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Abstract: The attitude tracking synchronization control of an orbit-predetermined leader–follower
spacecraft swarm for the space moving target is discussed in this paper. The information exchange
between all spacecraft is assumed to be discrete in time and on the undirected connected graph.
Moreover, due to the demand for saving communication resources, wireless interference has been
utilized, which allows all the neighbors of a spacecraft to access the same channel frequency spectrum
simultaneously. Then the backstepping control algorithm is designed to let the spacecraft (β, A)-
practically stably synchronize their states and track a time-varying trajectory in the presence of
unknown fading channels. Finally, simulation is provided to verify that using the proposed control
scheme, the attitude tracking synchronization can be achieved with high precision.

Keywords: aerospace; discrete event systems; nonlinear systems; synchronization; control over
communications

1. Introduction

In recent years, small spacecraft, even micro and nano spacecraft cooperating to
complete complex space missions, have attracted a lot of attention [1,2]. For example,
three CubeSats were used to assemble a space telescope in the Autonomous Assembly of a
Reconfigurable Space Telescope (AAReST) mission, and a swarm (hundreds to thousands)
of 100 g-class femto-spacecraft were planned to launch for distributed sensor networks in
The Swarms of Silicon Wafer Integrated Femtosatellites (SWIFT) mission [3]. Compared
with using the traditional large spacecraft to complete complex missions, the spacecraft
swarm consisting of multiple simple small spacecraft is more flexible, reliable, and robust.
However, one of the main challenges that constrain spacecraft swarm missions is the design
of the communication scheme when a large number of spacecraft are involved in the swarm
or the inter-spacecraft communication channel is limited [4]. Due to the constraint of
satellite quality, the capability of the onboard computer and communication system is
really limited. Physically, spacecraft use low bandwidth to communicate within the swarm
and high bandwidth for data transfer back to Earth. Low bandwidth of communications
will limit the availability and timeliness of information transfer among the spacecraft. As a
result, if the onboard computer requires more information than the spacecraft can transmit
over the communications channel, the spacecraft would not survive in the complex space
environment [5]. Moreover, it has been well recognized that discrete-time communication
may cause undesirable dynamic network behaviors such as instability [6–9]; therefore, it is
another challenge to design the control scheme for the discrete-time spacecraft swarm.

Traditionally, two kinds of methods can be used to save communication resources,
which are decentralizing communication topology [10,11] and reducing interactive infor-
mation [12,13]. In decentralizing communication topology, every spacecraft is designed
to make decisions based on the local information obtained from its neighbors according
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to geographical distance, sensor distribution, or security problems. There are numerous
studies on how to design the local interaction rules for swarms so that they can exhibit a
desired collective behavior. The approach to design the communication links to restore
convexity for strongly connected systems based on the graph theory has been illustrated
in [10], and a design method of time-varying information links has been proposed for more
general systems. The instrumental role of the algebraic connectivity of graphs and digraphs
in the analysis of consensus algorithms has been demonstrated in [11]. Based on these re-
sults, the consensus problem for general linear multi-agent systems on a general graph has
been studied in [14–16]. The interacting heterogeneous linear multi-agent systems synchro-
nization has been achieved in [17]. Consensus algorithms for nonlinear Euler–Lagrange
systems have been researched in [18,19]. Furthermore, coordinated attitude control for
spacecraft tracking a constantly desired attitude has been researched in [20,21], and coordi-
nated attitude control for spacecraft tracking the common time-varying reference states
modeled by sine and cosine functions has been discussed in [22,23]. In reducing interactive
information, the amount of information required will be reduced by the optimization of
control scheme. Mei J et al. [12] researched the formation control algorithm without speed
information. Whilst Zhao S et al. [13] presented bearing-based formation stabilization of
which only direction information is required.

The above-mentioned two strategies are based on the fact that the information trans-
mitting is performed using the traditional orthogonal channel access method (OCAM),
in which the information exchange is agent-to-agent and avoids interference by time or
frequency multiplexing [4]. Nevertheless, when the number of spacecraft in the swarm
is huge, with these methods, the pressure of the wireless channel is rising at least propor-
tionally to the number of spacecraft. In 2018, harnessing the interference of the wireless
channel for consensus problems has been pioneered by Molinari et al. [24,25]. By utilizing
interference, multiple agents are allowed to access the same channel frequency spectrum
simultaneously, which is faster than time-multiplexing OCAM, and more efficient than
frequency-multiplexing OCAM. Despite its great potential for improving the communi-
cation efficiency of cooperative control systems, there is no literature attempting to apply
information interference in synchronization control of complex nonlinear systems. Hence,
the design of the communication scheme exploiting interference constitutes the first main
focus of this paper.

Besides, in practical applications, as the spacecraft in the swarm need to acquire
information from the neighbors and then update their states, communication between
spacecraft should be modeled as discrete-time networks. The interval between two adjacent
update instants is a challenge for meeting the requirements of convex calculation. Thus,
a rather challenging problem in spacecraft attitude tracking synchronization control is
discrete synchronization, which has recently begun to receive initial research attention. For
example, the discrete synchronization problem of single-integrator networked multi-agent
system, non-holonomic agents system, and lower triangular heterogeneous multi-agent
system has been solved in [6–8], respectively; furthermore, the range of the sampling period
has been obtained. Moreover, a discrete leader–follower synchronization problem has been
addressed in [9], where the leader is governed by general double-integrator dynamics and
the followers are Euler–Lagrange systems. However, as reference [26] illustrated, most
of the existing discrete theoretical results are focused on the single-integrator, double-
integrator, nonlinear oscillators, nonholonomic mobile robots, typically complex networks,
and the typical Euler–Lagrange dynamic system. The design of the discrete control scheme
for the spacecraft swarm attitude tracking synchronization system is still worthy of some
attention, which constitutes the second main focus of this paper.

The main contribution of this paper is to present a control law for spacecraft attitude
tracking synchronization under the assumption of discrete-time communication. More
precisely, a discrete-time control algorithm is proposed to drive a group of spacecraft
to synchronize their attitudes and track a moving target with attitude-orbit coupling. In
addition, in this paper, information interference is used for information transmission solving
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the challenge of limited communication in spacecraft swarm. Compared with the frequency-
multiplexing OCAM, the communication scheme can save the channel resource as multiple
agents can access the same channel frequency spectrum. As a result, different from the
existing literatures that deal with limited communication by decentralizing communication
topology and reducing interactive information, the communication scheme in this paper can
save communication resources in proportion to the number of spacecraft. The control law
in this paper also deals with the unknown channel attenuation problem when exploiting
information interference.

This paper is organized as follows: at first, in Section 2, the problem description
in natural language and preliminary knowledge about spacecraft attitude kinematics
and dynamics, graph, information interference and stabilization theory of sampled-data
nonlinear systems is summarized and the problem description in mathematical language
is given. Then, in Section 3, we derive the control algorithm and prove its effectiveness.
Moreover, numerical simulation is shown in Section 4. Finally, the conclusion is stated in
Section 5.

