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Abstract: Based on the lift-to-drag ratio of a two-dimensional trajectory correction projectile, in
this paper, a novel correction efficiency coefficient model has been proposed for the trajectory
optimization of a two-dimensional trajectory correction projectile, and research on the influence a
correction efficiency coefficient has on the flight parameters of correction trajectory is carried out.
A series of results are obtained through theoretical analysis and simulation calculations, indicating
that, the smaller the value of the correction efficiency coefficient is, the stronger the correction
ability of the projectile reserves. The trajectory and canard geometry of the correction section of
the two-dimensional trajectory correction projectile are optimized by the Gauss pseudo-spectral
method and correction efficiency coefficient, and, after taking the correction efficiency coefficient into
account, the projectile can accurately hit the target and effectively eliminate the swing phenomenon
of the projectile’s lateral trajectory. Meanwhile, a stable roll control command is obtained. When the
diameter aspect ratio of the canard is 0.4, both the flight state quantity of the optimized projectile and
the roll control command are more stable, and, when the canard shape is trapezoidal, the correction
efficiency coefficient is smaller, the result of trajectory optimization is more stable, and the stability
of the output roll control command is better. The research results of this paper can provide certain
references for both the designs of the two-dimensional trajectory correction projectile’s trajectory and
the canard geometry.

Keywords: trajectory optimization; correction efficiency coefficient; canard geometry

1. Introduction

The two-dimensional trajectory correction projectile is a guided projectile whose fuze
is changed from a conventional projectile to a two-dimensional correction component to
achieve the precise suppression of the target. It is one of the most effective ways to intel-
lectualize conventional projectiles with lower cost, less technical complexity, and higher
precision. The development of the two-dimensional trajectory correction projectile aims
to cut down the consumption of ammunition, relieve the burden of supplying, reduce
collateral damage, and, therefore, accelerate the battle. The two-dimensional trajectory
correction projectile can be divided into two parts: the projectile body and the correction
component. The correction component is composed of a fuze and two pairs of canards,
as shown in Figure 1 [1]. Among the two pairs of canards, one pair are the differential
canards, and the other are the steering canards, all of which are separated from the fuze.
The fuze rotates with and the canards counter-rotate with the projectile body. The control
force and control moment that are provided by the differential canard can correct the pro-
jectile’s trajectory both horizontally and longitudinally. The trajectory of a two-dimensional
trajectory correction projectile can be divided into two sections, namely the uncontrolled
section and the correction section, and the optimizing of the latter can directly affect the
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shooting accuracy and damage effect of the projectile. Hence, it is meaningful to establish a
reasonable optimization model and determine the optimal trajectory of the projectile in the
correction section [2].

Figure 1. Schematic diagram of two-dimensional trajectory correction projectile.

The equations of motion for a projectile are the basis of trajectory optimization. Com-
pared with conventional projectiles, the rolling of the forward body of a two-dimensional
trajectory correction projectile is increased, and its trajectory model is somewhat different
from the conventional ones. Costello M [3] first established a seven-degree-of-freedom
projectile trajectory dynamic model to calculate the trajectory of dual-spin projectiles. Wern-
ert [4] established a seven-degree-of-freedom non-linear flight dynamics equation of a
dual-spin projectile equipped with CCF and studied the balance and maneuverability of
the projectile. Sijiang Chang [5] deduced the equation of motion of the point mass and the
equation of motion around the point mass of the dual-spin projectile’s seven-degree-of-
freedom rigid body and ran the simulation analysis on the trajectory’s characteristics of the
dual-spin projectiles with fixed canards.

