
����������
�������

Citation: Liang, H.; Li, Z.; Wu, J.;

Zheng, Y.; Chu, H.; Wang, J. Optimal

Guidance Laws for a Hypersonic

Multiplayer Pursuit-Evasion Game

Based on a Differential Game Strategy.

Aerospace 2022, 9, 97. https://

doi.org/10.3390/aerospace9020097

Academic Editor: Sergey Leonov

Received: 6 December 2021

Accepted: 8 February 2022

Published: 12 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Optimal Guidance Laws for a Hypersonic Multiplayer
Pursuit-Evasion Game Based on a Differential Game Strategy
Haizhao Liang 1, Zhi Li 1, Jinze Wu 1, Yu Zheng 2, Hongyu Chu 2 and Jianying Wang 1,*

1 School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 510000, China;
lianghch5@mail.sysu.edu.cn (H.L.); lizh336@mail2.sysu.edu.cn (Z.L.); wujz@mail2.sysu.edu.cn (J.W.)

2 Science and Technology on Space Physics Laboratory, Beijing 100000, China; zy8860015@163.com (Y.Z.);
chyjingdian@sina.com (H.C.)

* Correspondence: wangjiany@mail.sysu.edu.cn

Abstract: The guidance problem of a confrontation between an interceptor, a hypersonic vehicle,
and an active defender is investigated in this paper. As a hypersonic multiplayer pursuit-evasion
game, the optimal guidance scheme for each adversary in the engagement is proposed on the basis
of linear-quadratic differential game strategy. In this setting, the angle of attack is designed as the
output of guidance laws, in order to match up with the nonlinear dynamics of adversaries. Analytical
expressions of the guidance laws are obtained by solving the Riccati differential equation derived by
the closed-loop system. Furthermore, the satisfaction of the saddle-point condition of the proposed
guidance laws is proven mathematically according to the minimax principle. Finally, nonlinear
numerical examples based on 3-DOF dynamics of hypersonic vehicles are presented, to validate
the analytical analysis in this study. By comparing different guidance schemes, the effectiveness
of the proposed guidance strategies is demonstrated. Players in the engagement could improve
their performance in confrontation by employing the proposed optimal guidance approaches with
appropriate weight parameters.

Keywords: hypersonic vehicle; guidance law; differential game; pursuit-evasion

1. Introduction

In recent decades, the technology of hypersonic vehicles (HVs) developed rapidly and
has drawn considerable attention among researchers. The generally accepted definition
of hypersonic flight is a flight through the atmosphere between 20 km and 100 km at
a speed above Mach 5. The advantage of complete controllability of the whole flight
process indicates great potential in terms of the military (hypersonic weapon) and civil
(hypersonic airliner) applications of HVs. Nevertheless, the disadvantages of HVs are
obvious, one of which is easily detected by infrared detectors. Since violent friction with
the atmosphere heats the vehicle surface during flight, it will generate intensive infrared
radiation. Moreover, the maneuver of HVs relies on aerodynamic force only, which means
that their overload and maneuverability are limited. As a result, HVs face serious threats of
new interceptors with the development of endoatmosphere interception technology.

In order to reduce the risk of being intercepted, there are two methods to improve HVs’
ability of confrontation: developing guidance laws for one-on-one competition, or carrying
defender vehicles and transforming the one-on-one confrontation into a multiplayer game.
As for the former, the one-on-one scenario has been researched extensively. The classical
guidance laws such as proportional navigation (PN), augmented proportional navigation
(APN), and optimal guidance laws (OGLs) were proposed for pursuers [1–4]. From the
perspective of evader, one-on-one pursuit-evasion games can be formulated as two types of
problems: a one-side optimization problem or differential game problem. A key assumption
of a one-side optimization problem is that the player could obtain maneuvering and
guidance information of its rival [5–7]. This tight restriction was relaxed by introducing the
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multiple model adaptive estimator in Ref. [8]. Information sharing and missile staggering
were exploited to reduce the dependency of prior information in one-side optimization
problems [9]. On the other hand, the differential game approach makes no assumption on
the rival’s maneuver but requires each adversary’s state information [10,11]. The results in
Ref. [10] demonstrated that PN is actually an optimal intercept strategy. Air-to-air missile
guidance laws based on optimal control and differential game strategy were derived in
Ref. [11], where the guidance laws based on differential game strategy were proven to be
less sensitive to errors in acceleration estimation. Other guidance laws using sliding-mode
control, formation control, heuristic method, and artificial neural network were investigated
in Refs. [12–17]. It is worth noting that HVs are prone to meet saturation problem and
chattering phenomenon when using the aforementioned guidance laws, because of their
limited overload and maneuverability.

