table 8. It can be seen from the data in the table that
the relative error between numerical simulation data and test data of all specimens was
within 20%. These relative error data indicate that the finite element model can effectively
predict the residual strength of honeycomb sandwich panel after a lightning strike to a
certain extent.

Table 8. Residual strength data of specimens.

Specimen NP00 P80 NP80

Test value/kN 96.05 83.04 63.44
Prediction value/kN 88.86 75.57 56.96

Relative error −7.49% −8.90% −10.21%

In the compression process, the outer skin was the main load-bearing structure of
the honeycomb sandwich panel, and the failure mainly occurred on this side, while the
inner skin side usually appeared buckling instability. According to the nonlinear buckling
analysis results of the specimen, it was found that there was no obvious damage on the
adhesive film, which was relatively consistent with the test results; so only the damage of
the honeycomb core and skin was analyzed here.

The skin damage distribution of the NS00, PS80 and NS80 specimens is shown in
Figures 18–20, respectively. The red part represents the damaged element, while the blue
part represents the undamaged element, respectively. According to the two-dimensional
Hashin criterion mentioned above, the skin damage types can be mainly divided into four
categories: fiber tensile damage (FTD), fiber compression damage (FCD), matrix tensile
damage (MTD) and matrix compression damage (MCD).

It can be seen from Figure 18 that under compression loading, skin damage of the NS00
specimen was mainly distributed in the chamfering zone of the specimen. Skin damage
distribution of the PS80 specimen in Figure 19 is similar to that of the NS00 specimen. Skin
damage of the NS80 specimen in Figure 20 is mainly distributed around the lightning strike
damage in the middle of the skin. The main reason may be that the lightning damage zone
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in the middle of the skin of the NS80 specimen is too large, and the stress concentration is
significant, which leads to damage before the damage in the chamfer zone occurs.
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The damage distribution of the honeycomb core of the NS00, PS80 and NS80 specimens
is shown in Figure 21. Similar to the skin damage, the red part represents the damaged
element, and the blue part represents the undamaged element.

It can be seen from Figure 21 that the damage of the honeycomb core evolves with the
increase of compression load. The honeycomb core of NS00 specimen is first damaged in
the chamfering zone, and then the damage zone gradually expands from the chamfering
zone to the middle, until the structure is finally damaged. The damage distribution of the
PS80 specimen is similar to that of NS00 specimen, but damage appeases around the central
lightning damage zone in the compression process, which may be caused by the stress
concentration caused by the local depression of the panel in the lightning damage zone.
Obviously different from these two specimens, for the NS80 specimen, the honeycomb
core is first damaged around the lightning damage on the sides and in the middle. Then,
the chamfering zone on the upper end of the honeycomb core is also damaged. With the
increase of compression load, the honeycomb core is damaged from the middle to both
sides until the structure finally fails.
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5. Conclusions

In this study, honeycomb sandwich panels with and without a CNTF protection layer
were fabricated. Then simulated lightning strike tests were performed on these two types
of specimens. Based on this simulated lightning strike test, honeycomb sandwich panel
specimens containing different degrees of lightning damage were obtained. Then the
residual compressive strength and failure modes of honeycomb sandwich structure after
a lightning strike were experimentally studied and analyzed. Finally, the failure modes
and damage distribution of the honeycomb sandwich panels after lightning damage were
studied by the finite element method. The simulation results were compared with the
experimental results, and the following conclusions were drawn:

(1) Lightning strike damage can seriously reduce the bearing capacity of honeycomb
sandwich composite structure, while the surface CNTF can reduce lightning damage
to a certain extent and improve the residual bearing capacity of composite after
lightning strike.
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(2) The compression failure modes of honeycomb sandwich panel with closed edge were
dependent on the size and extent of the lightning damage. When the lightning damage
was small, the compressive failure modes of the specimen were similar to those of
the undamaged specimen, and the failure mainly occurred in the chamfering zone of
the panel. When the lightning damage was large, the failure of the specimen mainly
occurred in the lightning damage zone of the panel.

(3) When lightning was strong enough to completely penetrate the surface skin of the
honeycomb sandwich structure, the lightning damage on the skin can be simplified
to hole damage with appropriate diameter. Under the proper failure criterion and
stiffness degradation rule, the residual strength calculated by progressive damage
analysis agrees with the residual strength obtained by testing, which proves the
effectiveness of the simulation method to a certain extent.
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