Currently, the research on trajectory optimization focuses mainly on two aspects:
one is the research on optimization algorithms, and the other is the optimization of tra-
jectory indicators. In the former case, there are algorithms, such as the direct shooting
method [6], pseudo-spectral method [7], and maximum /minimum principle [8], etc., and,
in recent years, some intelligent algorithms have been developed, such as the genetic
algorithm (GA) [9], particle swarm optimization (PSO) [10], and neural network algorithm
(ANN) [11], all of which have their own pros and cons and can be used to solve trajectory
optimization problems in different situations. In the latter, some researchers applied the
above optimization methods in regard to the research of the guidance section of a ballistic
correction projectile, the control section of a multistage rocket projectile, the gliding section
of a gliding guidance projectile, and the structure of the spoiler of a ballistic correction
projectile. Costello M [12] took the falling velocity as the constraint and the maximum
range as the objective function to optimize the trajectory of the guided projectile. Based on
the Gaussian pseudo-spectral method (GPM), Chaoyue Liu [13] et al. proposed a multi-
stage trajectory optimization method to optimize the multistage trajectory of a two-stage
booster rocket and obtain the feasible optimal trajectory; Qi Chen [14] et al. optimized
the multiphase trajectory of a gliding guided projectile by considering continuous and
discrete variables; Qiuping Xu [15] et al. optimized the gliding trajectory of a gliding
guided projectile by using the compose efficiency factor model; Bradley T. Burchett [16]
et al. designed a trajectory prediction method that can accurately and quickly predict the
trajectory of a rotating stable projectile with high launch height and transonic speed; based
on the maximum/minimum principle, ] Yao [17] et al. deduced the trajectory correction
optimal control strategy with minimum undershoot and minimum energy as an objective
function. Yu Wu [18] et al. proposed a hybrid PSO-GPM algorithm to deal with the reentry
trajectory optimization problem. The reasonable reentry trajectory optimization model was
obtained, and the flight safety level was improved. Guillaume Arnoult [19] et al. combined
the Kriging with ANN to optimize the structural parameters of the spoiler and optimize
the lateral distance of the trajectory correction projectile. In addition, some researchers
have proposed different optimization algorithms and optimized the trajectory of trajectory
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correction projectiles, missiles, gliders, autonomous driving vehicles, and mechanical arms.
Wei Zhou [20] et al. adopted parametric optimization methods to optimize the grid struc-
ture used in the calculation of aerodynamic parameters of trajectory correction projectiles;
Zhenbo Wang [21] et al. optimized the flight trajectory of a hypersonic glider based on
the convex optimization method; Kwon hyuck Hoon [22] et al. used second-order cone
programming (SOCP) to solve the midcourse trajectory optimization problem of the boost
gliding missile. By comparing with other optimization methods, the superiority of SOCP is
verified. Dhruv Laad [23] et al. studied a Floquet index and eigenvector estimation technol-
ogy based on the time-domain discretization of Floquet eigenvectors BVP and integrated
the method into Fourier pseudo-spectrum optimization to optimize the gliding trajectory
of the glider. Elsis. M optimized the trajectory of autopilot and a mechanical arm based on
the improved multi-tracking optimization algorithm [24], SSDA [25], and improved grey
wolf optimization algorithm [26].

To sum up, previous research results on the optimization design of trajectory mostly
focused on weapons platforms with a long range, smooth flight trajectory, and long flight
time, such as missiles, gliding guided projectiles, and gliding aircraft, and obtained better
results. The research object of this paper is the fixed canard dual-spin projectile, which
has complex flight attitude, short flight time, and fast descent speed, which make it neces-
sary to design a reasonable objective function to optimize the flight trajectory. The main
contribution of the research results of this paper is to put forward a new concept of a
correction efficiency coefficient (CEC) that can be used as the objective function to control
the two-dimensional trajectory correction projectile to hit the target, and, at the same time,
in the geometric structure design of canards. The practical significance of a CEC is that it
can not only effectively describe the correction capability of a two-dimensional trajectory
correction projectile but also reflect the influence of canard geometry on trajectory correc-
tion capability, which has not yet been mentioned in the previously published research
results. Therefore, the use of a CEC can provide an alternative method for the trajectory
optimization and geometric structure design of a two-dimensional trajectory correction
projectile. Based on the optimization of the CEC, we can obtain a stable and reasonable
flight trajectory and the optimal canard geometry, which provides a reference for improving
the performance of the projectile and engineering application.

Based on the lift-to-drag ratio, a correction efficiency coefficient (CEC) model for the
trajectory optimization of two-dimensional trajectory correction projectiles is established,
and the influence of the CEC on the trajectory’s characteristics of two-dimensional trajectory
correction projectiles is studied. Taking the CEC and impact point deviation as optimization
objects, different forms of cost functions are established, GPM is used to optimize the trajec-
tory of the two-dimensional trajectory correction projectile in the correction section, and
then a smooth trajectory and stable roll control command are obtained. Through optimized
calculations for different targets, the feasibility and effectiveness of the CEC model are
verified. Finally, the optimization calculation of two-dimensional trajectory correction
projectiles with different canard structural parameters is carried out in combination with
the CEC, the influence of structural parameters on the optimization results is discussed,
and a set of optimal structural parameters is obtained.

The present paper is organized as follows: the motion equation and CEC model of the
projectile are established in Section 2; the influence of the CEC on ballistic characteristics is
analyzed in Section 3; the optimization of the trajectory of the two-dimensional trajectory
correction projectile based on the CEC is in Section 4; the optimized design of the canard
mechanism based on the CEC is in Section 5, and the summary is in Section 6.

