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Abstract: The formation flight of quadrotor unmanned aerial vehicles (UAVs) is a complex multi-
constraint process. When designing a formation controller, the dynamic model of the UAV itself has
modeling errors and uncertainties. Model predictive control (MPC) is one of the best control methods
for solving the constrained problem. First, a mathematical model of the quadrotor considering
disturbance and uncertainty is established using the Lagrange–Euler formulation and is divided
into a rotational subsystem (RS) and a translational subsystem (TS). Here, an improved MPC (IMPC)
strategy based on an error model is introduced for the control of UAVs. The tracking errors caused by
synthesis disturbance can be eliminated because of the integrator embedded in the augmented model.
In addition, by modifying the parameters of the cost function, not only can the degree of stability of
the closed-loop subsystem be specified, but also numerical problems in the MPC calculation can be
improved. The simulation results demonstrate the stability of the designed controller in formation
maintenance and its robustness to external disturbances and uncertainties.

Keywords: formation controller; MPC; multiple UAVs; disturbance; uncertainty

1. Introduction

The unmanned aerial vehicle (UAV) system is the fastest developing and most practical
application in the field of unmanned systems, with its low cost, convenient operation,
and flexible characteristics. The quadrotor has many advantages, including hovering,
vertical take-off, landing ability, and indoor flight. With the diversification of application
scenarios and missions, the capability of a single UAV is increasingly limited, and the
coordination of multi-UAVs formation flight has become an important trend of unmanned
aerial applications [1]. A team of low-cost UAVs could replace expensive multifunctional
drones for large-scale, high-precision missions and increase mission success rates [2].

However, the quadrotor has six degrees of freedom, but only four inputs. Therefore, its
dynamics are not only nonlinear but also coupled and under-actuated, which is difficult to
control. In addition, the quadrotor will be affected by aerodynamic or random disturbance
during the formation flight. Therefore, an advanced control strategy is needed to ensure
the stability of autonomous formation flight.

Several strategies have recently been proposed to cope with the control problems in
formation flight. Fu et al. studied the algorithm for the maintenance and reconstruction
of formation combined with the artificial potential field [3]. Another paper by Liu et al.
focuses on the visual servoing switching-topology control approach for formation tracking
problems [4]. Zhen et al. investigated multivariate adaptive control based on consensus to
address the disturbances and uncertainties present in the formation [5]. Yu et al. developed
a strategy for multi-UAVs with actuator faults and wind effects [6]. Wolfe et al. verified the
application of distributed multi-model Model Predictive Control (MPC) in tracking ground
targets by quadrotor. The control algorithm was implemented by the on-board computer
of the UAV [7]. Huang et al. proposed a new method for cooperative collision avoidance
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based on the Kalman filter and MPC without considering the constrains and uncertainties
of the UAV [8]. Kuriki et al. designed a formation controller with obstacle avoidance based
on distributed MPC and linearized model [9]. A controller for inward collision avoidance
based on nonlinear model predictive control (NMPC) was designed by Zhou et al., where
the model was first order in two-dimensional space [10]. Liao et al. developed a distributed
cascade robust feedback controller for formation that takes into account the dynamic
constraints of the UAV [11]. The paper by Hegde et al. covered the applicability of multi-
agent systems to agriculture and the design of distance-based control algorithms to maintain
a specific formation of UAVs [12]. Zhang et al. investigated the control problem of high-
order linear systems in the presence of time delays [13]. Shadeed et al. proposed a trajectory
tracking method using a mapped desired output into input sequence based on differential
flatness modeling [14]. However, most of the UAV systems in the literature are based on
either two-dimensional space or ideal models [15–18], without considering the disturbances
and uncertainties. In addition, the performance of model-based controllers relies heavily
on the accuracy of the modeling. On the one hand, it is difficult to obtain an accurate
model of the quadrotor due to its complex aerodynamic characteristics. On the other hand,
small UAVs are more sensitive to disturbances, such as gusts or load changes. Therefore,
overlooking these two factors will cause the performance of the controller and the stability
of the formation to deteriorate.

Yan et al. proposed a consensus-based sliding mode controller (SMC) for formation
with disturbances in a three-dimensional environment [19]. Huang et al. investigated
the distributed finite-time formation controller based on a disturbance observer (DOB)
and SMC [20]. Liang et al. combined a high-order sliding mode DOB and back-stepping
control to solve the suspension failures in payload formation transport [21]. Messai et al.
designed a robust controller for linear cluster systems subject to state constraints [22].
Guo et al. investigated a learning-based formation algorithm with obstacle avoidance and
anti-disturbance [23]. Thien et al. designed a PID controller and an SMC to cope with
constant and time-varying disturbances or commands in the formation, respectively [24].
Liu et al. proposed a distributed adaptive fault-tolerant control to cope with multiple
uncertainties and actuator failures in the formation [25]. Wang et al. designed a distributed
formation controller based on sliding mode theory using nearby information [26]. Wu et al.
solved the obstacle avoidance problems in UAV formations by combining a particle swarm
optimization algorithm and MPC [27]. Dubay et al. investigated the problem of the
collision avoidance of UAVs in the process of reaching consensus [28]. However, most of
these studies were based on ideal models and the physical constraints of UAVs were not
paid enough attention [29], which is not in line with reality.

