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Abstract: We investigate the topological types and bifurcations of periodic orbits in the gravitational
field of irregular bodies by the well-known two parameter analysis method. Results show that
the topological types of periodic orbits are determined by the locations of these two parameters
and that the bifurcation types correspond to their variation paths in the plane. Several new paths
corresponding to doubling period bifurcations, tangent bifurcations and Neimark–Sacker bifurcations
are discovered. Then, applications in detecting bifurcations of periodic orbits near asteroids 101955
Bennu and 2867 Steins are presented. It is found that tangent bifurcations may occur three times when
continuing the vertical orbits near the equilibrium points of 101955 Bennu. The continuation stops as
the Jacobi energy reaches a local maximum. However, while continuing the vertical orbits near the
equilibrium points of 2867 Steins, the tangent bifurcation and pseudo period-doubling bifurcation
occur. The continuation can always go on, and the orbit ultimately becomes nearly circular.

Keywords: topological types; bifurcations; periodic orbits; asteroids

1. Introduction

Exploring small bodies such as asteroids and comets has become a hot area since
the first flyby mission of (951) Gaspra by the Galileo spacecraft in 1991 [1]. The intrinsic
complexities of the dynamics in the gravitational field of rotating irregularly shaped bodies
have captured the attention of many researchers over the past few decades. Therefore, there
exists vast literature focused on this topic. For example, Scheeres et al. [2] investigated orbits
near 4769 Castalia; a polyhedron model was proposed to calculate the gravity potential
effectively by Werner and Scheeres [3]; the dynamical environments and orbital stability
near (101955) Bennu, (21) Lutetia, (87) Sylvia system and (90) Antiope, (1333) Cevenola
were discussed by Chanut et al. [4], Aljbaae et al. [5–7] and Jiang [8].

Equilibrium points and periodic orbits play a crucial role in understanding the phase
space structure of complex dynamics either from the point of view of mathematics or
engineering practice. Generally, equilibrium points and periodic orbits are the simplest
particular solutions that are of most interest. Moreover, they are closely related to each
other. On the one hand, the existence of periodic orbits near equilibrium points with purely
imaginary eigenvalues in Hamiltonian systems can be derived by the Lyapunov center
theorem. On the other hand, periodic orbits are equivalent to the equilibrium points of
another system in Floquet theory. Many studies focused on orbits near equilibrium points
have been conducted; see, for example, [9–13]. Since Poincare, many great mathematicians
have made efforts to find these particular solutions and investigate related bifurcations.
Furthermore, periodic orbits and their associated manifolds have been widely employed
in designing spacecraft orbits. For example, applications of Lyapunov, axial and vertical
orbits in the Earth–Moon system were computated by Dichmann et al. [14], Parker and
Lo [15] made use of planar periodic orbits and their invariant manifolds in the circular
restricted three-body problem to design transfer orbits, Jiang et al. [16] investigated the

Aerospace 2022, 9, 151. https://doi.org/10.3390/aerospace9030151 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9030151
https://doi.org/10.3390/aerospace9030151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0001-8377-3591
https://doi.org/10.3390/aerospace9030151
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9030151?type=check_update&version=2


Aerospace 2022, 9, 151 2 of 14

stable orbits of spacecraft near small bodies and Lian [17] studied the dynamics and control
of a tetrahedral spacecraft formation near the Sun–Earth L2 point.

Periodic orbits in the potential field of irregular small bodies have been investigated
using various models. Romanov and Doedel [11] presented computational results for
the families of periodic orbits that emanate from the five libration points of the homoge-
neous gravitating triaxial ellipsoid rotating around its small axis, as well as for various
secondary bifurcating families. Based on a massive straight segment model, equilibrium
points, periodic orbits and their associated invariant manifolds of elongated asteroids, such
as 433 Eros, have been calculated by Eros and Elipe [18] and Sanchez and Guedan [19].
Liu et al. [9] discussed periodic orbits and heteroclinic connections in the gravity field of a
rotating homogeneous cube. Shang et al. [20,21] investigated the periodic motion in dou-
bly synchronous binary systems and of non-principle-axis asteroids. Yu and Baoyin [22]
proposed an effective hierarchical searching method to find periodic orbits around small
bodies. A base category due to the multiplicity of multiplier +1 of any periodic orbit was
introduced and the natural families of periodic orbits around asteroid 243 Ida were con-
structed by Yu et al. [23]. Periodic orbits near equilibria in the gravity field were classified
into several topological types by Jiang et al. [24]. Later, Jiang et al. [25] gave the complete
topological classifications of periodic orbits. Additionally, four kinds of bifurcation types,
period-doubling bifurcations, Neimark–Sacker bifurcations, real saddle bifurcations and
tangent bifurcations, were also discussed there with varying parameters. Lan et al. [26]
conducted calculations to study the periodic orbits near the primary in the binary system
243 Ida and motions of the moonlet. Multiple bifurcations were found during the con-
tinuation of the retrograde near-circular orbits near the equatorial plane. Kang et al. [27]
discovered the convergence of a periodic orbit family near asteroids during continuation
under proper conditions. Zeng and Alfriend [28] provided a global searching method to
find periodic orbits around the dipole model based on the Poincare section.