Carrying an active defense vehicle is efficient to reduce the maneuverability require-
ment of a target in confrontation, as well as to alleviate the problem of control saturation.
Other than the high requirement of maneuverability in one-on-one games, the number
of adversaries covers the inferiority of maneuverability [18–23]. As indicated in Ref. [18],
optimal cooperative evasion and pursuit strategies for the target pair and the pursuer
were derived. It should be noted that cooperative differential strategies could reduce ma-
neuverability requirements from the target pair but bring difficulties to parameter choice
and induce complicated calculations. Shima [19] derived optimal cooperative strategies of
concise forms for aircraft and its defending missile by using Pontryagin minimum prin-
ciple. However, the laws are calculated by a signum function, which causes a chattering
phenomenon in control signals. Shaferman and Shima [20] considered a novel scenario in
which a team of cooperating interceptors pursue a high-value target, and a relative intercept
angle index was introduced to improve the performance of interceptors. In Ref. [21], cooper-
ative guidance laws for aircraft defense were performed in a nonlinear framework by using
the sliding-mode control technique. In addition to the above studies, Qi et al. [22] discussed
the infeasible and feasible region of initial zero-effort-miss distance in a multiplayer game
and provided evasion-pursuit guidance laws for the attacker. Garcia et al. [23] exploited
the multiplayer game in a three-dimensional case and derived optimal strategies from the
perspective of geometry.

It can be seen that most of the above studies are based on ideal scenarios in which the
response of adversaries is rapid, and the dynamics are assumed to be linear. These particu-
lar assumptions will cause potential problems in practical application, since the responding
speed of HVs, whose overload is generated by aerodynamic force, is commonly low. Thus
far, there are few studies focusing on hypersonic, pursuit-evasion games. Chen et al. [24]
proposed a fractional calculus guidance algorithm based on nonlinear proportional and
differential guidance (PDG) law for a hypersonic, one-on-one pursuit-evasion game. How-
ever, the adversaries in multiplayer games commonly have more than one objective, so the
family of PID controllers is difficult to be utilized in a multiplayer game. To the best of the
authors’ knowledge, research on guidance laws of hypersonic, multiplayer pursuit-evasion
games has not been explored in the available literature.

In this paper, we consider a hypersonic multiplayer game in which an HV carrying an
active defense vehicle is pursued by an interceptor. In order to match up with nonlinear
dynamics, the output of the proposed strategy is set up as the angle of attack (AOA).
The main contribution of this paper is proposing linear-quadratic optimal guidance laws
(LQOGLs) for adversaries in the game by simultaneously considering energy cost, control
saturation, and chattering phenomenon. The optimal guidance strategies are derived
through solving the linear-quadratic differential game problem with the aid of the Riccati
differential equation. In addition, the satisfaction of the saddle-point condition of the
proposed guidance laws is proved analytically. Simulations based on nonlinear kinematics
and dynamics are presented, to validate that each adversary can benefit most within its
ability by employing the proposed strategies.
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This paper is organized as follows: In Section 2, a description of the multiplayer
scenario and mathematical model is presented. In Section 3, the linear-quadratic differential
strategies are derived and analyzed. In Section 4, simulation analysis is presented. Finally,
some conclusions are provided in Section 5.

2. Engagement Formulation

In this section, an engagement is considered in which an HV carrying an active defense
vehicle is pursued by an interceptor. In this engagement, the HV plays as a maneuvering
target (M), the HV interceptor plays as an interceptor (I), and the active defense vehicle
plays as a defender (D). The defender is launched sometime during the end game to protect
the HV by destroying the interceptor. The engagement is analyzed in a plane. The three-
dimensional version of optimal guidance laws can be obtained by extending the optimal
guidance laws in the plane to three-dimensional models [25,26] and, thus, will not be
discussed here.

2.1. Problem Statement

A schematic view of the planar engagement geometry is shown in Figure 1, where
X-O-Y is the Cartesian reference system. There are two collision triangles in the engagement.
One is between the interceptor and the HV (I–M collision triangle), and the other is between
the interceptor and the defender (I–D collision triangle). The altitude, velocity, flight path
angle, and lift coefficient are represented by h, V, φ and Cl, respectively. The distance
between each adversary is represented by ρID and ρIM, while the angle between the light
of sight (LOS) and X axis is represented by λ.
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The HV is required to evade the interceptor with the assistance of the defender.
Conversely, the mission of the interceptor includes evading the defender and pursuing the
HV. Therefore, the guidance laws for target pairs are designed to converge hID to zero and
to maximize hIM, while the guidance laws designed for interceptors should converge hIM
to zero and maximize hID.

2.2. Equations of Motion

Considering the I–M collision triangle, equations of motion can be given by

S1 :



.
ρIM = −VL

IM
.
λIM =

V⊥IM
ρIM

.
hIM = VI sin φI −VM sin φM
.