Essentially, the core of MPC is to optimize the future control trajectory subject to plant
constraints at each step of the control period. It is then guaranteed that the calculated
controls will be optimal for the real-time situation. Therefore, MPC is one of the most
effective control methods to solve constrained problems [30]. In fact, there are already
some examples of the application of MPC to single UAV or formation control, such as
in [11,31–36]. However, the discrete-time model of the UAV is critically stable. In the
process of rolling optimization, this critical stability may be further deteriorated, which is
ignored by many studies. In this paper, a modified multi-constrained MPC is designed for
multiple UAVs to achieve the stability of the formation and trajectory tracking. Because of
the addition of integrators to the augmented model, it is possible to eliminate the effect of
disturbances and model uncertainties on the performance of the controller without adding
disturbance observers.

A three-dimensional dynamic model of the UAV considering disturbance and uncer-
tainty is described in Section 2. Multi-constrained MPCs for translational subsystem (TS)
and rotational subsystem (RS) are presented in Section 3. The stability of the previously
designed algorithm is provided in Section 4. Comparison and simulation results are given
in Section 5. Section 6 provides a summary and directions for future work.
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2. Problem Description
2.1. Dynamic Model of the Quadrotor

The UAV structure considered in this article is identical to that shown in Figure 1.
For the ith quadrotor, the dynamic model considering disturbance and uncertainty can be
obtained by the Lagrange method [37]:

..
φi = a1ui,1 + b1

.
θi

.
ψi + b2Ωr

.
θi + ∆ f1 + d1..

θi = a2ui,2 + b3
.
ψi

.
φi − b4Ωr

.
φi + ∆ f2 + d2..

ψi = a3ui,3 + b5
.
φi

.
θi + ∆ f3 + d3..

xi = ui,x/m + ∆ f4 + d4..
yi = ui,y/m + ∆ f5 + d5..
zi = ui,z/m + ∆ f6 + d6

(1)

where (xi, yi, zi) are the states of position; (θi, φi, ψi) are pitch, roll, and yaw angle, respec-
tively; m is the mass of the UAV; ui,x, ui,y, ui,z, and ui,j(j = 1, 2, 3) are variables with control
inputs; Ωr is the residual angular speed of the propellers; fi, di(j = 1, . . . , 6) are uncertainty
and unknown disturbance, respectively; and |di| ≤ d, in which d is a bounded positive
number. The expressions of aj(j = 1, 2, 3) and bk(k = 1, 2, 3, 4, 5) can be found in [37]. ui,x,
ui,y, and ui,z are as follows:

ui,x = ui,4(cos φi sin θi cos ψi + sin φi sin ψi)
ui,y = ui,4(cos φi sin θi sin ψi − sin φi cos ψi)

ui,z = mg− ui,4 cos φi cos θi

(2)

where ui,4 is the input of the translational subsystem and g is the acceleration of gravity.

Figure 1. Typical structure of a quadrotor.

2.2. Linear Discrete-Time Model of UAV

To facilitate the design of the MPC, the dynamic model of the quadrotor is divided
into a rotational subsystem (RS) and translational subsystem (TS), and then linearized
and discretized. For the RS, considering the disturbance, the linear time-varying discrete
state-space model is as follows:{

Xi,R(k + 1) = Ai,RXi,R(k) + Bi,RUi,R(k) + GD,RDi,R(k)
Yi,R(k + 1) = Ci,RX(k + 1)

(3)

where Xi,R(k) =
[
φi(k);

.
φi(k); θi(k);

.
θi(k); ψi(k);

.
ψi(k)

]
is the state vector of the RS,

Ui,R(k) = [ui,2; ui,3; ui,4; Ωi,r] is the input vector, and Di,R(k) =
[
0; d̂i,R,1(k);0; d̂i,R,2(k); 0; d̂i,R,3(k)

]
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is the synthesis of disturbance and uncertainty, where d̂i,R,j(k) = ∆ f j + dj, (j = 1, 2, 3). When
the sampling period of the RS is TR, Ai,R, Bi,R, GD,R, and Ci,R in (4) are:

Ai,R =



1 TR 0 0 0 0
0 1 0 b1TR

.
ψi 0 b1TR

.
θi

0 0 1 TR 0 0
0 b3TR

.
ψi 0 1 0 b3TR

.
φi

0 0 0 0 1 TR

0 b5TR
.
θi 0 b5TR

.
φi 0 1


, Bi,R =



0 0 0 0
TRa1 0 0 TRb2

.
θi

0 0 0 0
0 TRa2 0 −TRb4

.
θi

0 0 0 0
0 0 TRa3 0



GD,R =



0 0 0 0 0 0
0 TR 0 0 0 0
0 0 0 0 0 0
0 0 0 TR 0 0
0 0 0 0 0 0
0 0 0 0 0 TR

, Ci,R =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0



(4)

Similarly, the linear discrete-time model of TS is as follows:{
Xi,T(k + 1) = Ai,TXi,T(k) + Bi,TUi,T(k) + GD,TDi,T(k)

Yi,T(k + 1) = Ci,TXi,T(k + 1)
(5)

where Xi,T(k) =
[
xi(k);

.
xi(k); yi(k);

.
yi(k); zi(k);

.
zi(k)

]
is the state vector of the TS,

Ui,T(k) =
[
ui,x; ui,y; ui,z

]
is the input vector, and Di,T =

[
0; d̂i,T,4(k); 0; d̂i,T,5(k); 0; d̂i,T,6(k)