Notations: Throughout this paper, R denotes the set of real numbers. R>0 denotes
the set of positive real numbers. N>0 denotes the set of positive integers. The set of
nonnegative real numbers is R>0 and the set of nonnegative integers is N>0. Given a matrix
A ∈ Rn×m, the entry in position (i, j) is [A]i,j. In stands for the n-dimensional identity
matrix. 0n×m denotes the matrix of zeros with n rows and m columns. ⊗ represents the
Kronecker product. For matrix A ∈ Rn×n and B ∈ Rn×n, A ≥ B means that A− B is
positive semidefinite, and A > B means that A− B is positive definite. Given constant
sampling intervals [tk, tk+1), ∀tk ∈ R≥0, k ∈ N≥0, with ∆t = tk+1 − tk, if a function f (·) is
updated at sampling instants, i.e., during the period [tk, tk+1), f (t) f (tk), f (tk) is abbreviated
as f (k). A continuous function α(·) : [0, a)→ R≥0 is said to belong to class K if α(·) is
strictly increasing and subject to α(0) = 0. A continuous function β(·) : [0, b)→ R≥0
is said to belong to class K∞ if it belongs to class K, b = ∞ and lim

r→∞
β(∞) = ∞. A

function γ : R≥0 ×R≥0 → R≥0 is of class Kw if γ(·, t) is of class K ∀t ∈ R≥0 and γ(s, ·) is
decreasing to zero for each s ∈ R>0.

2. Problem Description and Preliminary Knowledge

The space observation applications need high accurate alignment between spacecraft
and the moving target. In engineering, each swarm mission can have hundreds or even
thousands of cooperating spacecraft working in teams. Some spacecraft will be responsible
for target positioning, others will major in data collection. In this paper, we consider
attitude tracking synchronization for swarms of spacecraft without relative position control.
The attitudes of spacecraft need to track moving targets synchronously for observation.
To model the spacecraft performing target positioning, a virtual leader spacecraft (LS) is
considered in this paper. The attitude of the LS is calculated by the orbit elements of itself
and the orbit elements of the target, i.e., the goal of the LS is to track the moving target
and maneuver to point to the target, and then the whole swarm needs to achieve attitude
synchronization to observe. Figure 1 depicts this scenario. It is worth mentioning that
the attitude tracking synchronization problem in this paper is the simplification of the
spacecraft attitude cooperative tracking problem, details refer to Section 2.5.

In the following, the mathematical description of spacecraft kinematics and dynamics,
graph and the preliminary knowledge of wireless interference and stabilization theory of
sampled-data nonlinear systems are presented at first, then the mathematic model of the
problem description is stated clearly.
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2.1. Kinematics and Dynamics
2.1.1. Axis Frame

As shown in Figure 2, there are three commonly used axis frames for determining the
attitude of a spacecraft:

• Earth Centered Inertial Frame, OIXIYIZI. The origin of OIXIYIZI is fixed to the
barycenter of the Earth. The XIOIYI plane coincides with the equatorial plane. The
OIZI axis points to the North Pole, the OIXI axis points to the vernal equinox and the
OIYI axis is determined according to the right-hand rule.

• Spacecraft Body Fixed Frame, OBXBYBZB. It is fixed on the spacecraft, and the frame
origin corresponds to the center of mass. The OBZB axis points along the longitudinal
axis of the spacecraft. The OBXB axis and the OBYB axis lie, respectively, along the
other two principal axes of the spacecraft according to the right-hand rule.

• Desired Imaging Frame, ODXDYDZD. The origin of ODXDYDZD corresponds to the
center of mass of the spacecraft. The ODZD axis points to the target. The ODXD axis is
determined by ZD × (−YB), where ZD and YB are the unit vectors of the ODZD axis
and the OBYB axis. Then the ODYD axis is determined according to the right-hand rule.
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2.1.2. Quaternion Kinematics

Throughout this paper, the attitude of the spacecraft labeled i ∈ {1 . . . n} is described
(in OIXIYIZI) by quaternion Qi = [q0,i, qT

i ]
T, where q0,i ∈ R and qi = [q1,i, q2,i, q3,i]

T ∈ R3

denote, respectively, the scalar part and the vector part of this quaternion. According to
Euler’s rotation theorem, in three-dimensional space, any displacement of a rigid body
that keeps at least one of its points fixed can be described by a rotation at angle α around a
fixed axis

[
ex, ey, ez

]
, and the axis

[
ex, ey, ez

]
should pass through these fixed points. One

can find a full characterization of the quaternion as a function of α and
[
ex, ey, ez

]
in [27].

In particular, the scalar part of a quaternion is q0,i := cos
(

α
2
)

whilst the vector part of a
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quaternion is qi := [ex sin
(

α
2
)
, ey sin

(
α
2
)
, ez sin

(
α
2
)
]
T. Given a quaternion Qi = [q0,i, qT

i ]
T, its

conjugate quaternion is denoted by Qi = [q0,i,−qT
i ]

T. For any initial quaternion Qi and
maneuver quaternion Qm,i = [q0,mi, q1,mi, q2,mi, q3,mi]

T, and the final quaternion = Qk,i =

[q0,ki, q1,ki, q2,ki, q3,ki]
T can be expressed as [28].

Qk,i =


q0,mi −q1,mi −q2,mi −q3,mi
q1,mi q0,mi −q3,mi q2,mi
q2,mi q3,mi q0,mi −q1,mi
q3,mi −q2,mi q1,mi q0,mi




q0,i
q1,i
q2,i
q3,i


=

[︷︸︸︷
Q×m,i

]
Qi.

(1)

Remark 1. Quaternions [1, 0, 0, 0]T and [−1, 0, 0, 0]T correspond to the same Euler angle [0, 0, 0]T .

The attitude angular velocity of spacecraft labeled i ∈ 1 . . . n is represented by
ωi = [ω1,i, ω2,i, ω3,i]

T ∈ R3. According to [29], the equation describing the kinematics
of spacecraft i is

.
Qi =

1
2 Ξ[Qi]ωi, (2)

where

Ξ[Qi] :=


−q1,i
q0,i
q3,i
−q2,i

−q2,i
−q3,i
q0,i
q1,i

−q3,i
q2,i
−q1,i
q0,i


2.1.3. Attitude Dynamics

As [30] introduced, dynamics of spacecraft i ∈ {1 . . . n} is

Ji
.

ωi + ωi × Jiωi = Ti, (3)

where Ji ∈ R3×3 represents the momentum of inertia of spacecraft i and Ti ∈ R3 denotes
the control torque for spacecraft i.

2.1.4. Orbit Elements

The orbit elements of a celestial body are denoted by Semi-major axis ac, Eccentricity
ec, Inclination ic, Right Ascension of the Ascending Node Ωc, Argument of Perigee vc and
Initial true anomaly Θc0, respectively. Then the position vector Pc = [Px,c, Py,c, Pz,c]

T ∈ R3

of the celestial body in OIXIYIZI is obtained by the following process

1. Calculate the orbital period Tc: Tc = 2π
√

a3
c

398,600 (s),
2. Calculate the mean anomaly Mc: Mc =

2π
Tc

t,
3. Calculate the eccentric anomaly Ec by solving the Kepler equation: Mc = Ec −

ec sin(Ec),

4. Calculate the true anomaly Θc: Θc = 2 tan−1
(

tan Ec
2

√
1+ec
1−ec

)
+ Θc0,

5. Calculate the distance between the barycenter of the target and the barycenter of the

Earth rc: rc = ac
1−e2

c
1+ec cos(Θc)

,

6. Calculate Pc: Pc = CBIrcz, where
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CBI = (CΘc Cvc Cic CΩc)
T,

CΘc =

 cos
(
−π

2 −Θc
)

0 − sin
(
−π

2 −Θc
)

0 1 0
sin
(
−π

2 −Θc
)

0 cos
(
−π

2 −Θc
)
,

Cvc =

 cos(vc) sin(vc) 0
− sin(vc) cos(vc) 0

0 0 1

,

Cic =

 1 0 0
0 cos(ic) sin(ic)
0 − sin(ic) cos(ic)

,

CΩc =

 cos(Ωc) sin(Ωc) 0
− sin(Ωc) cos(Ωc) 0

0 0 1

,

z =
[

0 0 1
]T.