V I = 0
.

VM = 0

(1)
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where VL
IM is the relative velocity along LOSIM, and V⊥IM is the lateral speed orthogonal to

LOSIM, which can be calculated by

VL
IM = VI cos(φI + λIM) + VM cos(φM − λIM) (2)

V⊥IM = VI sin(φI + λIM)−VM sin(φM − λIM) (3)

Additionally, the relative motion of the interceptor and defender in the I–D collision
triangle can also be described in a similar manner as Equation (1).

S2 :



.
ρID = −VL

ID
.
λID =

V⊥ID
ρID

.
hID = VI sin φI −VD sin φD
.

V I = 0
.

VD = 0

(4)

where
VL

ID = VI cos(φI + λID) + VD cos(φD − λID) (5)

V⊥ID = VI sin(φI + λID)−VM sin(φD − λID) (6)

The flight path angles of each adversary can be defined as

.
φi =

ΓiCli − g cos φ

Vi
, i = {I, M, D} (7)

where g is the gravitational constant, and Γi is an operator defined as follows:

Γi =
qiSi
mi

, i = {I, M, D} (8)

where qi is the dynamic pressure, Si is the reference cross-sectional area of aircraft, and mi
is the mass of aircraft.

2.3. Linearized Equations of Motion

During the endgame, the adversaries can be considered as constant-speed mass points,
since, in most cases, the acceleration generated by thrusters is not significant in the guided
phase of the flight [6]. Therefore, the equations of motion can be linearized around the
initial collision course according to small-perturbation theory, and the multiplayer game
can be formulated as a fixed-time optimal control process.

S1 :



.
ρIM = −(VI + VM)
.
λIM = 0
..
hIM = ΓIClI − ΓMClM
.

V I = 0
.

VM = 0

(9a)

S2 :



.
ρID = −(VI + VD)
.
λID = 0
..
hID = ΓIClI − ΓDClD
.

V I = 0
.

VD = 0

(9b)

As a consequence of linearized kinematics, the gravitational force is neglected [6]. Mean-
while, it is reasonable to assume that the dynamics of each agent can be represented by
first-order equations as
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.
Cli =

−(Cli − ui)

τi
, i = {I, M, D} (10)

where ui is the guidance command.
In this engagement, we were concerned more about the miss distances orthogonal to

LOS. Thus, the state variables chosen to represent the engagement are given as

x1 =
[

hIM
.
hIM ClI ClM

]
(11a)

x2 =
[

hID
.
hID ClI ClD

]
(11b)

The state functions can be expressed as

L1 :



.
x11 = x12
.
x12 = ΓI x13 − ΓMx14
.
x13 = −(x13−uI)

τI
.
x14 = −(x14−uM)

τM

(12a)

L2 :



.
x21 = x22
.
x22 = ΓI x23 − ΓDx24
.
x23 = −(x23−uI)

τI
.
x24 = −(x24−uD)

τD

(12b)

Accordingly, the state-space representation of the pursuit-evasion game is obtained.

.
x1 = A1x1 + B1

[
uI uM

]T (13a)

.
x2 = A2x2 + B2

[
uI uD

]T (13b)

where

A1 =


0 1 0 0
0 0 ΓI ΓM
0 0 − 1

τI
0

0 0 0 − 1
τM

, B1 =


0 0
0 0
1
τI

0
0 1

τM

 (14a)

A2 =


0 1 0 0
0 0 ΓI ΓD
0 0 − 1

τI
0

0 0 0 − 1
τD

, B2 =


0 0
0 0
1
τI

0
0 1

τD

 (14b)

A zero-effort-miss (ZEM) method is introduced to reduce the complexity of the mathe-
matical model, which is the missed distance if both vehicles in collision engagement would
apply no control from the current time. The ZEM of interceptor and target is represented
by Z1, and that of interceptor and defender is represented by Z2, which can be, respectively
calculated as

Z1(t) = L1Φ1

(
t, t f 1

)
x1(t) (15a)

Z2(t) = L2Φ2

(
t, t f 2

)
x2(t) (15b)

where t f 1 and t f 2 represent interception time, L1 and L2 are constant vectors defined as

L1 =
[

1 0 0 0
]

(16a)

L2 =
[

1 0 0 0
]

(16b)

Additionally, Φi(·) is the transition matrix which can be calculated by

Φi(·) = L−1
[
(sI−Ai)

−1
]T

, i = {1, 2} (17)
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where L−1[·] is the inverse Laplace transformation, and I denotes the identity matrix.
Associated with Equations (13)–(17), Φ1 and Φ2 can be calculated as follows:

Φ1 =


1 t ΓIτ

2
I φ(χ1I) −ΓMτ2

Mφ(χ1M)
0 1 ΓIτIψ(χ1I) −ΓMτMψ(χ1M)
0 0 e−χ1I 0
0 0 0 e−χ1M

 (18a)