]
is the synthesis of disturbance and uncertainty, where d̂i,T,j(k) = ∆ f j + dj, (j = 4, 5, 6).
When the sampling period of the TS is TT , Ai,T , Bi,T , GD,T , and Ci,T in (6) are:

Ai,T =



1 TT 0 0 0 0
0 1 0 0 0 0
0 0 1 TT 0 0
0 0 0 1 0 0
0 0 0 0 1 TT
0 0 0 0 0 1

, Bi,T =



0 0 0
TT/m 0 0

0 0 0
0 TT/m 0
0 0 0
0 0 TT/m



GD,T =



0 0 0 0 0 0
0 TT 0 0 0 0
0 0 0 0 0 0
0 0 0 TT 0 0
0 0 0 0 0 0
0 0 0 0 0 TT

, Ci,T =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


(6)

2.3. Formation Algorithm Based on Consensus

Since this paper focuses on the improvement of control performance as well as trajec-
tory tracking capability, communication loss is not considered and it is assumed that all
states of the UAVs can be shared among each other. Only the consensus of the position is
considered here.

The undirected graph composed of n UAVs is given as Λ = {∆, ε}, where
∆ = {∆1, ∆2, . . . , ∆n} is the set of quadrotors; ε ⊆ ∆× ∆ is the edge of the graph, which
means the states can be obtained between UAVs; and eij indicates the weight of the edge
between ∆i and ∆j. eij = 1 if ∆i and ∆j can receive information from each other; otherwise,
eij = 0. Take the x-axis of TS as an example:{ .

x =
.
x

..
x = ui,x/m

(7)
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The consensus law for the fixed topology of the formation on the x-axis is [7]:

ui,x,c(t) = −
n

∑
j=1

eij[kx(xi(t)− xj(t)− pij)], i = 1, . . . , n (8)

where ui,x,c(t) is the component of consensus control low on the x-axis, pij is the distance
between UAVi and UAVj, and kx is the control coefficient that meets kx > 0. The consensus
laws ui,y,c(t), ui,z,c(t) of the y- and z-axis, respectively, can be obtained in the same way.

The structure of the formation controller is shown in Figure 2. The stability and
accuracy of the formation trajectory tracking are determined by both the consensus control
law and IMPC.

Figure 2. Formation control structure.

3. Multi-Constrained MPC

The multi-UAV system is a complex system with multiple constraints. MPC is one
of the most effective methods to solve constrained control problems. Figure 3 illustrates
the MPC structure of the ith quadrotor, where the planned path and the location of the
neighbors determine the reference trajectory of the TS. The reference angle is generated by
the TS and passed to the RS to stabilize the quadrotor.

Figure 3. MPC of the UAVi.

3.1. MPC of TS

As shown in Figure 3, the controller of the TS is independent of the RS, while the
results of the TS can provide reference values for the RS. Therefore, the MPC of the TS is
implemented first. The difference equation of (5) is:

Xi,T(k + 1)−Xi,T(k) = Ai,T(Xi,T(k)−Xi,T(k− 1)) + Bi,T(Ui,T(k)−Ui,T(k− 1))
+Gi,D,T(Di,T(k)−Di,T(k− 1))

(9)
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The augmented system is derived as follows:{
X̂i,T(k + 1) = Âi,TX̂i,T(k) + B̂i,T(Ui,T(k)−Ui,T(k− 1)) + Ĝi,D,TeD(k)

Yi,T(k + 1) = Ĉi,TX̂i,T(k + 1)
(10)

where X̂i,T(k + 1) =
[

Xi,T(k + 1)− Xi,T(k)
Yi,T(k + 1)

]
, Âi,T =

[
Ai,T 06×3

Ci,TAi,T I3×3

]
, B̂i,T =

[
Bi,T

Ci,TBi,T

]
,

Ĝi,d,T =

[
Gi,d,T

Ci,TGi,d,T

]
, and Ĉi,T =

[
03×6 I3×3

]
. eD(k) = Di,T(k)−Di,T(k− 1) is a set

of integrated white noise. Since the expected values of states are used in the calculation of
the MPC, eD(k) = 0. Assuming that Nc,T is the number of future controls and Np,T is the
length of the prediction, the predicted output vector Ŷi,T and future control vector ∆Ûi,T at
time k are as follows:

Ŷi,T(k) =
[
Yi,T(k + 1|k); Yi,T(k + 2|k); . . . ; Yi,T

(
k + Np,T |k

)]
∆Ûi,T(k) = [∆Ui,T(k); ∆Ui,T(k + 1); . . . ; ∆Ui,T(k + Nc,T − 1)]

(11)

The predictive equation for future outputs within one optimization window is,
by substitution:

Ŷi,T(k) = Mi,TX̂i,T(k|k) + Ni,T∆Ûi,T(k) (12)

where Mi,T and Ni,T are represented as follows:

Mi,T =



Ĉi,T Âi,T

Ĉi,TÂ2
i,T

Ĉi,TÂ3
i,T

...

Ĉi,TÂ
Np,T
i,T



Ni,T =



Ĉi,TB̂i,T 0 0 . . . 0
Ĉi,TÂi,TB̂i,T Ĉi,TB̂i,T 0 . . . 0
Ĉi,TÂ2

i,TB̂i,T Ĉi,TÂi,TB̂i,T Ĉi,TB̂i,T . . . 0
...

