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Abstract: Distributed control architecture can bring many benefits to the engine control system, but
the delay and packet dropout introduced by network communication will bring negative effects to the
control system. The aging and deterioration of the engine are also obstacles in the design of the engine
control system. This paper is concerned with the problem of guaranteed cost control for a distributed
engine control system (DECS) with these negative constraints. Firstly, a model of DECS with multiple
delays, packet dropouts and uncertainties is built. Secondly, a multiple delay-dependent guaranteed
cost controller design method is proposed in the form of a set of linear matrix inequalities (LMIs). The
non-convex optimal controller design problem is transformed into a convex optimization problem
through the cone complementarity linearization (CCL) method, and the suboptimal controller is
designed iteratively. Thirdly, turboshaft engine aging and deterioration are treated as sources of
uncertainties, and the norm-bounded uncertain model of the turboshaft engine is modeled. Finally,
the numerical simulations demonstrate the effectiveness and applicability of the guaranteed cost
controller designed for DECS with multiple delays, packet dropouts, engine aging and deteriorations.

Keywords: distributed engine control system; multiple delays; packet dropouts; uncertainties;
guaranteed cost control; linear matrix inequalities

1. Introduction

Turboshaft engines are widely used to power helicopters and other vehicles. The
helicopters tend to be smaller than conventional aircraft, leading to more severe constraints
on engine system cost and weight. One possible direction for the engine control system
to take in the future is the distributed engine control system (DECS), and much research
and efforts have gone into this area, presented in the literature [1–5]. DECSs can reduce the
controller weight and size due to digital signal, lower wire/connector count and reduced
cooling need. Besides, using distributed architecture and smart nodes can facilitate the
introduction of new control and health management techniques, such as active control and
component fault diagnosis and isolation. Advanced health management systems can be
changed from time-based maintenance systems to condition-based maintenance systems.
This can reduce the maintenance cost and improve mission success. The modularity of the
smart nodes can reduce cycle time for design and manufacturing, reduce components and
maintenance costs [6–9].

The main features of the DECS are the intellectualization and digitalization. In the
DECSs, smart sensors and actuators are used to replace legacy sensors and actuators. All
of these physically distributed smart nodes are connected to the controller via digital
transmission over a shared data bus. Based on these distributed smart nodes, the control
function is also decentralized. A partially distributed framework is studied in this paper. In
this system, the analog-to-digital (A/D) and digital-to-analog (D/A) conversion functions
(sampling, shaping and quantization) are distributed to smart nodes while the control logic
still remains as the central form.
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However, due to the introduction of the data bus, transmission delay and packet
dropout are inevitable in DECSs [8]. A number of researches have been committed to this
problem. Among them, time delay controller design methods can be briefly divided into
two types: single delay and multiple delays methods.

The single delay system has received more attention in DECSs’ researches because it
simplifies the problem. However, the single delay methods also have many limitations [10].
Usually there are three methods to simplify the DECS to a single delay system. The first
way is the buffer technology [11–13]. A buffer before the controller and actuator is used
to make delays and packet dropouts the same. It is most commonly used. The buffers
can ensure that all sensor delays or control input delays are the same, but this will also
amplify some delays. The second way is to assume the packet dropout of all smart nodes
on the network is consistent [14,15]. However, packet dropout between different nodes is
independent; it is difficult to ensure that the hypothesis is true. The third way is to assume
all sensor signals or control signals are lumped into one packet and transmitted [3,16,17].
However, in DECSs, the smart nodes are physically dispersed.

For practical applications, the time delay and packet dropout for each signal may be
different, which introduces multiple delays and dropouts into DECSs. Therefore, it is very
meaningful to study multiple delays and packet dropouts. In reference [14], the multiple
dropout situations are listed and a switching system method is used to design the controller.
In reference [18], the augmented delay free system with multiple delays and uncertainties is
modeled and a dynamic compensator is developed. It is studied how the continuous time
uncertainty affects the sampled-data model. In reference [19], a guaranteed cost controller
is designed for a turbine engine control system with multiple delays and packet dropouts,
but the uncertainties are not considered.