2. Correction Efficiency Coefficient
2.1. Equation of Motion
This section uses the rigid-body trajectory model established by S. Chang to describe

the trajectory and motion attitude of the two-dimensional trajectory correction projectile [5].
However, in a practical flight, it is difficult to obtain all the trajectory parameters that meet
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the computational demands of a rigid body trajectory, and, in the combat mission perform-

ing process of the two-dimensional trajectory correction projectile, the main focus is on the

correction of the flight trajectory. Hence, it is necessary to simplify the trajectory equation

of the seven-degree-of-freedom rigid body to meet the needs of trajectory optimization.
Assumptions for simplification:

(1) The principal axes of inertia of the forward and aft bodies are parallel to that of
the combination.

(2) The force and moment are uniformly applied to the whole projectile;

(3) The aerodynamic coupling of forces and moments acted on the projectile is neglected.

(4) Magnus force and Coriolis inertial force are ignored;

(5) The influence of wind is not considered

In trajectory-fixed coordinate system, the simplified equations of motion are [27]:

mv = —Fx —mgsin6 cos ¢

mvcoswé = Fy —mgcosf

mop = Fz + mg sin § sin ¢ 1)
X = vcosbcos

y =vsinbcosy

z=vsiny

where v is the speed; 0 is the slope angle of trajectory; ¢ is the deflection angle; m is the
mass; g is the gravitational acceleration; the x, v, and z coordinates define the position of
the projectile in the three-dimensional coordinate system; Fx, Fy, and F is the join force on
the projectile.

In the flight process, the join force of the two-dimensional trajectory correction projec-
tile consists of two parts: the aerodynamic force generated by the projectile and the control
force provided by the canard. The main aerodynamic forces of projectile are drag and lift;
the derivation process is as follows.

In the coordinate system of projectile axes, the expressions of projectile’s drag and lift

are as follows:
Ry = —QScxy(1+ kd?)
where Q is the dynamic pressure, Q = 0.500%; S is the reference area; cy, is drag force

coefficients; ¢y is lift force coefficients.
Equation (2) is expressed in the trajectory-fixed coordinate system as follows:

@

Rx, = —QScx, (1 + k6?)
Ry, = QScy cos Bsina 3)
Rz, = QScysin

where J is the angle of attack, § = /a2 4+ B2; « and B are the pitch and transverse compo-
nents of angle of attack.
The canard mainly provides the control force required for trajectory correction, and its
expression is:
Rex =0
Rey = QSen;6z cos ¢ 4
Rcz = QScn;dz sin ¢
where cy; is control force coefficient for canards; ¢; is the deflection angles; ¢ is the roll

angles of forward body.
Equation (4) is expressed in the trajectory-fixed coordinate system as follows:

Rex, = —QScn;, 0, (cos y¢ sina 4 sin ¢ cos a sin )
Rcy, = QScn,0z(cos & cos y¢ — sin a sin B sin ) (5)
Rcz, = QScn;0; cos B sin ¢
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Add Equations (3) and (5) to get the expression of join force in the flight process of the
two-dimensional trajectory correction projectile:

Fx = —QS|ex, (1 4 k%) + cn,;02(cos ¢ sina + sin ¢ cos a sin B)]
Fy = QS|cy cos Bsina 4 ¢y, 0, (cos & cos y¢ — sina sin B sin )] (6)
Fz = QS(cy sin B + cn;, 0, cos B sin 7y¢)

If & and B are small quantities, then Equation (6) is simplified to:

Fx = —QScx, (1 +kd?) — QScnsdz(a cos v¢ + Bsin y)
Fy = QScya + QScn; 02 cos s 7)
Fz = QSCy[B + QSCN‘,-(SZ sin y¢

According to the two-dimensional trajectory correction projectile angular motion
equation, the moment equilibrium condition is derived, which is used to establish the CEC
model later. Under the control of canards, the motion equation of the two-dimensional
trajectory correction projectile linear angle of attack is:

A" 4 (H —iP)A' — (M +iPT)A=C
H= kzz + by - bx - Zg;nG
p = (CiwptCawax)

- A

M=k, = 555‘% ®)
T =by —kypy

C—= [(bx + 850 ik, — iy’f) bed, + kcéz} ¢l
where A is the plural form of angle of attack; by is the plural form of air drag; by is the plural
form of lift; b, is the plural form of control force coefficient for canards; k; is the plural form
of static moment; k; is the plural form of pitch damping moment; k. is the plural form of
control moment for canards, the expressions, as shown in Table 1; ¢y, is the static moment
coefficient; cyy,, is the pitch damping moment coefficient; cyy; is the control force coefficient
for canards; A is the equatorial moment of inertia; p is the air density; L is the reference
length; C; is the moment of inertia of the forward body; C, is the moment of inertia of the
aft body; wyy is the rotational angular velocity of the forward body; way is the rotational
angular velocity of the aft body.

Table 1. The plural form of aerodynamic force.