...
...

. . .
...

Ĉi,TÂ
Np,T−1
i,T B̂i,T Ĉi,TÂ

Np,T−2
i,T B̂i,T Ĉi,TÂ

Np,T−3
i,T B̂i,T . . . Ĉi,TÂ

Np,T−Nc,T
i,T B̂i,T



(13)

The essence of the constrained MPC is to minimize Ji,T(k) at each sample k by solv-
ing the optimal control vector ∆Ûi,T , and this minimization is based on the real-time
optimization of Ji,T(k) constrained by a series of linear inequalities. For UAVi, if the
expected states at time k are rs(k|k ) =

[
xr(k|k );

.
xr(k|k ); yr(k|k );

.
yr(k|k ); zr(k|k );

.
zr(k|k )

]
,

the state vector-matrix for the new augmented system is rewritten as
Xi,T(k + i|k) = [∆Xi,T(k + i|k); Y(k + i|k)− Ci,Trs(k|k )]. Ji,T(k) and the linear inequality
constraints are as follows:

min
∆Ui,T

Ji,T(k) =
Np,T

∑
i=1

Xi,T(k + i|k)TQi,TXi,T(k + i|k)

+
Nc,T−1

∑
j=0

∆Ui,T(k + j)TRi,T∆Ui,T(k + j)

subject to : Γi,T∆Ui,T(k) ≤ Θi,T

(14)

where Qi,T = ĈT
i,TQ̂i,TĈi,T , Q̂i,T > 0, and Ri,T ≥ 0. Γi,T and Θi,T represent the matrices

when the constraints are converted to ∆Ui,T [31].
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The optimality and feasibility of this optimization problem is evaluated by the Kuhn–
Tucker conditions of (14), which are satisfied. In order to minimize the cost function subject
to constraints, the Lagrange form is obtained as:

min
∆Ûi,T ,λi,T

Li,T
(
∆Ûi,T ,λi,T

)
=
(
Rs,T − Yi,T

)TQi,T
(
Rs,T − Yi,T

)
+∆ÛT

i,TRi,T∆Ûi,T + λT
i,T
(
Γi,T∆Ûi,T −Θi,T

) (15)

where Rs,T(k|k ) =
[
Ĉi,T r̂s(k + 1|k ); Ĉi,T r̂s(k + 2|k ); . . . ; Ĉi,T r̂s

(
k + Np|k

)]
is the expected

outputs matrix and r̂s(k + 1|k ) = [06×1; Ci,Trs(k + 1|k )]. Yi,T(k) = Mi,TXi,T(k|k )+Ni,T∆Ûi,T(k).
Qi,T and Ri,T are block diagonal matrices composed by Qi,T and Ri,T , respectively. To
decrease the computational burden of the constrained optimization problem, the active
set methods (ASM) are applied in this paper. The specific process involves finding the
inactive constraints and removing them at each moment of the rolling optimization process;
only the active constraints are involved in the computational process of optimization [25].
Without losing generality, we assume that the desired output in one prediction window is
slowly changing. By substituting Yi,T(k) into (15), the problem is equivalent to:

min
∆Ûi,T ,λi,T

Li,T
(
∆Ûi,T ,λi,T

)
= ∆ÛT

i,T

(
NT

i,TQi,TNi,T + Ri,T

)
∆Ûi,T

+2∆Ûi,TNT
i,TQi,T

(
Mi,TXi,T(k|k )−Rs,T

)
+λT

i,T
(
Γi,T∆Ûi,T −Θi,T

) (16)

By taking derivatives of (16) with respect to ∆Ûi,T and λi,T , the optimal control vector
and Lagrange multiplier of UAVi are obtained as follows:

∆Ûi,T(k) = −(NT
i,TQi,TNi,T + Ri,T)

−1
(

NT
i,TQi,T(

Mi,TXi,T(k|k ) −Rs,T(k|k )
)
+

ΓT
i,Tλi,T(k)

2

)
λi,T(k) = −2

(
Γi,T

(
NT

i,TQi,TNi,T + Ri,T

)−1
ΓT

i,T

)−1

(Θi,T

+Γi,T

(
NT

i,TQi,TNi,T + Ri,T

)−1
NT

i,TQi,T
(
Mi,TXi,T(k|k )−Rs,T(k|k )

))
(17)

where λi,T(k) ≥ 0 can be calculated using Hildreth’s quadratic programming procedure
for each sample k. For each component of λi,T(k), if the Lagrange multiplier is positive,
the corresponding component of ∆Ûi,T(k) is a locally optimal point. For a negative La-
grange multiplier, the corresponding constraint can be omitted; that is, the corresponding
component of λi,T(k) is set to zero. Then ∆Ûi,T(k + 1) and λi,T(k + 1) can be obtained by
continuous computation in the next step.