The aim of this paper is to compensate the DECSs with multiple delays, packet
dropouts and uncertainties by a common static compensator. Firstly, to model the DECS
with multiple delays and packet dropouts, the time delay system method in reference [12]
for a networked control system is extended to the multiple delay case. Then, efforts are
made to derive the multiple delay-dependent guaranteed cost controller design method.
The method proposed is the main contribution of this paper; the iterative solve algorithm
is extended from reference [19]. Besides, to model the turboshaft engine with uncertainties,
the uncertain description method in reference [11] for aeroengines with uncertainties
is extended to be more general for non-square parameter matrices. This results in the
proposed method being more practical in its applicability.

This paper is organized as follows: The model of DECSs with multiple delays, packet
dropouts and uncertainties is presented in Section 2. Section 3 presents the multiple delay-
dependent guaranteed cost controller design method of DECSs and an iterative solve
algorithm. The norm-bounded uncertain linear model of the turboshaft engine with aging
and deterioration is also built in this section. In Section 4, the method proposed is applied
and the simulations are performed to demonstrate the effectiveness of the proposed method.
Finally, Section 5 is the conclusion.

Notations: The notations used throughout the paper are fairly standard. Rn denotes
the n-dimensional Euclidean space; Rn×m is the set of all n×m real matrices; the notation
P > 0 means that P is a positive definite matrix; I represents identity matrix with appropriate
dimension; the superscript T stands for matrix transposition; and diag(·) denotes the
diagonal matrix. In symmetric block matrices, we use an asterisk (*) to represent a term
which is induced by symmetry. Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Modeling of DECSs with Multiple Delays

Although it has been developed for decades, there is no final conclusion on the
structure of the DECSs [20], which is a gradual process from a centralized structure to
a fully distributed structure. A partially distributed turboshaft engine control system
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architecture with concentrators and smart processor nodes is adopted in this paper; the
schematic is shown in Figure 1 [21].
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Figure 1. The schematic of the partially distributed turboshaft engine control system architecture.

Figure 1 presents a DECS consisting of a turboshaft engine with n states, p inputs and
q outputs and a state feedback controller. All these parameters are sensed or actuated by
concentrators and processor nodes which are physically separated and attached across a
shared data bus. The system with uncertainty for DECS is presented as:

.
x(t) = [A + ∆A(t)]x(t) + [B + ∆B(t)]u(t)

x(t) = φ(t), t ≤ 0
uc(t) = Kxc(t)

(1)

where x(t) ∈ Rn, u(t) ∈ Rp are the state vector and control input vector, respectively;
xc(t) is the delayed version of state vector, uc(t) is the version of control signal before the
delay; φ(t) is a continuously differentiable initial function; A and B are constant parameter
matrices with appropriate dimensions, K is the controller gain matrix; ∆A(t) and ∆B(t)
denote the norm-bounded parameter uncertainties satisfying the following condition[

∆A ∆B
]
= GF(t)

[
Ea Eb

]
(2)

where G, Ea and Eb are constant matrices of appropriate dimension and F(t) is an unknown
time-varying matrix, which is Lebesgue measurable in t and satisfies FT(t)F(t) ≤ I.

Associated with system in Equation (1), the cost function is defined as:

J =
∫ ∞

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt (3)

where Q and R are given positive-definite symmetric matrices. Also, according to the
definition of the guaranteed cost control [22,23], the objective of the guaranteed cost
controller design is to design a control law u ∗ (t) to minimize the upper bound of the
cost function.

Throughout this paper, we assume that the sensors and controller are clock-driven
and the actuators are event-driven. These nodes hold the latest data when packet dropout
happened via zero-order-holders. The sensors and actuator have the same period denote
as T, but they are triggered at different times. The actuators will respond immediately after
receiving the control input. The time delay system method is used to model the system
with multiple delays and packet dropouts [12,24–26].