To obtain a global picture of the topological structures and bifurcation types of periodic
orbits near asteroids, we use the “two parameter analysis” method. This method is mainly
based on the symplectic property of monodromy matrix. To be more precise, the topological
types and bifurcations can be determined by calculating only two parameters, the traces of
the monodromy matrix and its square matrix. A similar description of the “two parameter
analysis” method can be seen in Scheeres [29]. As far as we can see, Broucke [30] applied this
method to investigate the bifurcations of periodic orbits in the elliptic restricted three-body
problem. Based on this method, many studies about the three-body problem have been
conducted, see, for example, Zagouras and Markellos [31], Papadakis and Zagouras [32],
Kalantonis [33], etc. Recently, Karydis et al. [34] proposed the shape continuation method to
find periodic orbits around irregular small bodies. Furthermore, the bifurcations of periodic
orbits during continuation were also studied. Generally, the bifurcations of periodic orbits
can be classified into two types. The first bifurcation type corresponds to the transition of
topological types within a periodic family. The second bifurcation type is represented by
the annihilation or generation of periodic families. In this work, we mainly focus on the
first type.

This paper is organized as follows. Section 2 introduces the equations of motion in
Hamiltonian form. In Section 3, we briefly review some basic facts of periodic orbits and
the associated submanifolds. Then, the symplecity of the monodromy matrix will be fully
used to obtain the numerical criterion. Section 4 describes a detailed application of this
criterion to periodic orbits around asteroids 101955 Bennu and 2867 Steins. Bifurcation
types and topological transitions during the numerical continuation of periodic orbits are
investigated.

2. Dynamic Equations and Basic Notations

Throughout this paper, we assume the small body rotates uniformly about its maxi-
mum inertia axis. The minimum, intermediate and maximum inertia axes correspond to
the x-, y- and z-axes of the body-fixed frame. Let us introduce r = [x, y, z]T as the position
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of a massless particle relative to the mass center of the small body, ω as the rotational
angular rate of the small body and U is the gravitational potential of the particle, which
can be calculated by the polyhedron model Werner and Scheeres [3]. Then, the generalized
momentum is p = ṙ +ω× r, and the generalized position is q = r. Moreover, the Hamilton
function is

H = −|p|
2

2
+ U(q) + p · q̇. (1)

In the body-fixed frame of the small body, the symplectic form of the motion equation
can be expressed as [35]:

ż = J∇H(z), (2)

where z = [p, q]T , J =
(

0 −I
I 0

)
is the standard 6× 6 symplectic matrix, I is the standard

3× 3 unit matrix and ∇H = [∂H
∂p , ∂H

∂q ]
Tis the gradient of the Hamilton function. One can see

that H is a conserved quantity for system (2). In fact, H is equal to the Jacobi energy of the
particle, i.e.,

H =
|ṙ|2
2

+ V(r), (3)

where ω is the norm of angular velocity ω, and V(r) = U(r)− ω2(x2+y2)
2 is the effective

potential. If we take φt(x) as the flow associated with system (2), the function H of the
particle will always be conserved by the flow φt(x).

For a given Jacobi energy C, the entire space can be divided into a forbidden region
defined by V(r) > C and an allowable defined by V(r) < C. The equilibrium points
are characterized by ∇V(r) = 0. This means that they are critical points of the effective
potential. The topological classification of equilibrium points was made in [24]. Non-
degenerate and non-resonant equilibrium points can be classified into case 1, case 2, case
3, case 4a, case 4b, and case 5 based on the distribution of eigenvalues in the complex
plane. To facilitate comparison, we list these cases in Table 1. The equilibrium points and
topological types in the potential field of 23 minor celestial bodies can be seen in [36].

Table 1. The topological correspondence relations of equilibrium points and associated periodic
orbits. Here, the equilibrium points are non-degenerate and non-resonant, and the eigenvalues are
distinct. The names of topological cases come from Jiang et al. [24,25].