Φ2 =


1 t ΓIτ

2
I φ(χ2I) −ΓDτ2

Dφ(χ2M)
0 1 ΓIτIψ(χ2I) −ΓDτ2

Dψ(χ2M)
0 0 e−χ21 0
0 0 0 e−γ2M

 (18b)

where φ(·), ψ(·) and χij are computed as

φ(ξ) = e−ξ + ξ − 1 (19)

ψ(ξ) = −e−ξ + 1 (20)

χij =
t f j − t

τi
(21)

As a result, Z1 and Z2 are calculated by

Z1(t) = x11 +
(

t f 1 − t
)

x12 + ΓIτ
2
I φ(χ1I)x13 − ΓMτ2

Mφ(χ1M)x14 (22a)

Z2(t) = x21 +
(

t f 2 − t
)

x22 + ΓIτ
2
I φ(χ2I)x23 − ΓDτ2

Dφ(χ2D)x24 (22b)

The derivative of Z1 and Z2 can be given as follows:
.
Z1(t) = ΓIτIuIψ(χ1I)− ΓMτMuMψ(χ1M) (23a)

.
Z2(t) = ΓIτIuIψ(χ2I)− ΓDτDuDψ(χ2D) (23b)

Therefore, the dynamic system corresponding to Equations (13) and (14) is transformed into
.
¯
x(t) = GI(t)uI(t)−GE(t)uE(t) (24)

where

¯
x(t) =

[
Z1(t)
Z2(t)

]
, uE(t) =

[
uM(t)
uD(t)

]
, GI =

[
ΛI1
ΛI2

]
, GE =

[
−ΛM1 0

0 −ΛD2

]
(25)

Λij = Γiτiψ
(
χij
)

(26)

Remark 1. According to Equations (22a) and (22b), Zi(t) is independent of guidance laws and
only relies on current states. If the current state is determined, Zi(t) can be determined. It can be
seen from Equations (23a) and (23b) that the derivative Zi(t) is state-independent. Corresponding
to the new state space defined by Equations (24)–(26), an optimal control problem with a fixed
terminal time in a continuous system is considered. The objective of the target pair is to design
optimal guidance schemes that can converge Z2 to zero as t→ t f 2 while keeping Z1 as large as
possible. Conversely, the control law of the interceptor is designed to make Z1 converge to zero while
maintaining Z2 as large as possible.

2.4. Timeline

With the linearization assumption, the interception time is fixed and can be calculated by

t f 1 = −ρIM0
.
ρIM

=
ρM0

(VI + VM)
(27a)

t f 2 = −ρID0
.
ρID

=
ρID0

(VI + VD)
(27b)
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It is reasonable to assume that the engagement of the interceptor and the defender
terminates before that of the interceptor and the target, and thus, t f 2 < t f 1. The nonnegative
time-to-go of the interceptor–defender engagement and the interceptor–target engagement
can be, respectively, calculated as follows:

tgo1 =

{
t f IM − t, t < t f IM

0, t ≥ t f IM
(28a)

tgo2 =

{
t f ID − t, t < t f ID

0, t ≥ t f ID
(28b)

3. Guidance Schemes
3.1. Cost Function

The quadratic cost function in this problem is chosen as follows:

J(uI , uE) =
1
2

¯
x

T(
t f

)
P

¯
x
(

t f

)
+

1
2

∫ t f

t0

[
uT

I (t)r11uI(t)− uT
E(t)REuE(t)

]
dt (29)

where
P =

[
p11 0
0 −p22

]
, RE =

[
r22 0
0 r33

]
(30)

The weights p11, p22, r11, r22 and r33 are nonnegative. Let u∗I , u∗M, and u∗D be optimal
guidance laws for interceptor, target, and defender, respectively. Thus, the guidance laws
are issued so as to meet the condition set as follows:

max
[u∗Mu∗D ]

min
u∗I

J (31)

3.2. Cost Function

Let λ(t) be the Lagrange multiplier vector,

λ(t) =
[

λ1(t)
λ2(t)

]
(32)

The corresponding Hamiltonian is given by

H =
1
2

[
uT

I (t)RIuI(t)− uT
E(t)REuE(t)

]
+ λT [GI(t)uI(t)−GE(t)uE(t)] (33)

The costate equations and transversality conditions are given by
.
λ1 = − ∂H

∂Z1
= 0

.
λ2 = − ∂H

∂Z2
= 0

(34)


λ1

(
t f MM

)
= ∂J

∂Z1(t f MM)
= p11Z1

(
t f MM

)
λ2

(
t f ID

)
= ∂J

∂Z2(t f ID)
= −p22Z2

(
t f ID

) (35)