For the DECS in Figure 1, the plant states are split into r parts

x(t) =
[

xT
1 (t) · · · xT

r (t)
]T (4)
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and every part with its time stamp is lumped into one packet and transmitted in one
channel and the time delay is τs

i (i = 1, 2, . . . , r). Similarly, the control signals are split into
m parts

uc(t) =
[

uc
1(t)

T · · · uc
m(t)

T
]T

(5)

and every part with its time stamp is also lumped into one packet, and the time de-
lay is τa

j (j = 1, 2, . . . , m) (including controller calculation time). In Equations (4) and (5),

xi(t) ∈ Rri , ri ∈ Z+,
r
∑

i=1
ri = n, and uc

i (t) ∈ Rmi , mi ∈ Z+,
m
∑

i=1
mi = p.

Then, the real input u(t) realized through a zero-order-holder in Equation (1) is a
piecewise constant function contains m parts. Taking the network induced delays and
packet dropouts into consideration, the real control system can be modeled as

.
x(t) = (A + ∆A)x(t) + [B + ∆B(t)]

m
∑

j=1
uj(t), t ∈

[
ij
kT + τa

j,k, ij
k+1T + τa

j,k+1

)
uj(t) = uc

j

(
t− τa

j,k

)
= Djuc

(
t− τa

j,k

)
=

r
∑

i=1
DjKCixc

(
t− τa

j,k − τs
i,k

)
, t ∈

{
ij
kT + τa

j,k, k = 1, 2, . . .
} (6)

where Ci = diag

{
0 · · · Iri︸ ︷︷ ︸

i

· · · 0
}

and Dj = diag

{
0 · · · Imj︸ ︷︷ ︸

j

· · · 0
}

;

ij
k, k = 1, 2, . . . are some integers and

{
ij
1, ij

2, . . .
}
⊂ {0, 1, 2, . . .} and ij

kT denotes the instant
the controller is triggered. From the above, we have

u(t) =
m

∑
j=1

r

∑
i=1

DjKCix
(
t− τij(t)

)
(7)

where τij(t) = τs
i,k + τa

j,k. Then, it is also assumed that the pair (A, B) in Equation (1) is
stabilizable, and there exist constants h1,ij, h2,ij such that

0 < h1,ij ≤ τij(t) ≤ h2,ij ∀i = 1, 2, . . . , r j = 1, 2, . . . , m (8)

Denoting h = max1≤i≤r,1≤j≤m
{

h2,ij
}

, then the model of NECSs with multiple delays
under above assumptions can be described as follows:

.
x(t) = (A + ∆A)x(t) +

s
∑

l=1
(B + ∆B)Klx(t− τl(t))

x(t) = φ(t), t ∈ [−h, 0], h1l ≤ τl(t) ≤ h2l , l = 1, 2, . . . , s
(9)

where
Kl = DjKCi, τl(t) = τij(t), h1l = h1,ij, h2l = h2,ij ≤ h,

∀l = (j− 1)× r + i, i = 1, 2, . . . , r; j = 1, 2, . . . , m; s = r×m,
(10)

and Equation (3) can be rewritten as

J =
∫ ∞

0

xT(t)Qx(t) +

(
s

∑
l=1

Klx(t− τl(t))

)T

R
s

∑
l=1

Klx(t− τl(t))

dt (11)

Remark 1. The model of DECSs with multiple delays established above is same as the model in
Reference [26] when s = 1. So, the model of this paper includes the one of Reference [26] as a
special case.
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3. Guaranteed Cost Controller Design Method and Turboshaft Engine Modeling

In this section, the main methods used in the paper are shown. Section 3.1 presents
a guaranteed cost controller design method and an iterative solve algorithm is given.
Section 3.2 presents a turboshaft engine model with aging and deteriorations.

3.1. Guaranteed Cost Controller Design Method

Theorem 1. For given scalars h1l , h2l and γl ∈ [0, 1](l = 1, 2, . . . , s) and matrices U1, Q > 0 and

R > 0, if there exist symmetric positive definite matrices
¯
P,

¯
Q1l ,

¯
Q2l ,

¯
Q3l ,

¯
R1l ,

¯
R2l ,

¯
R3l ,

¯
R4l ,

¯
R5l ,

¯
R6l ,

matrices Fi,
¯
Xl ,

¯
Yl(l = 1, 2, . . . , s) and symmetric matrix

¯
M2 with appropriate dimension and

scalar ε > 0, such that the LMIs Equations (12) and (13) hold, then u(t) = Kx(t) with

K =

(
r
∑

i=1
Fi

)
¯
M
−1

2 is a guaranteed cost controller.