Equilibrium Points Periodic Orbits Near Equilibria

Topological Cases Eigenvalues (A, B) Topological Cases

case 1 ±iγk(γk ∈ R+, k = 1, 2, 3) region VII P2
case 2 ±iγk(γk ∈ R+, k = 1, 2),±δ(δ ∈ R+) region III and V P4
case 3 ±iγ(γ ∈ R+),±δk(δk ∈ R+, k = 1, 2) region II and IV P3

case 4a ±σ± iτ(σ, τ ∈ R+),±δ(δ ∈ R+) — —
case 4b ±δk(δk ∈ R+, k = 1, 2, 3) — —
case 5 ±iγ(γ ∈ R+), ±σ± iτ(σ, τ ∈ R+) region I P1

3. Periodic Orbits and Associated Submanifolds

We take Sp(T) as the set of periodic orbits with a common period T, i.e.,

Sp(T) = {z(t)(t ∈ R) : z(t) is a solution to system (2) and satis f ies z(t + T) = z(t) f or t ∈ R}. (4)

To study the topological structure near some specific periodic orbit, the linearized
equation of the system (2) should be discussed. The variational form of this dynamic
equation can be written as

.
δz = J

∂2H(z)
∂z2 δz, (5)
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where δz is the real error vector with respect to a nominal periodic orbit. Based on the
theory of ordinary differential equations, there exists a time-varying 6× 6 matrix M(t)
such that

δz(t) = M(t)δz0, (6)

where δz0 is the initial error vector. This matrix M(t) is called the state transition matrix,
which can be calculated by [29]:

M(t) =
∫ t

0
J

∂2H(z(s))
∂z2 ds. (7)

In particular, M(T) is also called the monodromy matrix, which measures the effects of
initial errors on the final state after a period. Specifically, the monodromy matrix provides
a linear approximation about the behavior of a periodic orbit with period T in terms of the
time-T flow φT(z) from point z0, namely

φT(z) = z0 + M(T)(z− z0) + O(||z− z0||2). (8)

For simplicity, we denote M(T) as M in the following subsections.

3.1. The Eigenstructure of the Monodromy Matrix and Invariant Manifolds

Local invariant manifolds associated with periodic orbits are widely used in low
energy transfers designing between libration point orbits. According to the Floquet theory,
the stability and the local invariant manifolds of a reference periodic orbit are embedded
into the monodromy matrix M. Namely, they are determined by the eigenstructure of
the periodic orbit. The eigenvalues of the monodromy matrix are called characteristic
multipliers. Specifically, +1 must be a characteristic multiplier of M with a multiplicity of
at least 2. The first eigenvector corresponds to a translation invariance in the start time,
while the second corresponds to the gradient of the Jacobi energy. For an autonomous
Hamiltonian system, it is well-known that the monodromy matrix M has some beautiful
properties [29]:

(i) It is symplectic, i.e., it satisfies the matrix identity:

MT JM = J. (9)

(ii) The characteristic polynomial p(λ) satisfies:

p(λ) = λ6 p(λ−1). (10)

(iii) Therefore, if λ is an eigenvalue, then λ−1, λ̄, λ̄−1 are eigenvalues with the same
multiplicity. Moreover, we have det(M) = 1.

Based on the above properties, the spectrum of the monodromy matrix can be de-
noted as

Spec M =
{

1, 1, λ1
±1, λ2

±1
}

.

In the following subsections, we assume λk+2 = λ−1
k for k = 1, 2, and λ5 = λ6 = 1. Let

us take Ej = {uj : Muj = λjuj} as the eigenspace associated with characteristic multiplier
λj. Then, for a periodic orbit, the asymptotically stable space can be defined as

Es(p) = span{uj : |λj| < 1}, (11)

where uj is the associated eigenvector of eigenvalue λj. The corresponding asymptotically
stable submanifold Ws(p) is defined as the submanifold with Es(p) as the tangent space.
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More precisely, the asymptotically stable space Es(p) can be decomposed into the direct
sum of the following two subspaces

Ēs(p) = span{uj : |λj| < 1, Im(λj) = 0}, Ẽs(p) = span{uj : |λj| < 1, Im(λj) 6= 0},

i.e., Es(p) = Ēs(p)⊕ Ẽs(p). The unstable space Eu(p) is defined as

Eu(p) = span{uj : |λj| > 1}

and the corresponding unstable submanifold Wu(p) is a submanifold with Eu(p) as the
subspace. The collisional subspace

Er(p) = span{uj : λj = λk f or some k 6= j}.

The collisional submanifold is tangent to the collisional subspace.