As the Hamiltonian is second-order continuously differentiable with respect to uI and
uE, u∗I and u∗E satisfy {

∂H
∂uI

= uT
I (t)RI + λT(t)GI(t) = 0

∂H
∂uE

= uT
E(t)RE + λT(t)GE(t) = 0

(36)

Therefore, the optimal guidance laws can be calculated by

u∗I (t) = −R−1
I GT

I (t)λ(t)[
u∗M(t)
u∗D(t)

]
= −R−1

E GT
E(t)λ(t)

(37)
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Considering Equation (35), the linear relationship between λ
(

t f ID

)
and Z

(
t f ID

)
can

be obtained immediately. Thus, it is reasonable to assume that

λ(t) = K(t)
¯
x(t) (38)

where K(t) is a square matrix of order two and satisfies

K
(

t f ID

)
= P (39)

The derivative λ(t) with respect to time can be calculated by

.
λ(t) =

.
K(t)

¯
x(t) + K(t)

.
¯
x(t)

=
.

K(t)
¯
x(t) + K(t)[GI(t)uI(t)−GE(t)uE(t)]

(40)

Substituting the optimal guidance laws (37) into Equation (40), we have

.
λ(t) =

.
K(t)

¯
x(t) + K(t)[GI(t)u∗I (t)−GE(t)u∗E(t)]

=
.

K(t)
¯
x(t)−K(t)

[
GI(t)R−1

I GT
I (t)−GE(t)R−1

E GT
E(t)

]
λ(t)

=
.

K(t)
¯
x(t)−K(t)

[
GI(t)R−1

I GT
I (t)−GE(t)R−1

E GT
E(t)

]
K(t)

¯
x(t)

(41)

According to Equations (34) and (41), since
.
λ(t) = 0 is satisfied for any

¯
x(t), we have

.
K(t)−K(t)

[
GI(t)R−1

I GT
I (t)−GE(t)R−1

E GT
E(t)

]
K(t) = 0 (42)

Equation (42) is a well-known Riccati differential equation. Considering the following
equation:

dK−1

dt = −K−1 dK
dt K−1

= −K−1
[
K
(

GI R−1
I GT

I −GER−1
E GT

E

)
K
]
K−1

= −
(

GI R−1
I GT

I −GER−1
E GT

E

) (43)

Then, by integrating Equation (43) from t to t f ID and considering Equation (39), the
analytical expression of K(t) is derived as follows:

K(t) =
[

P−1 +
∫ tH

t

[
GI(t)R−1

I GT
I (t)−GE(t)R−1

E GT
E(t)

]
dt
]−1

(44)

Substituting Equation (44) into Equation (38), the LQOGL u∗I , u∗D and u∗M can be
calculated by

u∗I (t) = −R−1
I GT

I (t)K(t)
¯
x(t)[

u∗M(t)
u∗D(t)

]
= −R−1

E GT
E(t)K(t)

¯
x(t)

(45)

Now, the solution of optimal guidance laws is presented completely. By using the
interpolation method, the desired AOA can be obtained, and this completes the design of
the guidance laws.

3.3. Proof of Saddle-Point Condition

The proposed guidance laws u∗I , and u∗E are functions of state vector
¯
x(t), which form

closing-loop feedback controls of
¯
x(t). It should be proven that the optimal guidance

laws given by Equation (45) satisfy the saddle-point condition. Considering Equations (24)
and (42), it can be derived that
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1
2

d
dt

¯
x

T
K

¯
x = 1

2

.
¯
x

T

K
¯
x + 1

2
¯
x

T .
K

¯
x + 1

2
¯
x

T
K

.
¯
x

= 1
2

[
uT

I GT
I − uT

EGT
E

]
K

¯
x + 1

2
¯
x

T
K[GIuI −GEuE]

+ 1
2
¯
x

T
K
[
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(46)

Integrating Equation (46) from t0 to t f ID and taking Equation (29) into account, the
cost function can be derived as follows:

J(uI , uE) = 1
2
¯
x

T(
t f ID

)
K(t f ID)

¯
x
(

t f ID

)
+ 1

2

∫ t f ID
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[
uT

I (t)r11uI(t)− uT
E(t)REuE(t)

]
dt
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2
¯
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T
(t0)K(t0)

¯
x(t0) +
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11 GIK
¯
x
]T
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¯
x
]

dt

−
∫ t f ID

t0
1
2

[
uE + R−1

E GEK
¯
x
]T

RE

[
uE + R−1

E GEK
¯
x
]

dt

(47)
If uI(t) = u∗I (t) = −r−1

11 GI(t)K(t)
¯
x(t), we have

J(u∗I , uE) =
1
2

¯
x

T
(t0)K(t0)