Aerodynamic Force Expressions
Drag by = pScx/ (2m)
Lift by = pScy/ (2m)
Control force for canards be = pScy;, / (2m)
Static moment k, = pSLepy, / (2A)
Pitch damping moment kz, = pSLDcpr / (2A)
Control moment for canards ke = pSLep, /(2A)

When the projectile flight in a stable state, A” = 0, A’ = 0, and then:

1 sinf . . i
A= ~MPT Kbx + g =~ +iP — kyy — 1’)/f> bod, + kC(SZ] et )

Ignore the smaller forces and moments in Equation (9), and obtain the balance condi-
tion of the two-dimensional trajectory correction, which is:

A— _klkc(szem (10)

z
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Substituting k. and k, into Equation (10), we get:

CM;
CM,X

A=—

5,1t (11)

According to Euler’s formula:

CM-
a+dﬁ::—CMﬁ2@DSWp+iﬁnyg (12)

o

The pitch components angle of attack and transverse components angle of attack are:

_ My )
N = 7@ 7 COS ¢
T (13)
B=- %(52 sin ¢
Letcys = — % ; then, Equation (13) is expressed as:
{ K = Chs0s cos ¢ (14)
B = cy50; sin ¢

Substituting Equation (14) in Equation (7), the aerodynamic model is expressed as
follows:
Fx = —QS|cx, + 2(cxokc25 + cnyCas)d2]
Fy = QS(cycqas + CNy )0z cOs ¢ (15)
Fz = QS(cyCus + cNy )0z sin ¢

2.2. Correction Efficiency Coefficient

The lift-to-drag ratio of a two-dimensional trajectory correction projectile refers to the
ratio of the lift and drag of the projectile at the same angle of attack under the control of the
canards, which is an important parameter for evaluating the aerodynamic characteristics
and aerodynamic efficiency of the two-dimensional trajectory correction projectile.

Suppose the ratio of lift to drag of the two-dimensional trajectory correction projectile
KTY is:

Fy KFdzy
Ky =YX =_""% 16
™7 Fx T Kp+Kadl, (16)
In the same way;, the ratio of lateral force to drag is:
Kbz,
Kyy = — 2722 17
T2 = K+ Kadl, (17)

where Kr = c,cy5 + cng; Ka = 2(cx0kci5 + cNsCas); KB = cx,; both are functions of Mach
number; J,y is the vertical equivalent deflection angle, 6,y = J, cos y¢; 67, is the lateral
equivalent deflection angle, é,, = J; siny¢.

To transform Equations (16) and (17):

Kr

Kpy = ——F (18)
K

Krz = £ (19)

B KAézZ + é%

As shown in Equation (18), the denominator is the Hook function; if ,y = 5Zy =

v/ Kg /K4, the denominator has a minimum 21/K4Kg, and then Kyymax = Kp/2v/K4Kp;
in this case, the canard produces positive lift, which is beneficial to extended range of the
two-dimensional trajectory correction projectile. If 6,y < 0, then 5Zymin = —v/Kp/K4 and
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Krymin = —(Kr/2y/K4Kp), in this case resulting in negative lift that is not conducive to
extended range.

In the same way, if J,, > 0O, then J,, = 8zzmax = VKg/Ka; in this case, the canard
produces positive lateral force, which is beneficial to extended lateral distance. If 4, < 0,
then 8,,min = —v/Kg/Ka, in this case, which is not conducive to extended lateral distance.

The correction efficiency coefficient (CEC) ¢ is the ratio of the lift to drag of the two-
dimensional trajectory correction projectile to the maximum value of the lift-to-drag ratio,
as shown in Equation (17). Decompose CEC into vertical correction efficiency coefficient
and lateral correction efficiency coefficient, as shown in Equations (22) and (23).

Here, we define the sign function as follows:

. 1x<0
sign(x) = { 1x<0 (20)
) 2+/K4Kpd,
= 5, )Y A 22 21
Vertical correction efficiency coefficient (VCEC) ¢y is
. 2 Vv KaKp 5zy
= Opy) o 220 22
Lateral correction efficiency coefficient (LCEC) 7 is
. 2+/KsKpé
6z = sign(0z) (23)

Kp + KAégz

The CEC is related to the Mach number and canard’s deflection angle of the two-
dimensional trajectory correction projectile, as shown in Figure 2. Under the same Mach
number, increasing |d;| increases the absolute value of CEC. If 6, > 0, CEC > 0 canard
provides positive correction effect; if §, < 0, CEC <0, canard provides negative correction
effect; if 6, = 0, CEC = 0, the projectile has no correction effect. Under the same deflec-
tion angle, increasing the Mach number increases the absolute value of CEC. Hence, the
correction control of the projectile’s trajectory can be realized by changing the value of CEC.