3.2. The Traces of the Monodromy Matrix and Its Square Matrix

Based on the symplectic property of the monodromy matrix (property (i)–(iii) in the
former subsection), the characteristic polynomial p(λ) can be supposed as

p(λ) = λ6 − Aλ5 + Bλ4 − Cλ3 + Bλ2 − Aλ + 1, (12)

where A, B, C are real numbers to be determined. According to the relation between the
roots and coefficients, we conclude that A, B can be calculated as:

A = trM, B =
1
2
{(trM)2 − tr(M2)}, (13)

where the symbol tr represents the trace of a matrix. Moreover, since 1 is an eigenvalue of
M with multiplicity of at least 2, we can obtain that the other four eigenvalues satisfy

λ4 + (2− A)λ3 + (B− 2A + 3)λ2 + (2− A)λ + 1 = 0. (14)

For the convenience of discussing the roots of Equation (14), we take a new variable
ρ = λ + λ−1. After dividing this equation by λ2, we reduce it into a two-degree equation
of ρ:

h(ρ) = ρ2 + (2− A)ρ + B− 2A + 1 = 0. (15)

Note that the classic stability index ν associated with each pair of eigenvalues are
defined by [29]:

ν =
6

∑
i=1
|λi| = 2 + |λ1|+ |λ2|+ |λ1|−1 + |λ2|−1 ≥ 6, (16)

where λi (i = 1, 2, · · · 6) are characteristic multipliers of M, | · | represents the norm of a real
or complex number. The periodic orbit is stable if and only if ν = 6. However, the variable
ρ here is different from the stability index. We can see that the variable ρ satisfies the
second-degree Equation (15) with parameters A and B. Denote ρk = λk + λ−1

k , (k = 1, 2).
We can conclude that the parameters ρi must belong to the following kinds. (i) Elliptic:
|ρk| < 2, ρk ∈ R. This implies that λk = eiθk for some θk ∈ R. (ii) Parabolic: ρk = ±2. This
implies that λk = ±1. (iii) Hyperbolic: |ρk| > 2, ρk ∈ R. This implies that λk 6= ±1, λk ∈ R.
(iv) Complex unstable: ρk ∈ C \R. This implies that λk ∈ C \R, |λk| 6= 1.

Therefore, the distribution of characteristic roots in the complex plane is determined
by the roots of Equation (15). Let us introduce the discriminant as

∆ = (2− A)2 − 4(B− 2A + 1) = A2 + 4A− 4B. (17)
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Then, we discuss the distribution of characteristic roots as follows.
Case I: If ∆ < 0, i.e., B > A2

4 + A, there exists a pair of conjugate complex roots ρ1 and ρ2.
Therefore, ρ1, ρ2 are complex unstable and the corresponding characteristic multipliers are
of form r±1

k e±iθk , where 0 < rk < 1, 0 < θk < π, k = 1, 2.

Case II: If ∆ = 0, i.e., B = A2

4 + A, there exist two equal roots, namely ρ1 = ρ2 = A−2
2 .

The following cases can happen for different values of A and B.

(a) If A > 6, ρ1 and ρ2 are hyperbolic and the corresponding characteristic multipliers
are of form σ, σ−1 (0 < σ < 1 is of multiplicity 2);

(b) If A = 6, ρ1 = ρ2 = 2 are parabolic and the corresponding characteristic multipliers
are 1(multiplicity 6);

(c) If −2 < A < 6, ρ1 and ρ2 are elliptic and the characteristic multipliers are of form e±iθ

(0 < θ < π multiplicity 2), 1(multiplicity 2);
(d) If A = −2, ρ1 = ρ2 = −2 are parabolic and the characteristic multipliers are of form

−1(multiplicity 4), 1(multiplicity 2);
(e) If A < −2, ρ1 and ρ2 are hyperbolic and the characteristic multipliers are of form

λ, λ−1(multiplicity 2, −1 < λ < 0), 1(multiplicity 2).

Case III: If ∆ > 0, i.e., B < A2

4 + A, there exist two unequal real roots ρ1, ρ2. The distribution
of them with respect to −2, 2 can be discussed as follows.

(a) Note that 2 < ρ1 < ρ2 holds if and only if A > 6, 4A− 9 < B < A2

4 + A, and the other
four multipliers are of the form α1, α2, α−1

1 , α−1
2 (α1 6= α2, 0 < αk < 1, k = 1, 2).

(b) Similarly, −2 < ρ1 < 2 < ρ2 holds if and only if −1 < B < 4A− 9, and the other four
multipliers are of the form α1, α−1

1 , e±iθ(0 < α1 < 1, 0 < θ < π).
(c) The inequality ρ1 < −2 < 2 < ρ2 holds if and only if B < −1, B < 4A− 9, and the

other four multipliers are of the form α1, α1
−1, α2, α2

−1(−1 < α1 < 0 < α2 < 1).
(d) Note that ρ1 < −2 < ρ2 < 2 holds if and only if 4A− 9 < B < −1, and the other four

multipliers are of the form e±iθ , α1, α−1
1 (−1 < α1 < 0, 0 < θ < π).