Further details can be found in [29].

2.2. Graph

An undirected graph G(t) on a fixed node set is a pair (N , ε, C(t)), whereN = {1 . . . n}
is the node set, ε ⊆ N ×N implies the edge set, and C(t) ∈ Rn×n denotes the weight
matrix. The arc (i, j) ∈ ε if and only if node i transmits information to node j and vice versa.
For each node i ∈ N , the number of connected arc (i, j) ∈ ε is the out-degree, denoted by
d(i). A path in an undirected graph is a sequence of edges joining a sequence of distinct
nodes. For any pair of nodes i, j ∈ N , if there exists a path joining i and j, the undirected
graph is connected. In the formalism of weighted undirected graphs, every edge (i, j) has
a weight coefficient [C(t)]i,j ∈ R≥0, and the matrix C(t) is also called adjacency matrix
of graph G(t). The Laplacian matrix of graph G(t) is denoted by LA(t) ∈ Rn×n and it is
defined through its elements

[LA(t)]i,j =


−[C(t)]i,j if i 6= j
n
∑

j=1,j 6=i
[C(t)]i,j else .

We present here three important results that have been proposed in [18]

Proposition 1. Given ∀i = 1 . . . n, Xi ∈ Rp and X =
[
XT

1 . . . XT
n
]T.

Then, ∀t ∈ R≥0, XT(LA(t)⊗ Ip
)
X = 1

2 ∑n
i=1 ∑n

j=1[C(t)]i,j(t)‖ Xi −Xj ‖2.

Proposition 2. If undirected G(t) is connected,
(

LA(t)⊗ Ip

)
X = 0np×1 ⇐ ∀i 6= j, Xi = Xj.

Proposition 3. The Laplacian matrix LA(t) of an undirected graph is positive semidefinite.

2.3. The Model for Wireless Interference

In the wireless communication scheme of spacecraft swarm, physically, when multiple
electromagnetic waves are broadcast by a set of spacecraft in the same frequency band and
superimposed at the receiver, it results in interference [31]. Theoretically, interference can
be utilized to allow multiple spacecraft to access the same channel frequency spectrum
simultaneously. As a result, if interference is utilized in the communication scheme, the
communication resources can be saved proportionally to the number of spacecraft com-
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pared to OCAM. It should be noted that the communication system exploiting interference
suffers from unknown fading channels, which is a challenge that should be dealt with.

A wireless multiple access channel (WMAC) allows modeling the value at the receiver
in the wireless communication scheme, which exploits interference [4,32]. Let Γi ∈ Rp be
the real-valued vector signal broadcast by the spacecraft i, i ∈ 1 . . . n and Y ∈ Rp be the
value at the receiver, then the mapping: Y = ∑i=1...n Ci,rΓi is referred to as the WMAC,
where Ci,r ∈ R is the unknown fading coefficient of transmitter i.

The way interference can be exploited, and the unknown fading coefficient can be han-
dled for the spacecraft swarm at hand will be clear in Section 3.2, where a communication
system compatible with the WMAC will be presented.

2.4. Stabilization Theory of Sampled-Data Nonlinear Systems

Consider the system
.
x = g(x, u), (4)

where X ∈ Rp, u ∈ Rn and g(x, u) are locally Lipschitz. Given constant sampling intervals
[tk, tk+1), ∀tk ∈ R≥0, k ∈ N≥0, with ∆t = tk+1 − tk, the control u is updated at sampling
instants, i.e., during the period [tk, tk+1), u(t) = u(k). The exact discrete-time model of
(4) is

x(k + 1) = Ge(x(k), u(k)), (5)

which is the closed-form solution to the initial value problem

.
x = g(x, u(k)), x 0 = x (k), (6)

over the sampling interval [tk, tk+1), which is impossible to obtain in general. However, the
following Euler’s first-order approximation is available

x(k + 1) = GEuler(x(k), u(k)) = x (k) + ∆t g(x(k), u(k)). (7)

Then, the following Lemmas are introduced [33,34]

Lemma 1. If there exist f (·) ∈ K∞ and M ∈ R>0, T∗ ∈ R>0, for all ∆t ∈ [0, T∗], and
X, Y ∈ Rn:

1. |g(x, u(k))| ≤ M,
2. |g(y, u(k))−|g(x, u(k))| ≤ f (|y− x|),

Then GEuler(x(k), u(k)) is one-step consistent with Ge(x(k), u(k)).

Lemma 2. Let β ∈ Kw and let A ⊂ Rn be an open (not necessarily bounded) set containing the
origin. The family (u(k), G(x(k), u(k))) is said to be (β, A)-practically stable if ∀M ∈ R>0 there
exists T∗ > 0 such that for each ∆t ∈ [0, T∗], the solutions of the system

x(k + 1) = G(x(k), u(k)),

satisfy
|x(k, x(0))| ≤ β(|x(0)|, k∆t) + M, ∀x(0) ∈ A, k ∈ N≥0.

Lemma 3. The family (u(k), G(x(k), u(k))) is said to be equi-globally asymptotically stable
(EGAS) if the following statements hold

1. There exist T∗ > 0, α1(·), α2(·) ∈ K∞, α3(·) ∈ K and for each ∆t ∈ [0, T∗], V(·) : Rn → R≥0
such that ∀X ⊂ Rn, ∀∆t ∈ [0, T∗], we have α1(|X|) ≤ V(X) ≤ α2(|X|) and V(G(X, u(X)))−
V(X) ≤ −∆tα3(|X|).

2. For each compact set Y ⊂ Rn\0, there exist M > 0 and T∗ > 0 such that, ∀A, B ∈ Y and
∀∆t ∈ [0, T∗], |V(A)−V(B)|≤ M|A− B|.
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Lemma 4. If GEuler(x(k), u(k)) is EGAS, then there exists β ∈ Kw such that for each bounded
neighborhood A of the origin, the exact discrete-time models Ge(x(k), u(k)) in Equation (5) is
(β, A)-practically stable.

2.5. The Mathematic Model of Problem Description

Suppose each spacecraft in the swarm is an agent modeled by (2) and (3). The orbit
elements of the spacecraft in the swarm are predesigned. The orbit elements of the moving
target can only be obtained by the LS. To track the moving target, the following two objects
need to be achieved.

Object 1. The attitude Q1of the LS is calculated according to the orbit elements of the moving
target and the orbit elements of itself, details will be given in Section 3.2.

Object 2. The whole swarm needs to achieve attitude synchronization with the LS, namely,
Qi = Q1, i = 2 . . . n.

It is worth mentioning that according to Equation (1), the Object 2 turns into spacecraft

attitude cooperative tracking problem Qk,i = Q1, i = 2 . . . n, where Qk,i =

[︷︸︸︷
Q×m,i

]
Qi, Qm,i is

preset desired attitude difference between Qi, i = 2 . . . n and Q1. In other words, the method
in this paper is applicable to typical spacecraft attitude cooperative tracking problem.

Interference is used for information exchange in this paper to allow multiple spacecraft
to access the same channel frequency spectrum simultaneously, and the technical detail can
be found in Section 3.2. It should be noted that when exploiting interference, the unknown
fading channels in the radio frequency (RF) communication system constitutes a challenge
that the control law needs to deal with.