Φ(1) =

[
Φ

(1)
11 Φ

(1)
12

∗ Φ
(1)
22

]
< 0, Φ(2) =

[
Φ

(2)
11 Φ

(2)
12

∗ Φ
(2)
22

]
< 0 (12)

 ¯
Ξ31,l

¯
Xl

∗
¯
Ξ31,l

 > 0,

 ¯
Ξ32,l

¯
Yl

∗
¯
Ξ32,l

 > 0 (13)

where Φ
(1)
11 , Φ

(1)
12 , Φ

(1)
22 , Φ

(2)
11 , Φ

(2)
12 , Φ

(2)
22 ,

¯
Ξ31,l and

¯
Ξ32,l are defined in Appendix A. At the

same time the cost function J∗ satisfies

J ≤ J11 +
s

∑
l=1

(J2l + J3l + J4l + J5l + J6l + J7l + J8l + J9l + J10l) = J∗ (14)

where

J11 = xT
0

¯
M
−T

2
¯
P

¯
M
−1

2 x0, J2l =
∫ 0
−τ1l

ϕT(α)
¯
M
−T

2
¯
Q1l

¯
M
−1

2 ϕ(α)dα, J3l =
∫ −τ1l
−τml

ϕT(α)
¯
M
−T

2
¯
Q2l

¯
M
−1

2 ϕ(α)dα,

J4l =
∫ −τml
−τ2l

ϕT(α)
¯
M
−T

2
¯
Q3l

¯
M
−1

2 ϕ(α)dα, J5l = τ1l
∫ 0
−τ1l

∫ 0
θ

.
ϕ

T
(α)

¯
M
−T

2
¯
R1l

¯
M
−1

2
.

ϕ(α)dαdθ,

J6l = (τml − τ1l)
∫ −τ1l
−τml

∫ t
θ

.
ϕ

T
(α)

¯
M
−T

2
¯
R2l

¯
M
−1

2
.

ϕ(α)dαdθ, J7l = (τ2l − τml)
∫ −τml
−τ2l

∫ t
θ

.
ϕ

T
(α)

¯
M
−T

2
¯
R3l

¯
M
−1

2
.

ϕ(α)dαdθ,

J8l = τ1l
∫ 0
−τ1l

∫ 0
θ ϕT(α)

¯
M
−T

2
¯
R4l

¯
M
−1

2 ϕ(α)dαdθ, J9l = (τml − τ1l)
∫ −τ1l
−τml

∫ 0
θ ϕT(α)

¯
M
−T

2
¯
R5l

¯
M
−1

2 ϕ(α)dαdθ,

J10l = (τ2l − τml)
∫ −τml
−τ2l

∫ 0
θ ϕT(α)

¯
M
−T

2
¯
R6l

¯
M
−1

2 ϕ(α)dαdθ.

Proof. The proof of Theorem 1 is given in Appendix B.�

For given scalars and matrices, in order to obtain a controller gain K which achieves
the least guaranteed cost value J∗, we have to solve the following minimization problem

Minimize (14) subject to (12), (13) (15)

However, it is noted that the terms in Equation (14) are not convex functions. As a re-
sult, we cannot find the general global minimum of the above minimization problem using
a convex optimization algorithm. In order to get the upper bound of the cost function [22],
we introduce some matrix values Π1, Πkl(k = 2, 3, . . . 10, l = 1, 2, . . . , s), such that
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Π1 = x0xT
0 , Π2l =

∫ 0
−τ1l

ϕ(α)ϕT(α)dα, Π3l =
∫ −τ1l
−τml

ϕ(α)ϕT(α)dα, Π4l =
∫ −τml
−τ2l

ϕ(α)ϕT(α)dα,

Π5l = τ1l
∫ 0
−τ1l

∫ 0
θ

.
ϕ(α)

.
ϕ

T
(α)dαdθ, Π6l = (τml − τ1l)

∫ −τ1l
−τml

∫ t
θ

.
ϕ(α)

.
ϕ

T
(α)dαdθ,

Π7l = (τ2l − τml)
∫ −τml
−τ2l

∫ t
θ

.
ϕ(α)

.
ϕ

T
(α)dαdθ, Π8l = τ1l

∫ 0
−τ1l

∫ 0
θ ϕ(α)ϕT(α)dαdθ,

Π9l = (τml − τ1l)
∫ −τ1l
−τml

∫ 0
θ ϕ(α)ϕT(α)dαdθ, Π10l = (τ2l − τml)

∫ −τml
−τ2l

∫ 0
θ ϕ(α)ϕT(α)dαdθ.