0.8 0.6
0.6 |
0.4

0.2

CEC

-0.2

-04

-0.6

Figure 2. Relationship between CEC, deflection angle, and Mach.
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3. Trajectory Characteristics Based on CEC
Solving Equations (22) and (23), the canard deflection angles expressed in CEC are:

VRs(11-8)

by = VEaly =
. VKp(1+£4/1-¢%) 25)
o VKalz

When —1 < ¢ < 1, there are two canard deflection angles with CEC (i.e., .1, 6,2
(0 < 8,1 < 6, < 6,)). When ¢ goes smaller, the J,; decreases and J, increases. Consider-
ing the limitation of the canard deflection angle of the modified mechanism, the larger
equivalent canard deflection angle is discarded and the smaller equivalent canard deflection

angle is adopted.
L VK- \1-8) o
v VEKagy
, VR - y1-8) -
v VKalz

Substituting Equations (26) and (27) into the Equation (1), several sets of constant
VCEC and LCEC are selected for simulation calculations to analyze the influence of the

CEC on the trajectory characteristics. The initial parameters are shown in Table 2, and the
results are shown in Figure 3.

6000
60T —— £ 03
£S5 — - £,05 6000 :
EA000, | e-03 o £=07 0T 03
e Y L p\ - £~05 _ _ £-05
- Egoo| 7 E
§ 2000 Un:}mtmlled .-§ — &03 L 0T | 1‘1\‘1‘
= 1 section B AN
£ 2000 Uncontrolled W\
1} < section S i
\.\ 0. ] ‘;\
600 1000 \-\\ Tl
400 ~. e
A T —— 1.5
200 N/ 5000 " — 1 i
Lateral (m) 0 ° a0 0.5 x10
! Range (m) x10* Lateral (m) Range (m)
(a) Trajectory vs. VCEC (b) Trajectory vs. LCEC
800 ‘ 800 ‘
e et S =07 ——£,=0.3
700 éL\._—U'S - fy=(J.5 1 700 Uncontrolled fz-—O.S - EZ=0-5 |
Uncontrolled mm £y=03 o £ 0T section e £703 e 707
section . .
= 600 - o 600 - WS
g £ 2= |
z &= 32695 Z5 |
£ 500 = 500 326.9 /' |
H =) 32685 . - P
= IC) L "
; 400 > 400 -

0.6 T0.65 €707

300
20 40 P %0 10 0 30 40 50 60 70 8
Times (s} Times (s)
(c) Velocity vs. VCEC (d) Velocity vs. LCEC

Figure 3. Cont.
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Slope angle of trajectory (deg)

60

40 -

20 -

=20 | 52 R0
40|50

60 .

-80

Uncontrolled | ——&=-0.7 — £,=0.3 — =07 (=03 )‘/
~section £F05 - - £,705 =05 - . £=0.5 f_/’
4| ——— §Z=-U.3 _.__§Z=0.7 e ]

Deflection angle (deg)
»N

Uncontrolled
section

62 64 66 68 70 2

20 40 60 80 0 20 40 60 80
Times (s) Times (s)
(e) Slope angle of trajectory vs. VCEC (f) Deflection angle vs. LCEC

Figure 3. Trajectory parameter profiles with different CECs.

Table 2. Projectile parameters and initial conditions.

Parameters of Projectile Values
Mass m, kg 22
Reference area S, m? 1.17 x 102
Reference length L, m 0.75
Moment of inertia of the forward body C¢ 45 x 1072
Moment of inertia of the aft body C, 225 x 1073
Initial velocity vg, m/s 720
Angle of departure 6y, deg 45
Start control time £, s 32

(1) VCEC and LCEC can reflect the changing law of the roll angle, as shown in Equation (28).

o(1-y1-2) o)
2(1-\1-&)

The time derivative of the fourth and sixth terms in Equation (1) are

5ZZ
Y¢ = arctan 5 = arctan

zy

(2) The effect of CEC on impact point

% =0cosfcosh —vsinfcosyp -0 —vcosfsing - P (29)
Z=0siny +vcosy - P

Substituting Equations (26) and (27) into Equation (29) and integrating them, the

relationship between the range and lateral distance and VCEC and LCEC is obtained. As

shown in Equation (30), the change rule of the range and lateral distance is jointly affected

by VCEC and LCEC.
e[| _ OsKpcosoeosp (1, (1_\/@)2+(1—\/@)2 QSKPsmef(l V1-8)
" Z 2 VKaly
QSKFCOSQSlnl,lJ F(\}Hgi (f%) dt (30)
_gp( - ostasny VI’ | VI | QsKecosy vRS1VIED)
- ﬂ"< (1+< ok 4 >>+ G )M

The range is sensitive to the VCEC, as shown in Figure 3a, with the increase in Cy, the
longer the range of the projectile is. The lateral distance is sensitive to the LCEC, as shown in
Figure 3b. If {7 > 0, the trajectory is corrected to the left. If {7 < 0, the trajectory is corrected
to the right, and, with the increase in ¢z, the lateral distance of the projectile becomes larger.
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Since the two-dimensional trajectory correction projectile adopts a correction strategy that
sets a shooting range that is further than the position of the target but finally obtains the
precise hit by adjusting the trajectory with the correction component, smaller VCEC and
LCEC are more conducive to provide the effect of trajectory correction.