The communication topology in this paper is modeled as undirected connected graph
G(t) = (N , ε, C(t)). Throughout this paper, graph G(t) always satisfies the following
assumption

Assumption 1. Graph G(t) is an undirected connected graph, hence for any pair of connected
nodes i, j ∈ N , there must be [C(t)]i,j = [C(t)]j,i.

The communication scheme is discrete in time. The spacecraft update state at every
instant tk ∈ R≥0, k ∈ N≥0, and the interval between any two adjacent update instants is
defined as ∆t ∈ R>0.

3. Control Law Design

At first, we calculate the attitude of the LS according to the orbit elements of the
target and the orbit elements of the LS. After that, a communication system exploiting
interference (the value at the receiver modeled by the WMAC) is proposed. Based on the
communication scheme, we finally provide the discrete control approach for all follower
spacecraft (FS).

The following lemmas will be used in the subsequent control law design:

Lemma 5. A symmetric matrix A ∈ Rn×n with eigenvalues C1 . . . Cn is orthogonally diagonaliz-
able, and can be decomposed as [35]

A = VCVT ,

where C = diag(C1 . . . Cn), V ∈ Rn×n is an orthogonal matrix whose columns correspond to the
eigenvectors of A. Additionally, we also have

VTAV = C,
(8)
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such that matrix A is orthogonally similar to a diagonal matrix formed from the eigenvalues of A.

Lemma 6. A matrix V ∈ Rn×n is an orthogonal matrix if and only if its column (row) vector
group is a group of standard orthogonal base of Rn [35].

Lemma 7. Given a matrix D: D =

[
A B
BT C

]
, is a positive definite matrix if and only if A ∈

Rr×r and C ∈ R(n−r)×(n−r) are positive definite, and C− BTA−1B is also positive definite [36].

Lemma 8. For real symmetric matrix A, B ∈ Rn×n, where B = diag(k1, . . . , kn), the following
inequality holds

λj(A) + min(ki|i = 1 . . . n) ≤ λj(A + B) ≤ λj(A) + max(ki|i = 1 . . . n),

where for any matrix Z ∈ Rn×n, the eigenvalues are arranged as λ1(Z) ≤ . . . ≤ λn(Z).

Proof of Lemma 8. Given a real matrix K = kIn, k ∈ {ki|i = 1 . . . n}, according to Lemma 5,

A = VCVT,
(9)

where C = diag(C1 . . . Cn), V ∈ Rn×n is an orthogonal matrix whose columns correspond
to the eigenvectors of A.

Hence
A + K = A + kIn

= VCVT + kVVT

= Vdiag(C1 + k . . . Cn + k)VT,
(10)

then λ(A + K) = λ(A) + k is obtained.
According to A.1.b in [37] (p. 510), as

(A + max(ki|i = 1 . . . n)In)− (A + B) ≥ 0,

the following inequality is obtained

λj(A + B) ≤ λj(A) + max(ki|i = 1 . . . n), j = 1 . . . n.

In the same way, we get the following inequality

λj(A) + min(ki|i = 1 . . . n) ≤ λj(A + B).

�

Lemma 9. For real positive semidefinite matrix A ∈ Rn×n and B ∈ Rn×n, the following prop-
erty holds

λmax(AB) ≤ λmax(A)λmax(B).

Proof of Lemma 9. According to Corollary 11 in [38], for the Hermitian matrix A ∈ Rn×n,
real positive semidefinite matrix B ∈ Rn×n, and U ∈ R1×n satisfying UUT = 1, the inequal-
ity λmax(AB) ≤ maxUUT=1λmax(A)λmax

(
UBUT) holds. Then according to Equation (1)

in [37], we have the equality maxUUT=1
(
UBUT) = λmax(B). When λmax(A) > 0, the

Lemma 9 is obtained. �
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Lemma 10. For real symmetric matrix A ∈ Rn×n with eigenvalues λ1 ≥ . . . ≥ λn, and U ∈ Rk×n

UUT = Ik, we get the following inequality

λmax

(
UAUT

)
≤ λ1.

Proof of Lemma 10. According to Lemma 5,

A = VCVT,

where C = diag(λ1 . . . λn), V ∈ Rn×n is an orthogonal matrix whose columns correspond
to the eigenvectors of A. Hence

UAUT = UVCVTUT,

define
UV = W,

then
WWT = Ik

is derived. Additionally, UAUT can be rewritten as

UAUT = WCWT. (11)

Define Cmax = diag(λ1 . . . λ1) ∈ Rn×n, then

WCWT −WCmaxWT = W(C− Cmax)WT ≤ 0k×k,

which means
UAUT ≤WCmaxWT, (12)

where WCmaxWT = diag(λ1 . . . λ1) ∈ Rk×k.
According to A.1.b in [37] (p. 510), λmax

(
UAUT) ≤ λ1 is proved. �

3.1. Attitude Determination of the Virtual Leader Spacecraft

First of all, the position vector Pt = [Px,t, Py,t, Pz,t]
T ∈ R3 of the target and the position

vector Ps = [Px,s, Py,s, Pz,s]
T ∈ R3 of the virtual leader spacecraft in OIXIYIZI is obtained by

the orbit elements according to the process in Section 2.1.4. Then the unit vectors XBI, YBI,
and ZBI along the positive direction of OBXB, OBYB, and OBZB axes are

XBI = CBIx,

YBI = CBIy,

ZBI = CBIz,

where x =
[

1 0 0
]T, y =

[
0 1 0

]T and z =
[

0 0 1
]T. Furthermore, the

vector from the virtual leader spacecraft to the target is Pst = Pt − Ps. Hence the unit
vectors XDI, YDI, and ZDI along the positive direction of ODXD, ODYD and ODZD axes are

ZDI =
Pst

|Pst|
,

XDI =
ZDI × (−YBI)

|ZDI × (−YBI)|
,

YDI =
ZDI ×XDI

|ZDI ×XDI|
.
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Finally, referring to the Euler angle attitude representation in [29], the desired atti-
tude, i.e., the attitude of the virtual leader represented by Euler angle

[
φ1 θ1 ψ1

]T is
calculated by

φ1 = tan−1
(

YDI·ZBI

|ZDI·ZBI|

)
,

θ1 = sin−1(−XDI·ZBI),

ψ1 = tan−1
(

XDI·YBI

|XDI·XBI|

)
.

The quaternion Q1 = [q0,1, q1,1, q2,1, q3,1]
T corresponding to

[
φ1 θ1 ψ1

]T is ex-
pressed as

q0,1 = cos
(
φ1
2

)
cos
(

θ1

2

)
cos
(
ψ1
2

)
+ sin

(
φ1
2

)
sin
(

θ1

2

)
sin
(
ψ1
2

)
,

q1,1 = sin
(
φ1
2

)
cos
(

θ1

2

)
cos
(
ψ1
2

)
− cos

(
φ1
2

)
sin
(

θ1

2

)
sin
(
ψ1
2

)
,

q2,1 = cos
(
φ1
2

)
sin
(

θ1

2

)
cos
(
ψ1
2

)
+ sin

(
φ1
2

)
cos
(

θ1

2

)
sin
(
ψ1
2

)
,

q3,1 = − sin
(
φ1
2

)
sin
(

θ1

2

)
cos
(
ψ1
2

)
+ cos

(
φ1
2

)
cos
(

θ1

2

)
sin
(
ψ1
2

)
.