(e) The inequality −2 < ρ1 < ρ2 < 2 holds if and only if B > −1, B > 4A− 9,−2 < A <

6, and the other four multipliers are of the form e±iθ1 , e±iθ2(θ1 6= θ2, 0 < θk < π, k =
1, 2).

(f) The inequality ρ1 < ρ2 < −2 holds if and only if B > −1, A < −2, and the other four
multipliers are of the form α1, α1

−1, α2, α2
−1(−1 < α1 < α2 < 0).

(g) When either ρ1 or ρ2 is equal to −2 or 2, there must exist at least two characteristic
multipliers equal to −1 or +1. This case can be analyzed similarly. Here, we omit
the details.

3.3. The Topological Types and Bifurcations of Periodic Orbits in (A, B) Plane

Based on the above discussions, we can obtain three critical curves in the parameter
(A, B) plane:

(a) B = A2

4 + A, which corresponds to a parabola in the (A, B) plane;
(b) B = 4A− 9, which is a straight line tangent to the parabola in (a) at point Q(6, 15);
(c) B = −1, which is a horizontal line tangent to the parabola in (a) at its vertex P(−2,−1).

Furthermore, the distribution of characteristic multipliers in different regions of the
parameter plane (A, B) is plotted in Figure 1. It is noteworthy that a similar picture can
be seen in Scheeres [29] and Karydis et al. [34]. However, the parameters plotted in the
figures are different. The precise numerical criterion of 13 topological types of periodic
orbits is presented in Table 2. Here, we use the same notations of topological types as those
in the topological classification work of Jiang et al. [25]. One can see that the (A, B) plane
is divided into seven domains by these critical curves, which correspond to case P1, case
P2, case P3 and case P4. For the convenience of description, the six regions are marked
by I–VI from the upper parabola counter-clockwise, while the unique bounded domain
with vertexes P, Q and R is labeled region VII in Figure 2. From Figure 1, we can conclude
that the stability index ν = 6 only when (A, B) belongs to the green region VII in Figure 2.
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Therefore, a periodic orbit is stable if and only if the corresponding parameter (A, B) lies in
region VII. Naturally, we call region VII the stable domain for periodic motions.

When the parameters (A, B) move across common boundaries of the seven regions,
bifurcations happen; when (A, B) just touches common boundaries of the seven regions
(but does not come across the boundaries), pseudo bifurcations occur. The specific paths
of bifurcations can be seen directly from the variation curves of parameters (A, B) on the
plane. Possible bifurcation types as parameters (A, B) vary from one region to another are
listed in Table 3. Here, some new bifurcation paths can be obtained such as from region
I to point Q, then to region V; from region II to point P, then to region VII; from region I
to point P, then to region III; from region III to point R and then to region V; from IV to
point R and then to region VII; from region VI to point Q and then to region VII. From a
mathematical perspective, these bifurcation types indeed exist. However, it remains to be
verified whether a corresponding process exists during numerical continuation of periodic
orbits in the potential field of small bodies. These bifurcation paths are shown in Table 3.

Figure 1. Topological types of periodic orbits in the plane of parameters: the green point in each
subfigure represents a multiplier, and the number near the point is its multiplicity.

Figure 2. The distribution of seven regions in the plane of parameters (A, B).



Aerospace 2022, 9, 151 8 of 14

For periodic orbits near equilibrium points, Jiang [37] discussed the correspondence
relations of topological types of equilibrium points and periodic orbits near equilibrium
points. The topological plot in the (A, B) plane, i.e., Figure 1, can give us some new
insights. Table 1 illustrates these relations. For equilibrium points belonging to case 1,
three periodic orbit families exist, and the corresponding characteristic multipliers are
1, 1, e±iθk (θk ∈ (0, π), k = 1, 2). Thus, the corresponding (A, B) lies in the stable region,
and these periodic orbits are of case P2. For equilibrium points belonging to case 2,
two periodic orbit families exist, and the corresponding characteristic multipliers are 1, 1,
α±1(α ∈ (0, 1)), e±iθ(θ ∈ (0, π)). The corresponding (A, B) lies in region III and V, and these
orbits are of case P4. For equilibrium points belonging to case 3, one periodic orbit family
exists, and the corresponding characteristic multipliers are 1, 1, α±1

k (|αk| ∈ (0, 1), k = 1, 2).
Therefore, the corresponding (A, B) lies in region II and IV, and these orbits are of case
P3. For equilibrium points belonging to case 5, one periodic orbit family exists, and
the corresponding characteristic multipliers are 1, 1, α±1(|α| ∈ (0, 1)), r±1

k e±iθk (|rk| ∈
(0, 1), θk ∈ (0, π), k = 1, 2). The corresponding (A, B) lies in region I, and these orbits are of
case P1. Therefore, the topological information of equilibrium points may illustrate those
of periodic orbits near them and vice versa. It is noteworthy that the periodic orbits are
very sensitive to parameters near the boundaries of these domains.