(38) The effect of CEC on velocity

In a certain flight state, the size of the rate of change of the speed of the projectile is
affected by both VCEC and LCEC, as shown in Equation (31).

2 2
1—4/1-¢2 1—4/1—¢2
m = —QSKg |1+ ( U 2)

Zz Tz

— mgsinf cos ¥ (31)

The velocity of projectile is mainly affected by VCEC and has little sensitivity to LCEC,
as shown in Figure 3c,d. With the decrease in {y, both the flight and falling velocities of
the projectile increase. Hence, a smaller VCEC provides the two-dimensional trajectory
correction projectile with less consumption, higher storage of the projectile’s speed during
the flight, and greater falling speed when the projectile hits the target.

(4) The effect of CEC on slope angle of trajectory

, Kp(1—4/1—-¢2
muv cos Ppf = QSKr vEs( )

VEKaly

The law of slope angle of trajectory is only related to VCEC, as shown in Equation (32)
and Figure 3e. When ¢y < 0, if, § < 0, 6 declines with the decrease in {y; when ¢y > 0, if

0 < 0, 0 grows with the decrease in ¢y; if 0> 0, 0 becomes smaller with the decrease in Cy.
Hence, a smaller VCEC can increase the speed of the projectile and make the projectile hit
the target with a larger angle of impact.

(5) The effect of CEC on deflection angle

mvt,b QSK Ke(l - Y - 6%)
= F
VKalz

— mg cosf (32)

+ mgsinfsin ¢ (33)

The law of deflection angle is only related to LCEC, as shown in Equation (33) and
Figure 3f. When &, < 0, ¢ shifts to the left (viewed from the tail of the projectile); if ¢ < 0,
i declines with the decrease in LCEC; when ¢z > 0, ¢ shifts to the left (viewed from the
tail of the projectile); if ¢ < 0, i grows with the decrease in LCEC; if ¢ > 0, { becomes
smaller with the decrease in LCEC. Hence, a smaller LCEC can amplify the rate of increase,
thereby increasing the final value of the trajectory deflection angle.

In summary, when the two-dimensional trajectory correction projectile performs
trajectory correction, smaller VCEC and LCEC can reduce the speed consumption during
the trajectory correction process so that the projectile can hit the target with a larger falling
speed and angle. At the same time, the smaller VCEC and LCEC also meet the demands of
the two-dimensional trajectory correction projectile’s correction strategy.

4. CEC-Based Trajectory Optimization

After the analysis in the previous section, a smaller CEC is conducive to the trajectory
optimization calculation of the two-dimensional trajectory correction projectile. In this
section, we will establish three different types of cost functions based on the impact
point deviation and CEC and use GPM to calculate the trajectory optimization of a two-
dimensional trajectory correction projectile and study the influence of CEC on the trajectory
of a two-dimensional trajectory correction projectile.
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(1) Mayer functions

The Mayer function takes the deviation of the two-dimensional trajectory correction
projectile as the cost function and minimizes the deviation of the projectile after optimiza-
tion, as shown in Equation (34).

(Ax? + AZ?) (34)

NI~

Ji=

(2) Lagrange functions

The Lagrange function takes the optimized CEC as the cost function to optimize the
trajectory of the two-dimensional trajectory correction projectile, as shown in Equation (35).

1
h= | ekt 35)
0

(38) Composite function

The composite function is the addition of the Lagrange function and the Mayer
function, which describes that the optimized trajectory meets the minimum impact point
deviation while minimizing the CEC, as shown in Equation (36).

—_

1 [t
Jo= 5 (88 +82%) + 5 [ ek + Rt (36)
0

T2

where Ax and Az are the impact point deviation, Ax = x(t;) — x¢, Az = z(tf) — z¢, ¢ and zg
are the targets, t; is the terminal time. The parameter constraints are shown in Table 3.

Table 3. Parameters of constraints.