Remark 1. After solving the optimal problem, only the first row of ∆Ûi,T is used, and the control signal
for the next optimization window is [ui,x,m(k + 1); ui,y,m(k + 1); ui,z,m(k + 1)] = Ui,T(k) + ∆Ûi,T ,
while the control law considering consensus and the MPC is

[
ui,x(k + 1); ui,y(k + 1); ui,z(k + 1)

]
=

[ui,x,m(k + 1); ui,y,m(k + 1); ui,z,m(k + 1)
]
+ [ui,x,c(k + 1); ui,y,c(k + 1); ui,z,c(k + 1)]. Suppos-

ing that the reference yaw angle is zero, the control signal of the UAV′is TS at time k + 1 is:

ui,4(k + 1) =
√
(ui,z(k + 1)−mg)2 + u2

i,x(k + 1) + u2
i,y(k + 1) (18)

Assuming that −π/2 < φi,r, θi,r < π/2, the reference angles φi,r and θi,r can be
calculated as:

φi,r(k + 1) = −arcsin
( ui,y(k+1)

ui,4(k+1)

)
θi,r(k + 1) = arcsin

(
ui,x(k+1)

ui,4(k+1) cos(φi,r(k+1))

) (19)
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Finally, the reference states for the RS at time k will be:[
φi,r(k + 1);

φi,r(k + 1)− φi,r(k)
TT

; θi,r;
θi,r(k + 1)− θi,r(k)

TT
; 0; 0

]
(20)

3.2. MPC of the Rotational Subsystem

Similar to the TS, the optimal control and Lagrange multiplier of the RS are obtained
as follows:

∆Ûi,R(k + 1) = −(NT
i,RQi,RNi,R + Ri,R)

−1
(

NT
i,RQi,R(

Mi,RXi,R(k|k )−Rs,R(k|k )
)
+

ΓT
i,Rλi,R(k+1)

2

)
λi,R(k + 1) = −2

(
Γi,R

(
NT

i,RQi,RNi,R + Ri,R

)−1
ΓT

i,R

)−1

(Θi,R

+Γi,R

(
NT

i,RQi,RNi,R + Ri,R

)−1
NT

i,RQi,R
(
Mi,RXi,R(k|k )−Rs,R(k|k )

))
(21)

Therefore, after solving the above optimization problems, the first row of ∆Ûi,R is
selected as the incremental control signal of the RS and applied to UAVi.

4. Stability Analysis

Since the integrators were introduced in the augmentation system, the condition
number in (17) and (21) deteriorates if NP,T is large [32]. As can be seen from (4) and
(6), the eigenvalues are in the vicinity of the unit circle, which will make the numerical
problem worse. Therefore, it is necessary to make sure that the controller can avoid the
drawback while ensuring the stability of the closed-loop system. Similar to the introduction
of exponential factors in the linear quadratic regulator (LQR), the same modification can be
made in MPC, which will push the poles of the closed-loop system into the unit circle. The
benefits can be obtained through the following analysis.

For the convenience of analysis, the expected outputs are ignored without affecting the
results. Take the TS as an example (the analysis of the RS is the same), with a given τT > 1,
the cost function Ji,T(k) with exponential factors in MPC can be processed as follows:

min
∆Ui,T

Ji,T(k) =
Np,T

∑
m=1

τ−2m
T X̂i,T(k + m|k)TQi,TX̂i,T(k + m|k)

+
Nc,T−1

∑
j=0

τ
−2j
T ∆Ui,T(k + j)TRi,T∆Ui,T(k + j)

subject to : Γi,T∆Ui,T(k) ≤ Θi,T

(22)

where τT > 1 means that the cost function Ji,T(k) places more emphasis on the states and
control of the current time than the states of the future; the weights decrease as m and j
increase. Thus, the sequence of new states and incremental control vectors in one prediction
window are chosen as follows:

X̂τ(k) =
[

τ−1
T X̂i,T(k + 1|k)T τ−2

T X̂i,T(k + 2|k)T . . . τ
−Np,T
T X̂i,T

(
k + Np,T |k

)T
]T

∆Ûτ(k) =
[

τ0
T∆Ui,T(k|k)T τ−1

T ∆Ui,T(k + 1|k)T . . . τ
−(Nc,T−1)
T ∆Ui,T(k + Nc,T − 1|k)T

]T (23)

where the elements of X̂τ(k) and ∆Ûτ(k) are:

X̂τ(k + m + 1|k ) = τ
−(m+1)
T X̂i,T(k + m + 1|k )

∆Ûτ(k + m|k ) = τ−m
T ∆Ui,T(k + m|k )

(24)
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As described in (5), the elements of X̂τ(k) and ∆Ûτ(k) satisfy the following
difference equation:

X̂τ(k + m + 1|k) =
Âi,T

τT
X̂τ(k + m|k) +

B̂i,T

τT
∆Ûτ(k + m) (25)

The optimization problem with multiple constraints can be rephrased as:

min
∆Ûτ

Jτ(k) =
Np,T

∑
m=1

X̂τ(k + m|k)TQi,TX̂τ(k + m|k)

+
Nc,T−1

∑
j=0

∆Ûτ(k + j)TRi,T∆Ûτ(k + j)

subject to : ΓT,τ∆Ûτ(k) ≤ ΘT,τ

(26)

where ΓT,τ is as follows:

ΓT,τ = ΓT


I 0 . . . 0
0 τT I . . . 0
...

...
. . .

...