Table 2. Topological classifications of periodic orbits by the locations of parameters (A, B), the
13 topological cases: P1–P7, PPD1–PPD4, PDRS1, PK1 [25].

Ranges of (A, B) Locations of (A, B) Characteristic Multipliers Topological Cases

B > A2

4 + A region I 1(multiplicity 2), r±1e±iθ(0 < r < 1, 0 < θ < π) P1

B < A2

4 + A, A < −2;
4A− 9 < B < A2

4 + A, A > 6;
B < 4A− 9, B < −1

region II, IV and VI 1(multiplicity 2), α±1, β±1(0 < |α| < 1, 0 < |β| < 1, α 6= β) P3

(B− 4A + 9)(B + 1) < 0 region III and V 1(multiplicity 2), e±iθ(0 < θ < π), α±1(0 < |α| < 1) P4

max{4A− 9,−1} < B < A2

4 + A region VII 1(multiplicity2), e±iθk (0 < θk < π, k = 1, 2, θ1 6= θ2) P2

B = A2

4 + A, |A− 2 | > 4 common boundaries of
region I and II, VI and I 1(multiplicity 2), α(multiplicity 2, 0 < |α| < 1), α−1(multiplicity 2) PDRS1

B = −1, |A| > 2 common boundaries of
region II and III, IV and V 1(multiplicity 2), −1(multiplicity 2), α±1(0 < |α| < 1) PPD4

B = 4A− 9, |A− 4| > 2 common boundary of
region III and IV, V and VI 1(multiplicity 4), α±1(0 < |α| < 1) P6

B = A2

4 + A, |A− 4| < 2 common boundary of
region VII and I 1(multiplicity 2), eiθ(multiplicity 2, 0 < θ < π), e−iθ(multiplicity 2) PK1

B = −1, |A| < 2 common boundary of
region VII and III 1(multiplicity 2), −1(multiplicity 2), e±iθ(0 < θ < π) PPD3

B = 4A− 9, |A− 4| < 2 common boundary of
region VII and V 1(multiplicity 4), e±iθ(0 < θ < π) P5

B = −1, A = −2 point P (−2,−1) 1(multiplicity 2), −1(multiplicity 4) PPD2

B = −1, A = 2 point R (2,−1) 1(multiplicity 4), −1(multiplicity 2) PPD1

B = 15, A = 6 point Q (6, 15) 1(multiplicity 6) P7
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Table 3. Some bifurcation paths of periodic orbits as parameters (A, B) vary.

Variation Paths of Parameters (A, B) Bifurcation Types

region I—boundary of I and II—region II,
region VI—boundary of VI and I—region I real saddle bifurcation

region II—boundary of II and III—region III,
region IV—boundary of IV and V—region V,

region VII—point P—region II,
region VII—boundary of VII and III—region III,

region I—point P—region III doubling period bifurcation

region III—boundary of III and IV—region IV,
region V—boundary of V and VI—region VI,

region VII—boundary of VII and V—region V,
region VII—point Q—region VI,

region I—point Q—region V tangent bifurcation

region VII—boundary of VII and I—region I Neimark–Sacker bifurcation

region III—point R—region V,
region VII—point R—region IV doubling period bifurcation and tangent bifurcation

4. Applications to Periodic Orbits in the Gravitational Field of Irregular Bodies

As in any other Hamiltonian system, periodic orbits in the potential field of irregular
bodies are not isolated but embedded in families. In this section, we will investigate
the bifurcation types of periodic orbits of asteroids 101955 Bennu and 2867 Steins during
continuation in a family based on previous theory. The outline can be sketched below:

(i) A hierarchical gridding arithmetic by Yu and Baoyin [22] was applied here for a global
search of periodic orbits.

(ii) The periodic orbits searched in the former step can be numerically continued into a
family by varying the Jacobi energy in appropriate step length. The continuation is
conducted in the gradient direction of the energy integral in the phase space.
Generally, the continuation process may stop in three cases: the curve of the orbit
intersects with the surface of the body, the Jacobi energy reaches a local minimum
or maximum and the orbit converges into an equilibrium point. However, it is also
possible that the continuation of a periodic orbit can always be conducted. According
to Kang et al. [27], in this case, the periodic orbit will converge to a nearly circular
periodic orbit in the equatorial plane with the multiplicity of an integer, and the
periodic ratio will converge to that integer.

(iii) We integrate Equation (5) to find the monodromy matrix for each periodic orbit in a
common family. Then, parameters A and B can be easily calculated and plotted in
the plane. Thus, the topological types and bifurcations of these orbits can be clearly
obtained from the figure.