Parameters Values
vs free
0¢ free
P free
(x(tg),z(te)) free
(x¢, 2f) (18,000, 500)

4.1. Gauss Pseudo-Spectral Method

The Gauss pseudo-spectral method (GPM) is a fast and real-time optimization method
that was first proposed by David Benson [28] when trying to improve the estimation
accuracy of the Legendre pseudo-spectral method. The main idea is to discretize the
continuous Bolza problem of optimal control into a nonlinear programming problem (NLP),
and then use a numerical method to solve the NLP problem and obtain its optimal solution.
In this study, the GPOPS [29] software package and SNOPT [30] software package were
used to discretize and solve the trajectory optimization problem of the two-dimensional
trajectory correction projectile. The parameter settings are shown in Table 4, and the solution
process is shown in Figure 4.

Table 4. Main setting parameters.

Description Definition in GPOPS Values
Mesh refinement tolerance Setup.mesh.tolerance 104
Number of mesh refinement iterations Setup.mesh.iteration 25
Minimum number of allowed collocation points in a mesh interval Setup.nodesPerInterval.min 4
Maximum number of allowed collocation points in a mesh interval Setup.nodesPerInterval.max 12
Automatic scaling Setup.autoscale on

Derivative computation Setup.derivatives finite-difference
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Error estimation Mesh reconstruction

Figure 4. Algorithm flowchart.

GPM is used to optimize the cost functions of Equations (34)—(36) in three different
situations. The results are shown in Figure 5.

When the cost function is a Lagrange function, the projectile flight state parameters
are smooth and VCEC, LCEC, and roll control command are stable, which shows that the
trajectory optimization model of the two-dimensional trajectory correction projectile based
on the CEC is effective and feasible. When the CEC (Mayer function) is not taken into
account, the trajectory obtained by the optimization calculation can accurately hit the target,
as shown in Table 5. However, during the correction process, the change in the trajectory
deflection angle fluctuates greatly, causing the lateral distance of the trajectory to swing
from side to side (viewed from the tail of the bullet), as shown in Figure 5b; the output
values of VCEC and LCEC change quickly, as shown in Figure 5f,g, which leads to a faster
rate of change of the roll control command, as shown in Figure 5h. In practice, the short
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interval between the two-step roll control commands will make the steering gear in the
correction components unable to respond, and the canard cannot effectively execute the
control command, resulting in the inability to effectively correct the trajectory. After adding
the CEC (composite function), the projectile can still accurately hit the target, the vibration
phenomenon that appears in the trajectory lateral distance curve is eliminated, continuous
and stable VCEC and LCEC are output, and a smooth trajectory lateral distance and stable
canard roll control command are obtained.
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Figure 5. Cont.
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Figure 5. Trajectory optimization results.
Table 5. Impact parameters with some constant CEC.
Cost Velocity, m/s  Impact Angle, de Deflection Angle, de Impact Point
Function Y p gle, aeg gle, deg P
Mayer 329.9 65.87 2.77 (17,999, 500)
Lagrange 328.65 61.35 2.1 (18,397, 542)
Composite 329.78 63.98 1.8 (18,000, 500)
4.2. Trajectory Optimization for Different Targets

In this section, the composite function is used as the cost function to verify the applica-
bility of the CEC and study the impact of the CEC on projectile shooting accuracy.

As is shown in Figure 6, different trajectories can be optimized by the CEC to deal
with different combat tasks, and a stable optimized trajectory without trajectory swing and
severe vibration of roll control command is obtained. As shown in Figure 6f-h, the VCEC
and LCEC curves of different trajectories are stable, and the roll control command does
not change drastically. The results not only meet the requirements of shooting accuracy
but also output stable control command. The research in this section further verifies the
feasibility of the proposed CEC model.
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Figure 6. Trajectory optimization of different impact points.

5. Design of Canard Geometry Based on CEC
5.1. Canard Wingspan Design

The control force and control moment of the two-dimensional trajectory correction
projectile are provided by the canard. The canard is mounted on the nose of the projectile,
and the trajectory of the projectile is corrected by the rolling effect. When the airflow passes
through the two-dimensional trajectory correction projectile, the up—-down wash effect will
occur at the edge of the canard, resulting in relative interference between the canard and
the projectile body. This interference has a great impact on the moment coefficient, thus
affecting the aerodynamic layout of the projectile. In this section, the CEC will be combined
into the optimization of the canard geometry’s design.
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Considering the mutual interference between the canard and the projectile, Equation (13)
can be rewritten as

M
o= — ﬁéz CoS ¢

i 7 (37)
B=— e 6, sin ¢

where ¢y, is the control moment coefficient considering geometric parameters; it consists
of two parts: the control moment under the condition of angle of attack and the control
moment under the condition of canard deflection, as shown in Equation (38).

L
cimy = (Kaensa + Ks N0z cos g) - ﬁw (38)

where K, is the interference coefficient at the angle of attack, K;;, is the interference coeffi-
cient in the case of canard deflection; Lyy is the distance from the center of the canard to the
center of mass.
Ky = (1+Ks)?
1 2 (39)
Ks, = 512+ Ks)" +1]

where K; is the ratio of the diameter of the projectile body at the installation position of the
canard to the wingspan; K; = D /I, D is the canard installation position projectile diameter,
[ is the wingspan.