¯
x(t0)−

∫ t f ID

t0

1
2

[
uE + R−1

E GEK
¯
x
]T

RE

[
uE + R−1

E GEK
¯
x
]

dt (48)

It is obvious that uE(t) = u∗E(t) = −R−1
E GE(t)K(t)

¯
x(t) yields the minimum of J,

which means
J(u∗I , u∗E) ≤ J(u∗I , uE) (49)

Similarly, if uE(t) = u∗E(t) = −R−1
E GE(t)K(t)

¯
x(t), we have

J(uI , u∗E) =
1
2

¯
x

T
(t0)K(t0)

¯
x(t0) +

∫ t f ID

t0

1
2

[
uI + r−1

11 GIK
¯
x
]T

RI

[
uI + r−1

11 GIK
¯
x
]

dt (50)

Thus, uI(t) = u∗I (t) = −R−1
I GI(t)K(t)

¯
x(t) yields the maximum of J, which means

J(uI , u∗E) ≤ J(u∗I , u∗E) (51)

Combined with two situations (49) and (51), u∗I and u∗E satisfy the saddle-point condi-
tion as follows:

J(uI , u∗E) ≤ J(u∗I , u∗E) ≤ J(u∗I , uE) (52)

4. Simulation and Analysis

In this section, the performance of the proposed guidance algorithms is investigated
through nonlinear numerical examples. A scenario, consisting of an HV as the target (M),
an active defense vehicle as the defender (D), and an HV interceptor as the interceptor (I),
is considered. The interceptor is assigned the task of capturing the HV and evading the
defender. Perfect information for the adversaries’ guidance laws is assumed.

4.1. Simulation Setup

In the simulated scenarios, 3-DOF point mass planetary flight mechanics [27] are
employed in each adversary. All players use rocket engines to achieve hypersonic speed;
the target and the defender are launched by the same rocket, while each interceptor is
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launched by a separate small rocket. The target and the defender have higher speeds
than the interceptor since the target has a higher range requirement and is launched by
a more powerful rocket. Hence, the initial horizontal velocities of the three players are
set as VD = VM = 3000 m/s, and VI = 2000 m/s, respectively. The altitudes are set as
hI = 40.5 km, hM = 40 km, and hD = 40.1 km, respectively. The endgame starts when the
horizontal distance between the target and the interceptor reaches 150 km. The defender is
assumed to be launched 20 km in front of the target at the beginning of the scenario. During
the endgame, all players are in the glide phase and perform maneuvers, mainly relying on
aerodynamic force. The HV is considered as a plane-symmetric lifting-body shape with
one pair of air rudders, which can provide high L/D up to 3.5 [28]. Hence, the HV is
required to employ bank-to-turn control. The active defense vehicle is a companion vehicle
launched by HV whose aerodynamic performance is slightly worse than HV. Conversely,
the interceptor is designed as an axisymmetric structure, with two pairs of air rudders, and
employed skid-to-turn control for high agility. The desired roll rate of the interceptor can be
expected to be much smaller than the HV since the interceptor can reorient the aerodynamic
acceleration by changing the ratio of the AOA to the angel of sideslip [29]. This means
that the interceptor sacrifices the aerodynamic performance in exchange for mobility and
control stability. To compensate for the shortcoming of aerodynamic maneuverability, the
interceptor was equipped with a rocket-based reaction-jet system (RCS), to obtain instant
lateral acceleration. The RCS can only be turned on for a short time around the collision,
due to limited fuel cost. The instantaneous overload of the interceptor is expected to be
9 g when exhausting the RCS. For these practical factors, the AOAs are assumed to be
bounded as αmax

I = αmax
D = αmax

M = 35◦ with bounded changing rates as
.
αI = 6 deg/s,

.
αD = 5 deg/s and

.
αM = 3 deg/s, respectively. Time constant of each player is τI = 5 ms

and τD = τM = 10 ms, respectively. The simulation parameters of all adversaries are listed
in Table 1.

Table 1. Simulation parameters.

Parameters
Adversary

Interceptor Defender Target

Latitude 0 0 0
Longitude 0 deg 0.0031 deg 0.023 deg
Altitude 40.5 km 40.1 km 40 km
Horizonal velocity −2000 m/s 3000 m/s 3000 m/s
Vertical velocity 0 0 0
Maximum AOA 35 deg 35 deg 35 deg
Rate of AOA change 6 deg/s 5 deg/s 3 deg/s
Time constant 0.005 s 0.01 s 0.01 s
Killing radius 0.3 m 0.5 m 0.5 m

4.2. Numerical Examples

In this subsection, the effectiveness of the proposed LQOGL in Equation (45) is vali-
dated through the following three cases:

1. The interceptor adopts PN guidance law, the defender adopts PN guidance law, and
the target adopts LQOGL (PNvPNvLQOGL);