(16)

Let us introduce new variables Λ1 = ΛT
1 , Λkl = ΛT

kl(k = 2, 3, . . . , 10, l = 1, 2, . . . s) such that

¯
M
−T

2
¯
P

¯
M
−1

2 < Λ1,
¯
M
−T

2
¯
Qg1l

¯
M
−1

2 < Π(g1+1)l ,
¯
M
−T

2
¯
Rg2l

¯
M
−1

2 < Π(g2+4)l , (17)

By Schur complement and denoting P̂ =
¯
P
−1

, M2 =
¯
M
−1

2 , Q̂g1l =
¯
Q
−1

g1l , R̂g2l =
¯
R
−1

g2l ,
Equation (17) is equivalent to[

−Λ1 MT
2

M2 −P̂

]
< 0,

[
−Λ(g1+1)l MT

2
M2 −Q̂g1l

]
< 0,

[
−Λ(g2+4)l MT

2
M2 −R̂g2l

]
< 0,

(g1 = 1, 2, 3; g2 = 1, 2, . . . , 6; k = 2, 3, . . . 10; l = 1, 2, . . . , s)
(18)

Then, the following inequalities hold

J1 < trace(Π1Λ1), Jkl < trace(ΠklΛkl). (19)

For some constant J, assuming

trace(Π1Λ1) +
10

∑
k=2

s

∑
l=1

trace(ΠklΛkl) < J (20)

Combining these facts, we can construct a feasibility problem as follows:

Find
¯
P, P̂, M2,

¯
M2,

¯
Qg1l , Q̂g1l ,

¯
Rg2l , R̂g2l , Λ1, Λkl ,

¯
Xl ,

¯
Yl , Fi, ε

(g1 = 1, 2, 3; g2 = 1, 2, . . . , 6; i = 1, 2, . . . , r; l = 1, 2, . . . , s)

Subject to
¯
P > 0,

¯
Qg1l > 0,

¯
Rg2l > 0, ε > 0, P̂ =

¯
P
−1

,M2 =
¯
M
−1

2 ,Q̂g1l =
¯
Q
−1

g1l, R̂g2l =
¯
R
−1

g2l, (12), (13), (18), (20).

Because there are nonlinear constraints, such as P̂ =
¯
P
−1

et al., the feasibility problem
is still difficult to solve. These nonlinear constraints can be linearized via the cone comple-
mentarity linearization algorithm [22,27]. Then, the feasibility problem can be transformed
into a minimization problem with LMI constraints:

Minimize trace

(
M2

¯
M2 +

¯
PP̂ +

3
∑

g1=1

s
∑

l=1

¯
Qg1lQ̂g1l+

6
∑

g2=1

s
∑

l=1

¯
Qg2lQ̂g2l

)
Subject to

¯
P > 0,

¯
Qg1l > 0,

¯
Rg2l > 0, (12), (13), (18), (20)[

M2 I

I
¯
M2

]
≥ 0,

[
¯
P I
I P̂

]
≥ 0,

 ¯
Qg1l I

I Q̂g1l

 ≥ 0,

[ ¯
Rg2l I

I R̂g2l

]
≥ 0

g1 = 1, 2, 3; g2 = 1, 2, . . . , 6; l = 1, 2, . . . , s.

(21)

Based on this cone complementarity problem and the solving algorithm in refer-
ences [19,27], the least upper bound of the cost function can be solved iteratively. The
iterative algorithm starts with a sufficiently large J in Equation (20), and then decreases
the value of J continuously until the above optimization problem has no solution, at which
point the least upper bound of cost function is obtained.
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Although it is still impossible to always find the globally optimal solution, the pro-
posed linear optimization problem is easier to solve than the original non-convex mini-
mization problem in Equation (14).