3.2. Communication System Exploiting Interference

For each spacecraft i in the swarm, the three broadcasting states from every neighbor
j, (j, i) ∈ ε at consecutive broadcasting instants tk ∈ R≥0, k ∈ N≥0 is designed according
to [39] as

µ
(1)
j (k) = Qj(k),

µ
(2)
j (k) = X1F,j(k),
µ′j(k) = 1,

(13)

where Qj is attitude quaternion of spacecraft j, X1F,j is a state of spacecraft j and will be
introduced in Section 3.3. So at update instants tk, the spacecraft i receives three signals

τ
(1)
i (k)= ∑

(j,i)∈ε

[C(t)]j,i(k)Qj(k),

τ
(2)
i (k)= ∑

(j,i)∈ε

[C(t)]j,i(k)X1F,j(k),

τ′i (k)= ∑
(j,i)∈ε

[C(t)]j,i(k),

(14)

where [C(t)]j,i(k) is the unknown fading coefficient of the edge (j, i) ∈ ε at broadcasting

instants tk. Then the signals τ
(1)
i (k) and τ

(2)
i (k) in Equation (14) are normalized, hence the

signals received by spacecraft i are converted to

ζ
(1)
i (k) =

 ∑
(j,i)∈ε

[C(t)]j,i(k)I4

−1

∑
(j,i)∈ε

[C(t)]j,i(k)Qj(k),

ζ
(2)
i (k) =

 ∑
(j,i)∈ε

[C(t)]j,i(k)I4

−1

∑
(j,i)∈ε

[C(t)]j,i(k)X1F,j(k).

(15)
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Obviously, by exploiting interference, the signals each spacecraft received are the sum
of the relevant signals transmitted by their neighbors. Instead of using OCAM to receive
accurate signals transmitted by the neighbors, the communication system utilizing interfer-
ence can save the communication resources proportionally to the number of spacecraft.

3.3. Design of Attitude Tracking Synchronization Control Scheme
3.3.1. Continuous Control Scheme

Define
Q =

[
QT

1 . . . QT
n ]

T ∈ R4n, ω =[ωT
1 . . . ωT

n ]
T ∈ R3n,

and
J = diag(J1 . . . Jn),

where J1 is the momentum of inertia of the LS, and Ji, i = 2 · · · n are the momentum of
inertia of the FS. Inspired by [18], define

Q̃ =

(
LA(t)⊗ I4

)T
Q ∈ R4n,

which is a column stack vector of all

n

∑
j=1

(
[C(t)]j,i(t)

(
Qi −Qj

))
, i = 1 · · · n.

Define the first backstepping state X1F ∈ R4n as

X1F= diag
(
I4ς′1(t), . . . , I4ς′n(t)

)−1Q̃

=


∑(j,1)∈ε

(
[C(t)]j,1(t)(Q1−Qj)

)
∑(j,1)∈ε [C(t)]j,1(t)

...
∑(j,n)∈ε

(
[C(t)]j,n(t)(Qn−Qj)

)
∑(j,n)∈ε [C(t)]j,n(t)



=



(
∑(j,1)∈ε [C(t)]j,1(t)

)
Q1−∑(j,1)∈ε(cj,1(t)Qj)

∑(j,1)∈ε [C(t)]j,1(t)
...(

∑(j,n)∈ε [C(t)]j,n(t)
)

Qn−∑(j,n)∈ε

(
[C(t)]j,n(t)Qj

)
∑(j,n)∈ε [C(t)]j,n(t)



=


Q1 − ς

(1)
1 (t)

...
Qn − ς

(1)
n (t)

,

X1F,i=


[X1F]4i−3,1
[X1F]4i−2,1
[X1F]4i−1,1
[X1F]4i,1

, i = 1 . . . n.

(16)

When the attitudes of all spacecraft in the swarm realize synchronization, that is
Q̃ = 04n×1, we have X1F = 04n×1. A virtual control input is defined as

ω = fn(XAF) + X2F, (17)



Aerospace 2022, 9, 134 13 of 24

where fn(XAF) ∈ R3n is a stabilizing function and X2F ∈ R3n is the second backstepping
state. Considering all the spacecraft receiving their neighbors’ data only at update instants
tk ∈ R≥0, k ∈ N≥0, during the period ∀[tk, tk+1), the X1F-dynamics is given by

.
X1F = 1

2 diag
(
I4ς′1(tk), . . . , I4ς′n(tk)

)−1
(

LA(tk)⊗ I4

)T
×

diag(Ξ[Q1] . . . Ξ[Qn])ω

= 1
2LT(tk)PT

2 ω,

(18)

where

LT = L = diag
(
I4ς′1, . . . , I4ς′n

)−1
(

LA ⊗ I4

)T
.

With some calculations, it can be shown that

P2

(
LA ⊗ I4

)
diag

(
I4ς′1, . . . , I4ς′n

)−1X1F = 03n×1 → X1F = 04n×1, (19)

and P2 have the property as follows

P2PT
2 = I3n.

(20)

Choose the first candidate Lyapunov function as

V1F = XT
1FX1F

=
∣∣∣∣∣∣Q1 − ς

(1)
1 (t)

∣∣∣∣2 + . . .+
∣∣∣∣∣Qn − ς

(1)
n (t)

∣∣∣∣∣∣2.
(21)

It thus follows that V1F is positive semidefinite. During the period ∀[tk, tk+1), the
derivative of V1F is given by

.
V1F = 2XT

1F

.
X1F

= XT
1FLT(tk)PT

2 ω

= XT
1FLT(tk)PT

2 ( fn(XAF) + X2F)
= XT

AF( fn(XAF) + X2F),

(22)

where
XAF= P2(LA ⊗ I4)diag

(
I4ς′1, . . . , I4ς′n

)−1X1F

= P2


∑(j,1)∈ε [C(t)]j,1(t)(X1F,1−X1F,j)

∑(j,1)∈ε [C(t)]j,1(t)
...

∑(j,n)∈ε [C(t)]j,n(t)(X1F,n−X1F,j)
∑(j,n)∈ε [C(t)]j,n(t)



= P2


Q1 − ς

(2)
1 (t)

...
Qn − ς

(2)
n (t)

.

(23)

Obviously, fn(XAF) should satisfy when X1F → 04n×1 ,

diag
(
I3ς′1(tk), . . . , I3ς′n((tk))

)−1
(

LA(tk)⊗ I3

)T
fn(XAF)→ 03n×1,

must be ensured to finally achieve

diag
(
I3ς′1(tk) . . . I3ς′n((tk))

)−1
(

LA(tk)⊗ I3

)T
ω→ 03n×1.
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Therefore, fn(XAF) can be chosen as

fn(XAF) = −K1XAF, (24)

where K1 = KT
1 = k1 × I3n ≥ 03n×3n. Substituting Equation (24) into Equation (22),

.
V1F can

be written as
.

V1F = XT
AFX2F −XT

AFK1XAF. (25)

From the fact that K1 is a positive definite matrix, one arrives XT
AFK1XAF is a nonnega-

tive constant. The X1F-system in Equation (18) now turns into

.
X1F = 1

2LT(tk)PT
2 ( fn(XAF) + X2F)

= 1
2LT(tk)PT

2 X2F − 1
2LT(tk)PT

2 K1XAF, (26)

The X2F-dynamics can be obtained by rewriting and differentiating Equation (17) as

.
X2F =

.
ω−

.
f n(XAF). (27)

Substituting Equation (3), Equation (27) can be rewritten as

J
.