0 0 . . . τ
Np,T
T I

 (27)

As can be seen from (14) and (26), the two cost functions have the same form and are
identical to each other. Moreover, the optimal solution of (26) is
∆Ûτ(k + 0|k ) = τ0

T∆Ui,T(k|k ) = ∆Ui,T(k|k ), which is the same as the answer to (14).
Therefore, if τT > 1 is chosen properly, the cost function (26) could be used in the process
of MPC, while all the eigenvalues of τ−1

T Âi,T are inside the unit circle. The corresponding
state space (25) is stable, which has a positive effect on solving the numerical problems in
the MPC calculation process even if NP,T is large. However, the optimization problem (25)
is equivalent to the discrete-time linear quadratic regulator (DLQR) problem when NP,T
and NC,T are large enough [34–36]. The DLQR problem of the corresponding state-space

model
(

τ−1
T Âi,T , τ−1

T B̂i,T

)
is always solved by the algebraic Riccati equation, as follows

with the same weight matrices Qi,T and Ri,T :

ÂT
i,T

τT
S∞

Âi,T

τT
− S∞ −

ÂT
i,T

τT
S∞

B̂i,T

τT

(
B̂T

i,T

τT
S∞

B̂i,T

τT
+ Ri,T

)−1
B̂T

i,T

τT
S∞

Âi,T

τT
+ Qi,T = 0 (28)

The state feedback control gain matrix KT,τ and the corresponding closed-loop system
can be obtained as follows:

KT,τ = (τ−2
T B̂T

i,TS∞B̂i,T + Ri,T)
−1

τ−2
T B̂T

i,TS∞Âi,T
X̂τ(k + m + 1|k) = τ−1

T (Âi,T − B̂i,TKT,τ)X̂τ(k + m|k)
(29)

Since τT > 1 is chosen, the eigenvalue λmax

∣∣∣τ−1
T (Âi,T − B̂i,TKT,τ)

∣∣∣ < 1 can be guaran-

teed, while the eigenvalue of the actual system will be λmax
∣∣(Âi,T − B̂i,TKT,τ)

∣∣ < τT , which
means there is no guarantee of the actual closed-loop system’s stability. However, it can be
solved by choosing the values of Qi,T and Ri,T properly.

Theorem 1. Let σT = τ−1
T βT , (0 < βT < 1), Qσ = σ2

TQi,T + (1− σ2
T)S∞, and Rσ = σ2

TRi,T .
The optimal solution of (30) can ensure the stability of the closed-loop system by choosing a
suitable βT .

min
∆Ûα

Jσ(k) =
Np,T

∑
m=1

X̂τ(k + m|k)TQσX̂τ(k + m|k) +
Nc,T−1

∑
j=0

∆Ûτ(k + j)TRσ∆Ûτ(k + j)

subject to : ΓT,τ∆Ûτ(k) ≤ ΘT,τ

(30)
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Proof of Theorem 1. Similar to (26) and (28), the algebraic Riccati equation of (30) is:

ÂT
i,T

τT
S∞

Âi,T

τT
− S∞ −

ÂT
i,T

τT
S∞

B̂i,T

τT

(
B̂T

i,T

τT
S∞

B̂i,T

τT
+ Rσ

)−1
B̂T

i,T

τT
S∞

Âi,T

τT
+ Qσ = 0 (31)

Substituting Qσ and Rσ into (31) gives:

ÂT
i,T

τT
S∞

Âi,T
τT
− S∞ −

ÂT
i,T

τT
S∞

B̂i,T
τT

(
B̂T

i,T
τT

S∞
B̂i,T
τT

+
β2

TRi,T
τ2

T

)−1
B̂T

i,T
τT

S∞
Âi,T
τT

+
β2

TQi,T
τ2

T
+ S∞ −

β2
TS∞

τ2
T

= 0
(32)

Multiplying both sides of (32) by τ2
T β2

T results in the following equivalent equation:

ÂT
i,T

βT
S∞

Âi,T

βT
−

ÂT
i,T

βT
S∞

B̂i,T

βT

(
B̂T

i,T

βT
S∞

B̂i,T

βT
+ Ri,T

)−1
B̂T

i,T

βT
S∞

Âi,T

βT
+ Qi,T − S∞ = 0 (33)

The corresponding states feedback gains matrix KT,σ and closed-loop system are
obtained as follows:

KT,σ =
(

Ri,T + β−2
T B̂T

i,TS∞B̂i,T

)−1
β−2

T B̂T
i,TS∞Âi,T

X̂τ(k + m + 1|k) = β−1
T (Âi,T − B̂i,TKT,σ)X̂τ(k + m|k)

(34)

where the definition of X̂τ(k + m + 1|k) is the same as (29). From the closed-loop sys-
tem equation in (34), it can be seen that an appropriate choice of βT < 1 can ensure
the eigenvalue λmax

∣∣(Âi,T − B̂i,TKT,σ)
∣∣ < βT , which means that the closed-loop system

is stable. �

In summary, the IMPC proposed here can improve the stability margin of the system
by forcing the poles of the closed-loop system into the unit circle. Therefore, IMPC is
able to cope with the influence of disturbances and the uncertainties of the system itself.
Compared with RMPC, IMPC has better dynamic performance, which enables the system
to return to steady state faster. The focus is on the continuous transformation of the original
cost function (14) by (22) and (30), which is equivalent to obtaining the final closed-loop
function as shown in (34). As mentioned earlier, the purpose of this is not only to ensure
the stability of the model used in the predictive control process, but also the closed-loop
system. At the same time, NP,T and NC,T can be large without numerical problems.