2. The interceptor adopts PN guidance law, the defender adopts LQOGL, and the target
adopts LQOGL (PNvLQOGLvLQOGL);

3. The interceptor adopts LQOGL, the defender adopts LQOGL, and the target adopts
LQOGL (LQOGLvLQOGLvLQOGL).

Generally, high L/D HVs are required for the capabilities of large downrange and
cross-range [30]. Thus, unnecessary maneuvers of HV should be avoided since it will
increase drag forces and cause kinetic energy cost and range loss. Thus, the LQOGL for the
target can be expressed as follows:
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 uM
∗ =

[
−R−1

E GT
E(t)K(t)

¯
x(t)

]
11

f or ‖ZIM‖ ≤ ρ

u∗M = 0 f or ‖ZIM‖ > ρ

(53)

Since the defender is designed to sacrifice itself to protect the HV, there is no need to
take into account the range loss and control saturation for the defender. Unlike the HV and
the defender, endoatmosphereic interceptor missile is generally steered by dual control
systems of aerodynamic fins and reaction jets [31]. Thus, fuel cost should be taken into
account for the interceptor, and the switching time of the jet engines should be strictly
controlled. Inspired by Ref. [31], the maximum duration of the engine is assumed up to 1 s,
and the engine is turned on when 0.5 s < tgo1 < 1.5 s and 0 s < tgo2 < 1 s. Additionally,
the dynamic of the divert thrust generated by jet engines can be assumed to be presented
by a first-order equation,

.
LJ = −

LJ − uJ

τI
(54)

The LJ herein is considered as a complement to lift force in Equation (53). The optimal
guidance laws based on Pontryagin minimum principle for a reaction-jet system can be
given by

u∗J = umax
J sgn[Z2], 0 s < tgo2 < 1 s (55)

u∗J = −umax
J sgn[Z1], 0.5 s < tgo1 < 1.5 s (56)

where umax
J is the maximum thrust that the engines can provide, which is assumed to be

seven times of gravitational force.
The simulation results are concluded in Table 2.

Table 2. Simulation results.

Engagements
Case 1 Case 2 Case 3

PNvPNvLQOGL PNvLQOGLvLQOGL LQOGLvLQOGLvLQOGL

ZEMID 15.01 m −15.03 m 15.01 m
ZEMIM −0.17 m −28.07 m −0.17 m
Result Target is intercepted by interceptor Interceptor is expelled by the defender. Target is intercepted by the interceptor.

Case 1. The performance of the guidance strategies in multiplayer engagement, PNvPNvLQOGL,
is investigated in this case. Based on the linear-quadratic differential game, LQOGL for the target is
calculated by Equation (53), corresponding to weight parameters.{

p11 = 1× 108, p22 = 1× 108, r11 = 1.95, r22 = 12.54, r33 = 10.13
}

, for target (57)

Simulation results of case 1 are shown in Figure 2, which include the trajectory, ZEM,
and AOA of each adversary. It can be seen from Figure 2a,b that the interceptor is pursued
tightly by the defender but evades the defender depending on thrust during 0 s < tgo2 < 1 s
and then turns its head to the target. The maximum acceleration of the interceptor reaches
10 g when the exhaust pipe is burning. Although the target has a higher L/D, the interceptor
is able to intercept the target. The ZEM between the target and the interceptor and the ZEM
between the defender and the interceptor both converge to zero swiftly. An interesting
situation is observed in which even the target is pursued tightly by the interceptor, and it
hardly maneuvers in the middle of the endgame. This situation can be understood as the
scenario in which the interceptor is also tightly caught by the defender, which is considered
safe by the target according to LQOGL. However, the key is that the jet engines on the
interceptor can help it evade the defender when 0 s < tgo2 < 1 s. The ZEM between the
interceptor and the defender rises suddenly to 15.01 m when tgo2 = 0 s, which is larger than
the killing radius of the defender obviously. After that, the engagement is transformed into
a one-on-one game, and the target has no time to enlarge the missing distance. Referring to
Figure 2c–e, both the target and the interceptor face to control saturation. However, the
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target is not able to evade the interceptor since the rate of AOA change of the target is
limited, while the interceptor can respond quickly by switching on the jet engines when
0.5 s < tgo1 < 1.5 s. As can be seen in Figure 2b, the ZEM between the target and the
interceptor converges to −0.17 m when tgo1 = 0 s, which is smaller than the killing radius
of the interceptor.
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These results demonstrate that the interceptor is able to evade the defender using PN
guidance law and successfully intercept the target. Additionally, the accelerations of the
three adversaries do not reach the limit in the middle process of this engagement.