X2F = T−ω× Jω− J
.
f n(XAF), (28)

where T ∈ R3n is a column stack vector of control torque from all the spacecraft’s actuators.
For the FS, choose the second candidate Lyapunov function as

V2F = V1F +
1
2

XT
2FJX2F, (29)

where V2F is positive semidefinite. Substituting Equation (28), the time derivative of V2F is
derived as .

V2F =
.

V1F + XT
2F

(
T−ω× Jω− J

.
f n(XAF)

)
. (30)

According to Equations (22) and (30), the control torque for the FS can be chosen as

T = −XAF −K2X2F

+ω× Jω + J
.
f n(XAF),

Ti =

 [T]3i−2,1
[T]3i−1,1
[T]3i,1

, i = 1 . . . n,
(31)

where K2 = KT
2 = k2 × I3n ≥ 03n×3n.

One thing that should be mentioned is that T1 ∈ R3 is redundant for the FS to achieve
the attitude synchronization with the LS. Therefore, Ti ∈ R3, i = 2 . . . n is the input torque
for each FS i.

Substituting Equation (31) into Equation (30),
.

V2F can be written as

.
V2F = −XT

AFK1XAF −XT
2FK2X2F

= −WF
≤ 0,

(32)

and according to Equation (19), WF = 0 if and only if X1F = 04n×1, X2F = 03n×1.

Theorem 1. Considering the spacecraft attitude tracking synchronization system governed by (26)
and (28), if graph G(t) satisfies assumption 1, by designing the control torque composed by (24)
and (31), the backstepping state X1F, X2F can globally asymptotically converge to X1F = 04n×1,
X2F = 03n×1, i.e., the Object 2 is achieved.
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Proof of Theorem 1. Theorem 1 can be obtained from (32). �

Remark 2. Although T is treated as a whole in the derivation, in the actual calculation, all the
FS i, i = 2 . . . n calculate their controller Ti ∈ R3 independently. It can be obtained according
to Equation (31) and the fact that K2 and J are block diagonal matrices and XAF, X2F, ω and
.
f n(XAF) are column stack matrices. For each FS i, i = 2 . . . n, the external information required

for constructing its controller Ti is only normalized information ς
(1)
i and ς

(2)
i . Thus, as Section 3.2

illustrated, the broadcasting states from every neighbor j, (j, i) ∈ ε at consecutive broadcasting
instants tk ∈ R≥0, k ∈ N≥0 should be only Qj(k), X1F,j(k), and 1.

Remark 3. The control error of X1F and X2F can be decreased and the convergence rate can be
increased by increasing K1 and K2 properly in a certain range.

3.3.2. Discrete Control Scheme

In space missions, the continuous model of communication is unrealistic. The space-
craft update information at every communicating instant tk ∈ R≥0, k ∈ N≥0. Therefore, at
instant tk, the control torque can be modified according to the information transmitted by
their neighbors as Equation (15), such that X1F(k), P2(k) and X2F(k) of the spacecraft are
updated by Q(k) and ω(k) according to Equations (16)–(18) and (24) as

X1F,i(k) = Qi(k)− ς
(1)
i (k), i = 1 . . . n,

X1F(k) =
[
XT

1F,1(k) . . . XT
1F,n(k)

]T
∈ R4n×1,

P2(k) = diag(Ξ[Q1](k) . . . Ξ[Qn](k)),
XAF(k) = P2(k)(LA(k)⊗ I4)diag

(
I4ς′1(k), . . . , I4ς′n(k)

)−1X1F(k)

= P2(k)


∑(j,1)∈ε [C(k)]j,1(X1F,1(k)−X1F,j(k))

∑(j,1)∈ε [C(k)]j,1
...

∑(j,n)∈ε [C(k)]j,n(X1F,n(k)−X1F,j(k))
∑(j,n)∈ε [C(k)]j,n


= P2(k)


X1F,1(k)− ς

(2)
1 (k)

...
X1F,n(k)− ς

(2)
n (k)

,

X2F(k) = ω(k)− fn(XAF(k)) ∈ R3n×1,

X2F,i(k) =

[
[X2F(k)]3i−2,1,

[
[X2F(k)]3i−1,1,

[
[X2F(k)]3i,1

]T
, i = 1 . . . n .

(33)

Correspondingly, during all periods [tk, tk+1), considering Equations (24), (31) and
Equation (33), the stabilizing function and input torque for the FS are

fn(XAF(k)) = −K1XAF(k),
T(k) = −XAF(k)−K2X2F(k)

+ω(k)× Jω(k) + J fn(XAF(k+1))− fn(XAF(k))
∆t ,

Ti =

 [T]3i−2,1
[T]3i−1,1
[T]3i,1

, i = 1 . . . n

(34)

where XAF(k + 1) is estimated by XAF(k) + ∆t
.

XAF(k), T1 ∈ R3 is redundant for the FS to
achieve the attitude synchronization with the LS. Therefore, Ti ∈ R3, i = 2 . . . n is the input
torque for each FS i.
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By using Euler’s first-order approximation [40], the kinematics (26) and (28) during all
periods [tk, tk+1) can be rewritten as:

X1F(k+1)−X1F(k)
∆t = 1

2LT(tk)PT
2 (k)( fn(XAF(k)) + X2F(k)),

J X2F(k+1)−X2F(k)
∆t = T(k)−ω(k)× Jω(k)− J fn(XAF(k+1))− fn(XAF(k))

∆t ,
(35)

Theorem 2. Considering the spacecraft modeled by (35), if graph G(tk) satisfy Assumption 1, by
designing the control torque as Equation (34) with the following four constraints

1. λmin
(
∆tK1 − ∆t2J−2) > λmax

(
∆t2D2

4 K1K1

)
,

2. λmin
(
2∆tJ−1K2 − ∆t2K2J−2K2

)
> ∆t2D2

4

3. ZFZT
F ≥ 0, where ZF =

∆tK1P2(k)L(k)LT(k)PT
2 (k)

4 + J−1 − ∆tJ−2K2 − 1
2 ,

4. −∆t2D2 + λmin
(
2∆tJ−1K2 − ∆t2K2J−2K2

)
> ∆t (λmax(J−1−∆tJ−2K2− 1

2 )+λmax(∆tK1)D2)
2

λmin(K1−∆tJ−2)+(−λmax(∆tK1)D2λmax(K1))
,

the backstepping state X1F, X2F can (β, A)-practically stably converge to X1F = 04n×1,
X2F = 03n×1, i.e., the Object 2 is achieved.

Proof of Theorem 2. Equations (34) and (35) can be rewritten as

XF(k + 1) = AF(k)XF(k), (36)

where

XF =

[
X1F
X2F

]
∈ R7n,

AF(k) =

[
I4n −

∆tLT(k)PT
2 (k)K1P2(k)L(k)

2
∆tLT(k)PT

2 (k)
2

−∆tJ−1P2(k)L(k) I3n − ∆tJ−1K2

]
∈ R7n×7n,

(37)

define the Lyapunov function VF = XT
FXF, then ∀XF 6= 07n×1, the following equation holds

VF(k + 1)−VF(k) = XT
F(k)

(
AT

F(k)AF(k)− I7n

)
XF(k) (38)

then according to Lemma 7, if I7n − AT
F(k)AF(k) is positive definite ∀XF 6= 07n×1, by

choosing K1, K2 and ∆t, the Euler’s first-order approximation (36) is EGAS. Therefore, con-
sidering Lemma 4, the accurate discrete approximation of the spacecraft attitude tracking
synchronization system governed by (26) and (28) is (β, A)-practically stable, i.e., XF can
converge to the neighborhood of the origin (β, A)-practically stably.