5. Simulation

The tasks of trajectory tracking and instructions procurement can be completed by
UAV1. The main parameters of the UAV can be obtained from [19].

The following two cases are presented in the simulation: (1) A comparison with
the dual closed-loop sliding mode formation controller under ideal dynamics [19]. (2) A
comparison of IMPC and RMPC in achieving the same formation trajectory tracking in the
presence of disturbance and model uncertainty.

5.1. Case 1

The distance of the three axes between UAVs remained the same in this simulation.
Figure 4 shows the geometry of three UAVs’ formation flights in Case 1, where r1 = 2 m.

The expected trajectory in case 1 is as follows:

Rx1 =

{
3, t ≤ 10 s

3 + (t− 10), t> 10 s
, Ry1 =

{
1.732 + t, t ≤ 10 s

11.732, t > 10 s
, Rz1 =

{
0.1 + t, t ≤ 10 s

10.1, t > 10 s
(35)

where Rx, Ry, and Rz are the expected trajectories of axis X, Y, Z, respectively.
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Figure 4. Geometry of the formation.

The initial positions of the three UAVs were: UAV1 (3, 1.732, 0.1) m, UAV2 (0, 3.464,
0.1) m, and UAV3 (0, 0, 0.1) m. The initial speeds were all 0 m/s. For the TS, the sampling
period was TS = 0.05 s, while TR = 0.05 s for the RS. The main parameters of IMPC in the
rolling optimization process were: Q̂i,T = Q̂i,R = 20, Ri,T = Ri,R = 0.01I6, where I6 was
the unit matrix; Nc,T = Nc,R = 1; Np,T = 10; Np,R = 4, τT = 1.6; βT = 0.92; τR = 1.2; and
βR = 0.92. The parameters of the consensus low were kx = ky = kz = 0.01. Due to the
constraints of UAVs’ rotor, the states and inputs were limited as follows:

−π

2
(rad) < φ, θ <

π

2
(rad), 0 < ψ < π(rad), −0.76(rad · s−1) <

.
φ,

.
θ < 0.76(rad · s−1)

−1(rad · s−1) <
.
ψ < 1(rad · s−1), −1.5(m · s−1) ≤ .

x,
.
y,

.
z ≤ 1.5(m · s−1)

0 ≤ U1 ≤ 11.23(N), |U2| ≤ 5.61(N ·m), |U3| ≤ 5.61(N ·m), |U4| ≤ 0.16(N ·m)

The simulation results are shown in Figures 5–9. The total time of simulation was
40 s. Figure 5 shows the trajectory tracking of the UAVs in 3D space with SMC (a) and
IMPC (b). Figures 6 and 7 illustrate the states of the TS and RS, respectively, demonstrat-
ing that the UAVs with IMPC (b) provide significantly better performance than SMC (a).
Figures 8 and 9 exhibit the inputs and distance of the three axes of the formation, respec-
tively. They show that in order to maintain the expected formation, the inputs of SMC (a)
must been far greater, while IMPC (b) can remain within the specified constraints. The
reason for the oscillation process of SMC in Figures 7–9 is the fact that the large uncertainty
in the model requires a large gain of the switching term, which can be solved by replacing
the symbolic function with a saturation function [38].

Figure 5. Trajectory tracking for UAVs with SMC (a) and MPC (b). The UAVs with IMPC (b) provide
significantly better performance than SMC (a) at takeoff and corner parts.
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Figure 6. States of the TS for UAVs with SMC (a) and MPC (b).

Figure 7. States of the RS for UAVs with SMC (a) and MPC (b). As can be seen from the angular
response of the UAVs, MPC has less angular variation and is more stable than SMC when completing
the same trajectory tracking.

5.2. Case 2

For Case 2, the formation structure and main parameters of IMPC were the same as in
Case 1. The expected trajectory in this part was:

Rx2 =



3, t ≤ 10 s
3 + (t−10), 10 s <t ≤ 20 s

13, 20 s <t ≤ 25 s
13+(t−25), 25 s <t ≤ 35 s

23, 35 s <t ≤ 40 s
23+(t−40), 40 s <t ≤ 50 s

33, 50 s <t ≤ 55 s
33+(t−55), 25 s <t ≤ 35 s

, Ry2 =



1.732 + t, t ≤ 10 s
11.732, 10 s <t ≤ 20 s

11.732− (t− 20), 20 s <t ≤ 25 s
6.732, 25 s <t ≤ 35 s

6.732 + (t− 35), 35 s <t ≤ 40 s
11.732, 40 s <t ≤ 50 s

11.732− (t− 50), 50 s <t ≤ 55 s
6.732, t > 55 s

, Rz2 = 0.2t (36)

The initial positions of the three UAVs were: UAV1 (3, 1.732, 0.1) m, UAV2 (0.1, 3.464,
0.1) m, and UAV3 (0.1, 0.1, 0.1) m. In the real formation flight, the quantified uncertainties
and disturbances were unknown and had to be estimated online. To verify the robustness
of IMPC to the uncertainties and disturbances, they were simply set to fixed values. The
synthesis of uncertainties and disturbances of the UAVi in the formation given in this paper
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are di,1 = 0.4, di,2 = −0.1, di,3 = 0.1, di,4 = 0.3, di,5 = 0.3 and di,6 = 0.1, while the additional
impulse for the TS given in this paper is IMi,1, where:

IMi,1 =

{
[0; 3; 0; 3; 0; 1], 13 s <t ≤ 14 s, 33 s <t ≤ 34 s

[0; 0.7; 0; 0.7; 0; 0.1], t> 45 s
(37)

Figure 8. Inputs for UAVs with SMC (a) and MPC (b). The SMC requires aggressive control and
may suffer from oscillation to achieve a desirable performance of formation. However, IMPC
enables the optimal performance of control and formation while ensuring the physical constraints of
the quadrotors.