4.1. Applications to 101955 Bennu

Here, we use asteroid 101955 Bennu to explain the presented theory. Nolan et al. [38]
pointed out that the mean diameter is about 492 ± 20 m. In addition, its density is
0.95 g· cm−3 and the rotation period is 4.288 h. For convenience of calculation, the unit
of length here is set to be 566 m, and the time unit is taken as its period. The positions
and topological types of relative equilibrium points in the potential field of Bennu were
calculated by Wang et al. [36]. According to their results, there exist nine equilibria, namely
E1–E9, among which eight equilibria E1–E8 lie outside the asteroid. Moreover, E1, E3, E5,
E7 are of topological case 2, while equilibria E2, E4, E6, E8 are of case 5. Lyapunov center
theorem guarantees that there exist at least two family periodic orbits around equilibria E1,
E3, E5, E7.

In this subsection, we analyze the bifurcations of periodic orbit family emanating from
equilibrium point E1. To decrease the possibility of touching the surface of Bennu, we will
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emphasize on the vertical orbit family V1 around E1. This periodic orbit family is plotted
in Figure 3a and the initial conditions at the beginning of continuation can be obtained
from Table 4. One can see that the vertical family near E1 starts with the shape of a small
circle; then, the circle becomes increasingly larger and ultimately changes into an orbit with
the shape of a figure eight. Figure 3b shows the variation paths in the parameters A and
B in the plane. We obtain that (A, B) starts from the region V and enters region VI in a
critical case which corresponds to point B1 in the subfigure. During this process, a pair of
multipliers on the unit circle collide at point +1, and then two real multipliers are generated
from +1. This is a tangent bifurcation. As the Jacobi energy continues to increase, a process
opposite to the former happens, which corresponds to point B2 in the subfigure. This is also
a tangent bifurcation. Similarly, at a critical situation, a tangent bifurcation happens which
corresponds to point B3 in the subfigure. Therefore, we conclude that during continuation
from periodic orbit, the geometric shape of the orbit changes from nearly circular to figure
eight and the tangent bifurcations happen three times. From Figure 3c,d, we can observe
that the period ratio lies in the interval [0.8, 0.99] and the stability index decreases rapidly
at the beginning, then increases a little and, finally, decreases very slowly. During this, no
simple resonances occur. This implies the instability of these periodic orbits are becoming
weaker and weaker in some sense. Here, the continuation stops when the Jacobi energy
reaches a local maximum.

(a) (b)

(c) (d)

Figure 3. Periodic orbits during the continuation process of the vertical orbits family near 101955
Bennu: (a) sample of orbits in the rotating coordinate, (b) variation paths of (A, B) in the plane, (c) the
variation of period ratios during continuation, (d) the variation of stability index with respect to
the Jacobi energy. The unit for the Jacobi energy is m2· s−2. The three red points marked in (c,d)
correspond to bifurcations and their Jacobi constants are −0.0204, −0.0187, −0.0133.

Another periodic orbit family V2 with period ratio near 2:1 resonance is presented in
Figure 4. One can also obtain the initial conditions from Table 4. The sample of orbits are
shown in Figure 4a. Figure 4b illustrates that (A, B) starts from the region VI and moves
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toward point Q and finally enters region VII in the plane. This means that the topological
types of orbits vary from case P3 to P7 and finally to case P2. Namely, two pairs of real
multipliers collide at +1 in some critical case. Therefore, the tangent bifurcation happens.
From Figure 4c,d, we can observe the variation of period ratios and stability index. It implies
that when 2:1 resonance happens, the Jacobi energy is less than −0.005 m2· s−2 and the
corresponding orbit is unstable. However, when the Jacobi energy is about 0.0065 m2· s−2,
the orbit is stable.

(a) (b)

(c) (d)

Figure 4. Periodic orbits during the continuation process of the 2:1 resonant family near 101955
Bennu: (a) sample of orbits in the rotating coordinate, (b) variation paths of (A, B) in the plane, (c) the
variation of period ratios during continuation, (d) the variation of stability index with respect to the
Jacobi energy. The unit for the Jacobi energy is m2· s−2.

4.2. Applications to 2867 Steins

According to OSIRIS observations [39,40], 2867 Steins is an E-type asteroid with a bulk
density of 1.8 g· cm−3 and a rotation period of 6.04679 h. In this subsection, the length
unit for motions in the potential field of 2867 Steins is defined as 6.80653 km and the time
unit is 6.04679 h. We choose the vertical periodic orbit with initial conditions in Table 4 to
start our continuation. First, numerical continuation in the direction of energy decreasing
is conducted. Computation results show that the orbit converges to a point located at
(0.8844,−0.1143, 0.0028). From the theory of dynamical systems, this point must be an
equilibrium point. During this process, the path of (A, B) is included in the interior of
region V and no bifurcation occurs. Therefore, we can infer that the equilibrium point is of
case 2. In fact, by the results of Wang et al. [36], we can conclude that this point is exactly
E1, namely the equilibrium point on the +x axis.