Represent
[
I7n −AT

F(k)AF(k)
]

1,1,
[
I7n −AT

F(k)AF(k)
]

1,2,
[
I7n −AT

F(k)AF(k)
]

2,1,[
I7n −AT

F(k)AF(k)
]

2,2 as PF ∈ R4n×4n, QF ∈ R4n×3n, QT
F ∈ R3n×4n, and RF ∈ R3n×3n,

respectively, then I7n −AT
F(k)AF(k) is denoted as

I7n −AT
F(k)AF(k) =

[
PF QF
QT

F RF

]
,

according to Lemma 7, ∀XF 6= 07n×1, PF, RF and RF − QT
FP
−1
F QF should be positive

definite by choosing K1, K2 and ∆t.

i. PF = ∆tMF(k)− ∆t2MF(k)
TMF(k)

4 − ∆t2LT(k)PT
2 (k)J

−2P2(k)L(k), where
MF = LTPT

2 K1P2L.
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As ∀XF ∈ R4n,

X T
F
(
∆tMF(k)− ∆t2LT(k)PT

2 (k)J
−2P2(k)L(k)

)
XF

= ∆tX T
F LT(k)PT

2 (k)
(
K1 − ∆tJ−2)P2(k)L(k)XF

≥ λmin
(
∆tK1 − ∆t2J−2)YTY,

(39)

and
X T

F
∆t2MF(k)

TMF(k)
4 XF

= ∆t2X T
F LT(k)PT

2 (k)
K1P2(k)L(k)LT(k)PT

2 (k)K1
4 P2(k)L(k)XF

≤ λmax

(
∆t2L(k)LT(k)

4

)
YTK1K1Y

≤ λmax

(
∆t2L(k)LT(k)

4

)
λmax(K1K1)YTY,

(40)

where Y = P2(k)L(k)XF, and the fact (20) is used here. According to [41], we get the
following inequality

λmax(L(k)) ≤ max(d(i) + d(j)|i, j ∈ N , (i, j) ∈ ε),

represent max(d(i) + d(j)|i, j ∈ N , (i, j) ∈ ε) with D, Equation (40) can be rewritten as

X T
F

∆t2MF(k)
TMF(k)

4 XF ≤ λmax

(
∆t2D2

4 K1K1

)
YTY. (41)

According to Equations (39) and (41), by choosing

λmin
(
∆tK1 − ∆t2J−2) > λmax

(
∆t2D2

4 K1K1

)
, (42)

PF is ensured to be positive definite ∀XF 6= 07n×1.

ii. RF =
−∆t2P2(k)L(k)LT(k)PT

2 (k)
4 + 2∆tJ−1K2 − ∆t2K2J−2K2 should be positive definite

∀XF 6= 07n×1. Which means, by choosing K2 and ∆t to satisfy

λmin

(
2∆tJ−1K2 − ∆t2K2J−2K2

)
>

∆t2D2

4
(43)

RF is ensured to be positive definite ∀XF 6= 07n×1.
iii. Define

GF = RF −QT
FP−1

F QF

according to Lemma 7,

λmin(RF) > λmax

(
QT

FP−1
F QF

)
, (44)

should be guaranteed. With some calculations

QT
FP−1

F QF = ∆tZT
FY−1

F ZF, (45)

where
ZF =

∆tK1P2(k)L(k)LT(k)PT
2 (k)

4 + J−1 − ∆tJ−2K2 − 1
2 ,

YF = K1 −
∆tK1P2(k)L(k)LT(k)PT

2 (k)K1
4 − ∆tJ−2.

(46)

Hence, Equation (44) can be rewritten as

λmin(RF) > λmax

(
∆tZT

FY
−1
F ZF

)
. (47)
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As
∆tλ

(
ZT

FY
−1
F ZF

)
= ∆tλ

((
ZT

F
)−1ZT

FY
−1
F ZFZT

F

)
= ∆tλ

(
Y−1

F ZFZT
F

)
,

(48)

Equation (47) turns into

λmin(RF) > λmax

(
∆tY−1

F ZFZT
F

)
, (49)

According to Lemma 9, if
ZFZT

F ≥ 03n×3n, (50)

is ensured by choosing K1 and K2, then the upper bound of λmax

(
∆tY−1

F ZFZT
F

)
can be

bounded as
λmax

(
∆tY−1

F ZFZT
F

)
≤ λmax

(
∆tY−1

F

)
λmax

(
ZFZT

F
)
. (51)

According to Lemma 8, we obtain the following inequalities

λmin(RF) ≥ λmin

(
−∆t2P2(k)L(k)LT(k)PT

2 (k)
4

)
+λmin

(
2∆tJ−1K2 − ∆t2K2J−2K2

)
,

λmax

(
∆tY−1

F

)
≤ ∆t

(
λmin

(
K1 − ∆tJ−2)+ λmin

(
−∆tK1P2(k)L(k)LT(k)PT

2 (k)K1
4

))−1

λmax(ZF) ≤ λmax

(
J−1 − ∆tJ−2K2 − 1

2

)
+ λmax

(
∆tK1P2(k)L(k)LT(k)PT

2 (k)
4

)
(52)

According to Lemma 9,

λmax

(
∆tK1P2(k)L(k)LT(k)PT

2 (k)
4

)
≤ λmax(∆tK1)λmax

(
P2(k)L(k)LT(k)PT

2 (k)
4

)
,

λmax

(
∆tK1P2(k)L(k)LT(k)PT

2 (k)K1

4

)
≤ λmax(∆tK1)λmax

(
P2(k)L(k)LT(k)PT

2 (k)
4

)
λmax(K1).

According to Lemma 10,

λmax

(
P2(k)L(k)LT(k)PT

2 (k)
4

)
≤ D2.

Then Equation (52) can be rewritten as

λmin(RF) ≥ −∆t2D2 + λmin
(
2∆tJ−1K2 − ∆t2K2J−2K2

)
λmax

(
∆tY−1

F

)
≤ ∆t

(
λmin

(
K1 − ∆tJ−2)+ (−λmax(∆tK1)D2λmax(K1)

))−1

λmax(ZF) ≤ λmax

(
J−1 − ∆tJ−2K2 − 1

2

)
+ λmax(∆tK1)D2

(53)

By combining Equations (51) and (53), we get the following inequality

λmax

(
∆tY−1

F ZFZT
F

)
≤ λmax

(
∆tY−1

F

)
λmax

(
ZFZT

F
)

≤ λmax

(
∆tY−1

F

)
(λmax(ZF))

2

≤ ∆t (λmax(J−1−∆tJ−2K2− 1
2 )+λmax(∆tK1)D2)

2

λmin(K1−∆tJ−2)+(−λmax(∆tK1)D2λmax(K1))
,

(54)
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hence Equations (44), (47), and (49) can be ensured by choosing

−∆t2D2 + λmin
(
2∆tJ−1K2 − ∆t2K2J−2K2

)
> ∆t (λmax(J−1−∆tJ−2K2− 1

2 )+λmax(∆tK1)D2)
2

λmin(K1−∆tJ−2)+(−λmax(∆tK1)D2λmax(K1))
,

(55)

In conclusion, if Equations (42), (43), (50), and (55) are satisfied, one can reach the re-
quirement I7n −AT