Figure 9. Distance between UAVs with SMC (a) and MPC (b) in the direction of three axes.

The condition number of regular MPC (RMPC) and IMPC is shown in Table 1, where
the TS of IMPC was about two orders of magnitude less than RMPC, and the RS of
RMPC was about twice that of IMPC. This means that the computational complexity of the
IMPC designed in this paper can be greatly reduced compared to the RMPC. The average
computation period also demonstrates the superiority of IMPC.

The poles of the closed-loop system for the TS and RS lie in the circle of βT = βR = 0.92
with IMPC, as shown in Figure 10, which makes the closed-loop system more stable
than RMPC.
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Table 1. Condition number of the RMPC and IMPC.

Condition
Number of TS

Condition
Number of RS

Average Calculation
Period of TS

Average Calculation
Period of RS

RMPC 3.4629× 103 407.92 0.0104 s 0.0121 s
IMPC 51.56 243.91 0.0052 s 0.0086 s

Figure 10. Poles of closed-loop system for the TS (left) and RS (right). The poles of the closed loop
of IMPC are closer to the center of the unit circle than those of RMPC, which means the dynamic of
IMPC is better than that of RMPC.

The simulation results are shown in Figures 11–16. Figures 11–14 show the formation
trajectory tracking in the presence of disturbances and uncertainties. As can be seen from
the figure, both controllers were able to suppress the effects of disturbances and system
uncertainties. However, the formation with IMPC (b) had smaller errors and a shorter
settling time than that of RMPC (a). Figure 15 describes the distance between the UAVs
on three axes, where IMPC (b) had better formation stability than RMPC (a). As can be
seen in Figure 16, the angle of the UAVs in formation changed when they turned or were
affected by disturbances; with IMPC, the changes in the angles were much smoother and
took less time to return to the stable states. This is further supported by the control inputs
in Figure 17.

Figure 11. Trajectory tracking for UAVs with RMPC (a) and IMPC (b) in Case 2. Both IMPC and
RMPC can accomplish trajectory tracking.
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Figure 12. Trajectory tracking with RMPC (a) and IMPC (b) in the x-axis direction in Case 2. The
UAVs in the formations with IMPC and RMPC are able to maintain their relative distance from
the x-axis.

Figure 13. Trajectory tracking with RMPC (a) and IMPC (b) in the y-axis direction in Case 2. The UAVs
in the formations with IMPC and RMPC are able to maintain their relative distance from the y-axis.
However, IMPC is able to return to the steady state faster and has better robustness against impulse.

Figure 14. Trajectory tracking with RMPC (a) and IMPC (b) in the z-axis direction in Case 2. The UAVs
in the formations with IMPC and RMPC are able to maintain their relative distance from the z-axis.
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Figure 15. Distance between UAVs with RMPC (a) and IMPC (b) in the direction of three axes in
Case 2. The formation with IMPC has less variation in distance between the quadrotors, not only in
normal flight but also in response to turning and impulse.

Figure 16. States of RS for UAVs with RMAC (a) and IMPC (b). The angle of IMPC returns to the
steady state faster than RMPC, which demonstrates that IMPC has better performance than RMPC.

Figure 17. Inputs for UAVs with RMPC (a) and IMPC (b) in Case 2. The control of IMPC has less
oscillation in response to turns and impulses and can return to the steady state faster. This indicates
that IMPC has better dynamic performance than RMPC.
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6. Conclusions and Future Work

The formation control based on consensus and IMPC was proposed in this paper to
ensure the stability and trajectory tracking of the formation. A literature investigation
showed that most studies are based on simplified or ideal models, and constraints on UAVs
are not paid enough attention.

Firstly, the UAV dynamic model with disturbance and uncertainty is introduced, and it
is divided into an RS and a TS. The corresponding multi-constrained IMPC is designed after
obtaining the error-augmented models of the two subsystems. The influence of external
disturbance and uncertainty can be eliminated because of the integral in the augmented
system. On this basis, by appropriately modifying the cost function, not only can the
numerical problems in the rolling optimization process be reduced, but also the stability of
the two closed-loop subsystems is ensured.

Because of the addition of integrators to the augmented model, it is possible to elimi-
nate the effect of disturbances and model uncertainties on the performance of the controller
without adding disturbance observers.

The simulation results demonstrate that the proposed procedure guarantees a better
formation effect than SMC under the condition of hard constraints. The IMPC outperformed
the RMPC in terms of condition number, which means that IMPC has higher computational
efficiency. It can be seen from the final simulation that IMPC can eliminate the influence of
disturbance and uncertainty. The robustness to impulse can provide a meaningful reference
for pesticide spraying and other formation problems under load.

Future work should consider the challenges of parameter changes, obstacle avoidance,
and reconstruction problems.
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