In the following, we analyze the continuation conducted in the direction of energy
increasing. Based on the variation paths of (A, B) in the plane in Figure 5b, the continuation
process can be divided into three stages. During the first stage, the Jacobi energy is less
than 0.316 m2· s−2. (A, B) starts from region V, and then transits the common boundary of
region V and VI and enters region VI. Then, (A, B) moves toward point Q in region VI. In a
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critical case, (A, B) reaches the point Q. During the second stage, the Jacobi energy is less
than 3.12 m2· s−2 and (A, B) moves toward point P in region VII. After that, (A, B) reaches
point P. In stage 3, (A, B) leaves point P and moves along the parabola part PQ. Therefore,
a tangent bifurcation happens when (A, B) is located at point Q or the common boundary
of region V and VI. The topological types of periodic orbits transition from case P4, to case
P3, to P7 and then to P2. Moreover, a pseudo doubling period bifurcation happens when
they are located at point P. After that, the amplitudes of the periodic orbits on the z-axis
decrease, and finally they change into a family of nearly circular orbits. Figure 5c shows
that a 3:2 resonance happens and that the corresponding circular orbit is stable. Figure 5d
presents the variations of stability index during continuing this period orbit family. We can
see when the Jacobi energies are positive, periodic orbits in this family are stable. Here, the
continuation process can always go on and the orbits become nearly circular.

(a) (b)

(c) (d)

Figure 5. Periodic orbits during the continuation process of the vertical orbits family near 2867
Steins: (a) sample of orbits in the rotating coordinate, (b) variation paths of (A, B) in the plane, (c) the
variation of period ratios during continuation, (d) the variation of stability index with respect to the
Jacobi energy. The unit for the Jacobi energy is m2· s−2.

Table 4. Initial conditions and periods of periodic orbit families near 101955 Bennu and 2867 Steins at
the beginning of continuation: family V1 and V2 correspond to periodic orbits in Figures 3 and 4,
family V3 corresponds to orbits in Figure 5. The data here are normalized.

Periodic Orbit Family Normalized Period Initial Position Initial Velocity

V1 0.802960550501 [0.533051574923, 0.0308716077095, 0.0164503086145] [−0.0200789540464, −0.884496167760 × 10−3, 0.649048914541 × 10−5]
V2 1.98267008174 [0.767915266773, 0.196758690452, −0.158788006313] [0.995558894975, −2.63610169181, 1.28273214591]
V3 0.951842774046 [0.866022473874, −0.0683721279246, −0.137217733554] [0.245898975991, 0.141474174266, 0.761661775539]

5. Conclusions

An investigation of topological types and bifurcations of periodic orbits from a global
point of view was conducted in this work. We used the traces of the monodromy matrix and
its square matrix as parameters in the plane to illustrate the bifurcation process. Some new
paths of bifurcations were discovered. The bifurcations of the vertical periodic orbit family
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near equilibrium points E1 of 101955 Bennu and 2867 Steins differed greatly. For 101955
Bennu, the continuation stopped when the Jacobi energy reached a local maximum and
tangent bifurcations happened three times; for 2867 Steins, the continuation would never
stop. Both tangent bifurcations and pseudo period-doubling bifurcations occurred. In addi-
tion, the orbits finally varied into nearly circular orbits on the equator. Even though the
geometric shapes of periodic orbits remained unchanged, the topological types may vary
dramatically. Furthermore, the variations in the period and stability index were studied
through numerical methods. Furthermore, the correspondence relations of equilibrium
points and associated periodic orbits can be employed as the periodic orbit converges to
a point.

Comparing these periodic orbit families, we can obtain some interesting properties.
(1) Figures 3c and 4c illustrate that when the Jacobi energy lies in some common interval,
for example, [−0.02, −0.014], there exist two different families of periodic orbits. It is
well-known that periodic orbits with a fixed value of Jacobi energy are isolated in a generic
sense. However, periodic orbits with a fixed value of Jacobi energy may not be unique. This
reflects the complexity of the geometry and topology of the energy hypersurface. It would
be nice to discuss the relations between periodic orbits with a fixed value of Jacobi energy.
(2) As continuing the periodic orbit family emanating from equilibrium points belonging to
the same topological type in the potential field of different small bodies, the continuation
process and bifurcations may be completely different. One may wonder the topological or
geometrical obstacles for the periodic orbit family in Figure 3a converging into the nearly
circular orbit.
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