F(k)AF(k) is positive definite ∀XF 6= 07n×1. Then according to Lemma 3,
the Euler’s first-order approximation (36) is EGAS. Therefore, considering Lemma 4, the
accurate discrete approximation of the spacecraft attitude tracking synchronization system
governed by (26) and (28) is (β, A)-practically stable, i.e., XF can converge to the neighbor-
hood of the origin (β, A)-practically stably. Physically, the attitude of the spacecraft in the
swarm can track the space moving target synchronously. �

4. Simulation Results

In order to adapt to the limits of different propulsion systems, two simulation cases
that satisfy Assumption 1 are simulated in this section. The orbit elements of the target
and spacecraft are listed in Table 1, and spacecraft 1 acts as the LS. The attitude quaternion
Q1 of the LS is calculated according to the relative position of the target and LS using the
methodology in Section 3.1, and the initial attitude Qi(0) of spacecraft i = 2 . . . 6 is given
randomly. Then the FS will maneuver to achieve the attitude synchronization with the
LS. As Section 2.5 illustrated, the aforementioned attitude tracking synchronization in this
paper can be converted into a typical spacecraft attitude cooperative tracking problem,
namely, the control algorithm in this paper can be applied to a wide range of attitude
cooperative tracking problems.

Table 1. Orbit elements of the target and spacecraft.

Orbit Elements Target Leader 1 Follower 2 Follower 3 Follower 4 Follower 5

Semi-major axis a (km) 6790 6900 6900 6900 6900 6900

Eccentricity e 0.0169 1 × 10−9 1 × 10−9 1 × 10−9 1 × 10−9 1 × 10−9

Inclination i (◦) 96 30 30 30 30 30

Right Ascension of the
Ascending Node Ω (◦) 45 150 150 150 150 150

Argument of Perigee v (◦) 30 30 30 30 30 30

Initial true anomaly Θ0 (◦) 75 7 7.01 7.02 7.03 6.99

The communication graph is fixed as Figure 3 and channel fading coefficient [C(t)]i,j
are generated independently and identically distributed in (0, 1] by MATLAB.
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The momentum of inertia of all the spacecraft are set as

Ji =

 8 0.02 0.01
0.02 8.1 0.01
0.01 0.01 8.2

kg·m2, i = 1 . . . 6.
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The interval ∆t between update instants is set as 0.1 s, and each spacecraft receives
three signals as Equation (14) at instants tk ∈ R≥0, k ∈ N≥0. Traditionally, a decimal
requires 8 bytes, namely, 64 bits. Therefore, using the methodology in this paper, the
channel required by each spacecraft for attitude control is 640 b/s, which can be satisfied
by the inter-spacecraft communication capability more than enough [42]. In contrast, when
using the traditional OCAM, every spacecraft needs to receive three signals from each
neighbor respectively. In other words, if a spacecraft has n neighbors, the required bit rate
is n times the size of that in this paper.

4.1. The Control Case Utilizing Liquid Propulsion (LP) Systems

The thrust that LP systems can provide is usually within 1 N [43]. In order to meet
the requirement, the parameters K1 and K2 in control inputs are chosen as K1 = 0.9I18, and
K2 = 3I18. Figure 4 shows the attitude of each spacecraft in the swarm using Euler angle
αi = [Φi, θi, Ψi]

T ∈ R3, i = 1 . . . 6. Figure 5 shows the attitude error of each spacecraft in the
swarm using Euler angle αe,i = [Φe,i, θe,i, Ψe,i]

T ∈ R3, i = 1 . . . 6. The relationships between
Euler angle and quaternion can be found in [29]. Clearly, the attitude tracking synchro-
nization errors of each spacecraft will decrease within [−0.1◦, 0.1◦], by using the control
law given in Sections 3.1 and 3.3. As can be seen in Figure 6, the proposed control torques
Ti = [TcΦi, Tcθi, TcΨi]

T ∈ R3, i = 1 . . . 6 are within [−1 N·m, 1 N·m], and is practicable by
combining the LP systems [43] and the actuator in [44]. Hence, the communication and
control scheme proposed in this paper are verified.
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Table 1. Orbit elements of the target and spacecraft. 
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Inclination 𝑖(∘) 96 30 30 30 30 30 

Right Ascension of the As-
cending Node Ω(∘) 45 150 150 150 150 150 

Argument of Perigee 𝜛(∘) 30 30 30 30 30 30 
Initial true anomaly Θ଴(∘) 75 7 7.01 7.02 7.03 6.99 

   
(a) (b) (c) 

Figure 4. The attitude of the swarm utilizing LP systems: (a) Roll attitude; (b) Pitch attitude; (c) Yaw 
attitude. 

   
(a) (b) (c) 

Figure 5. The attitude tracking synchronization error of the swarm utilizing LP systems: (a) Roll 
error; (b) Pitch error; (c) Yaw error. 

   
(a) (b) (c) 

Figure 6. The control torque for the swarm utilizing LP systems: (a) Roll torque; (b) Pitch torque;
(c) Yaw torque.
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4.2. The Control Case Utilizing Solid Rocket Propulsion (SRP) Systems or Nuclear Propulsion
(NP) Systems

The SRP systems usually provide the thrust within 76 N, and have flown on the
SPINSAT mission [43]. The nuclear propulsion (NP) systems can provide the thrust up
to 1.2× 107 N, which remains the best option for interplanetary journeys towards far-off
planets [45–47]. Accordingly, the parameters K1 and K2 in control inputs are chosen as
K1 = 4.2I18, and K2 = 18I18. Figure 7 shows the attitude of each spacecraft in the swarm
using Euler angle αi = [Φi, θi, Ψi]

T ∈ R3, i = 1 . . . 6. Figure 8 shows the attitude error
of each spacecraft in the swarm using Euler angle αe,i = [Φe,i, θe,i, Ψe,i]

T ∈ R3, i = 1 . . . 6.
Clearly, the attitude tracking synchronization errors of each spacecraft will decrease within
[−0.1◦, 0.1◦], by using the control law given in Sections 3.1 and 3.3. As can be seen in
Figure 9, the proposed control torques Ti = [TcΦi, Tcθi, TcΨi]

T ∈ R3, i = 1 . . . 6 are with
[−20 N·m, 20 N·m], and are practicable by combining the SRP system or NP system and
the actuator in [43]. Hence, the communication and control scheme proposed in this paper
are verified.
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5. Conclusions

Discrete spacecraft swarm attitude tracking synchronization exploiting interference
for a moving target is researched in this paper. Information interference is used for in-
formation transmitting to solve the challenge of limited communication in a spacecraft
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swarm. Compared with time-multiplexing OCAM or frequency-multiplexing OCAM, the
algorithm can achieve high speed and save communication resources proportionally to
the number of spacecraft in practice. The control law based on the backstepping control
technique in this paper also deals with the unknown channel attenuation problem when
exploiting information interference. Simulation shows using the control method proposed
in this paper, the attitude error is within 0.1◦, while the control torque level can be adjusted
by selecting control parameters K1 and K2 to adapt to different propulsion systems. Addi-
tionally, the channel required by each spacecraft for attitude control is 640 b/s, namely, the
methodology proposed in this paper will perform in engineering. In addition, the method
in this paper is applicable to typical spacecraft attitude cooperative tracking problem.
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33. Nešić, D.; Teel, A.R.; Kokotović, P.V. Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time
approximations. Syst. Control Lett. 1999, 38, 259–270. [CrossRef]
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