Remark 2. Inspired by Ref. [19], guidance laws for target based on norm differential strategy can
be derived from the cost function{

p11 = 1× 108, p22 = 1× 108, r11 = 1.95, r22 = 12.54, r33 = 10.13
}

, for target (58)

The guidance scheme for the target is calculated by

u∗M = sgn
[
α2Z1

(
t f IM

)
ΛM1

]
(59)

It can be seen from Equation (59) that the guidance laws based on norm differential strategy are
calculated by a signum function.
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A controlled experiment is performed by replacing the target’s LQOGL with the
norm optimal guidance law proposed in Equation (59). The results are shown in Figure 3,
showing the trajectory, ZEM, and AOA of the target. It can be seen in Figure 3b that the
ZEM between the target and the interceptor is kept around a safe distance. However,
as shown in Figure 3c, the target meets with the control saturation problem and severe
chattering phenomenon. This is consistent with the expression of norm optimal guidance
law. Under the bank-to-turn control mode, the desired roll rate of the target will be very
large. Additionally, large-amplitude maneuvering will lead to kinetic energy loss as far as
range loss.
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Case 2. The performance of guidance strategies in engagement, PNvLQOGLvLQOGL, is in-
vestigated in this case. LQOGLs for target pair are calculated through Equations (45) and (53),
corresponding to parameters chosen as follows:{

p11 = 1× 108, p22 = 1× 108, r11 = 1.95, r22 = 12.54, r33 = 10.13
}

, for target pair (60)

Simulation results of case 2 are shown in Figure 4, which include trajectory, ZEM,
and AOA of the target pair. The effectiveness of the proposed guidance laws is confirmed
by this case. Figure 4a,b show that the interceptor evades from being intercepted by the
defender but fails to catch the target. The ZEM between the interceptor and the defender
is −15.03 m when tgo2 = 0, and the ZEM between the interceptor and the target vehicle
is −28.07 m when tgo1 = 0, which are larger than the killing radius of the defender and
the interceptor, respectively. It can be seen from Figure 4a,b that the interceptor is driven
away from the target by the defender when 0 s < tgo2 < 1 s and cannot catch up with the
target even the interceptor can accelerate by jet engines. Compared with the simulation
result of case 1, smooth dynamics of the target and the defender are evident in Figure 4c,d.
Moreover, the guidance laws of target pairs are not saturated, and the kinetic energy cost is
considerably saved. The chattering phenomenon is also alleviated, which is beneficial to
control stability.
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Case 3. The performance of guidance strategies in engagement, LQOGLvLQOGLvLQOGL, is
investigated in this case. LQOGLs for three adversaries are calculated through Equations (45), (53),
(55), and (56). Weight parameters are chosen as follows:{

p11 = 1× 108, p22 = 1× 108, r11 = 1.95, r22 = 12.54, r33 = 10.13
}

, for target pair (61){
p11 = 1× 108, p22 = 1× 108, r11 = 25, r22 = 2.22, r33 = 17.03

}
, for interceptor (62)

Figure 5 presents the simulation results of case 3 in order similar to the above cases.
As Figure 5a shows, the guidance laws proposed for the target pair are effective. Instead of
evading the interceptor persistently, the target acts similar to a bat and lures the interceptor
close to the defender. It allows the defender to catch the interceptor more easily. However,
contrary to the result of case 2, the interceptor skims the defender without changing heading
violently and turns its head to the target. Obviously, it can be seen from Figure 5b that the
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interceptor is able to attack the target vehicle without being intercepted by the defender.
The ZEM between the interceptor and the defender is 15.01 m when tgo2 = 0, and the ZEM
between the interceptor and the target vehicle is −0.17 m when tgo1 = 0.
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5. Conclusions

• In this research, a set of guidance laws for a hypersonic multiplayer pursuit-evasion
game is derived based on linear-quadratic differential strategy. The energy cost,
control saturation, chattering phenomenon, and aerodynamics were considered simul-
taneously. The satisfaction of saddle-point condition in a differential game was also
proven theoretically.

• Nonlinear numerical examples of the multiplayer game were presented to validate
the analysis. The advantage and efficiency of the proposed guidance were verified
by the results. The LQOGLs exactly reduce the maneuverability requirement of the
target in the pursuit-evasion game. Compared with the norm differential strategy, the
proposed guidance strategy reduces the energy cost, alleviates the saturation problem,
and avoids the chattering phenomenon, which guarantees task accomplishment and
increases guidance phase stability.

• The performance of the interceptor showed that the proposed optimal guidance
approach is able to complete the intercept mission if the interceptor possesses superior
maneuverability. It is important to note that the saturation problem cannot be avoided
completely when all the adversaries employ the LQOGL, since maneuverability is
the most important factor in determining whether they will win or lose in the game.
The interceptor or the target pair should make their best effort to attack or defend by
exhaustedly performing maneuvers.
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