Letcjys = — %, and then Equation (37) can be rewritten as:
o= Clrxéézy
40
{ B = Clas0z2 0)

Substituting Equation (40) into Equations (22) and (23), we get:

o 2K Ky
8y = 31gn((5zy)7KB+K1A5%y

— o 2vKiaKp
6z = sign(dzz) KB+K1A5%ZZZ

(41)

The relationship between VCEC and LCEC and canard wingspan is shown in
Equation (41). The smaller the canard wingspan is, the smaller the VCEC and LCEC
are, and vice versa. Next, take Ks = 0.2 ~ 0.6 and use Equation (36) as the cost function for
trajectory optimization calculation. The results are shown in Figure 7.

The simulation results are shown in Figure 7. When Ks; = 0.2, the canard has the
largest wingspan. A larger wingspan can provide greater control force and moment but
increase VCEC and LCEC relatively, which is inconsistent with the conclusion that a smaller
VCEC and LCEC are conducive to trajectory optimization in Section III. When the trajectory
is corrected, a larger wingspan will lead to a larger overload, which will affect the flight
stability of the projectile and cause the vibration and mutation of the trajectory deflection
curve. When K = 0.6, the wingspan is the smallest. Because the wingspan is too small,
the control force and moment provided are insufficient, and the deflection angle, VCEC,
LCEC, and roll angle command curves have vibration and sudden change. When Ks = 0.4,
the state parameter curve of the projectile flying is the smoothest and the roll control
command is the most stable, indicating the best canard wingspan. Hence, we can refer to
the values of VCEC and LCEC to obtain the best wingspan for a two-dimensional trajectory
correction projectile.
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Figure 7. Trajectory optimization of different aspect ratios.
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5.2. Canard Shape Design

The equation of the exposed wing’s aspect ratio of two-dimensional trajectory correc-
tion projectile:
1-K
Mot = A7 — (42)

n—1
1— 13K,

where A is the aspect ratio of the canards; A, is the aspect ratio of the exposed canards; %
is the root tip ratio.
1—- K,
Ks = m (43)
where Ky = Ay /A, Ky = (1 —1)/ (7 +1).

Different shapes of canards have different root tip ratios. When the shape of the canard
is rectangular, then K;, = 0, and the K; of the rectangular canard Kgect = 1 — K. When
the shape of the canard is trapezoidal, then # < 1and K; < 0, (1 - K,K;) > 1, and it
can be seen that Krape < Kgrect- Hence, when the K, is the same, if the trapezoidal canard
projectile is installed, the CEC is smaller, and the trajectory optimization result should be
better.

The results show that the two shapes of canards can control the projectile to accurately
hit the target. As shown in Figure 8d-h, the optimized projectiles with trapezoidal canards
installed have smoother flight parameters, smaller VCEC and LCEC, and more stable roll
control command, which proves that the results are consistent with the above theoretical
analysis. Therefore, when the structural parameters are the same, installing the trapezoidal
canard can make the pressure center closer to the nose of the projectile so that the control
effect of the canard is better.
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Figure 8. Trajectory optimization of different canards.

6. Conclusions

Based on the lift-to-drag ratio, the novel concept of the correction efficiency coefficient
was proposed and applied on the trajectory optimization of the two-dimensional trajectory
correction projectile in this paper. The theoretical analysis and simulation indicate that, the
smaller the value of the CEC is, the stronger the correction ability is. In a constraint-free
environment, a CEC can effectively correct the trajectory of a two-dimensional trajectory
correction projectile and reflect the pattern of the canard’s roll angle changes. After the CEC
(composite function) is added, the projectile can still accurately hit the target, the vibration
phenomenon that appears in the trajectory lateral distance curve is eliminated, and a
stable canard roll control command is obtained. Based on the CEC, the two-dimensional
trajectory correction projectile canard geometry is optimized, and the influences different
wingspans and shapes have on the trajectory optimization are studied. When the canard
diameter aspect ratio is 0.4, the projectile flight status is more stable and the roll control
command is better. When the canard is trapezoidal, the CEC is smaller, the trajectory is more
stable, and the output roll control command stability is better. In future work, the angular
motion law of a two-dimensional trajectory correction projectile can also be analyzed in
combination with the CEC, and the geometric mechanism parameters of the canard can be
further optimized (such as canard rudder sweep angle, chord length, installation position,
etc.). The research results of this paper can provide a certain reference for the trajectory
design of the two-dimensional trajectory correction projectile and the optimization of the
canard geometry.
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