3.2. Modeling of Turboshaft Engine with Aging and Deterioration

A typical turboshaft engine consists of two parts: a gas generator and power turbine.
The gas generator consists of a low-pressure compressor, a high-pressure compressor, a
combustion chamber and a gas generator turbine [28]. It is used to generate the high
temperature and pressure gas to drive the independent power turbine. Then, the power
turbine is used to drive the load link to the turbine shaft. The primary components of a
typical turboshaft engine are shown in Figure 2. The aim of the turboshaft engine control,
therefore, is to keep the power turbine at a constant speed [29].
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In reference [30], using GasTurb modeling software [31], a versatile simulation plat-
form for turboshaft engine control system is established. With this platform, we can flexibly
generate a turboshaft linear model with customized structures and characteristics at a
design point. The design point taken for this paper is 100% gas generator speed and 100%
power turbine speed with an altitude of 0 and Mach number of 0. Table 1 shows the state
vector x, input u, the output y and the health parameter vector w for a new turboshaft at
the design point.

Table 1. Parameters and physical meanings of the turboshaft engine model.

Signal Type Notation Designed Value Physical Meanings

Input u 0.1356 Kg/min Main combustor fuel flow

State vector x
x1 37800 rpm Rotation speed of the gas generator
x2 20900 rpm Rotation speed of the power turbine

Output y y 20900 rpm Being same as x2

Health
parameter w

w1 1.00 Efficiency modifier of the low-pressure compressor
w2 1.00 Efficiency modifier of the high-pressure compressor
w3 1.00 Efficiency modifier of the gas generator turbine
w4 1.00 Efficiency modifier of the power turbine
w5 1.00 Flow modifier of the low-pressure compressor
w6 1.00 Flow modifier of the high-pressure compressor
w7 1.00 Flow modifier of the gas generator turbine
w8 1.00 Flow modifier of the power turbine

As an engine is used, degradation happens, which yields a shorter life and higher cost.
Usually, the degradation is reflected as changes in flow characteristics and efficiencies of
the rotational components. Therefore, a group of multipliers called “health parameters” are
introduced in the model. For example, wi = 1 (i=1, 2, . . . , 8) stands for a new component
while wi 6= 1 stands for a degraded one, in which the flow modifiers for turbines (w7 and
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w8) increase, and other parameters (w1 to w6) decrease. In this paper, the health parameter
settings are borrowed from reference [32].

By way of the versatile simulation platform and manipulating the flow modifiers w7
and w8 from 1 to 1.025 and other health parameters (w1 to w6) from 1 to 0.975 at 0.005
intervals, we can get a set of the turboshaft engine linear models at the design point. The
models are identified as 

δ
.
x(t) = Aj · δx(t) + Bj · δu(t)

δy(t) = Cj · δx(t) +Dj · δu(t)
j = 1, 2, . . . , 6

(22)

where the symbol δ denotes the deviation from the design point, and the parameter matrices
of the models constitute the set L:

L ,
{

L
∣∣∣∣L =

[
Aj Bj
Cj Dj

]
, j = 1, 2, . . . , 6

}
(23)

Then, based on Lemma 1 in reference [11,33], Corollary 1 is derived as follows.

Corollary 1. With the given matrices P ,
(

pij
)

n×m, Q ,
(
qij
)

n×m and A ,
(
aij
)

n×m, the
interval matrix N [P, Q] is equivalent to the setMa defined below:

Ma ,
{
A ∈ Rn×m

∣∣∣A = A + GaFaEa, FT
a Fa ≤ I

}
(24)

where the interval is defined as

Ma ,
{
A ∈ Rn×m

∣∣∣A = A + GaFaEa, FT
a Fa ≤ I

}
(25)

and matrices Ga ∈ Rn×nm, Fa ∈ Rnm×nm and Ea ∈ Rnm×m are taken as
A = P+Q

2 , H =
(

Hij
)

n×m = Q−P
2 ,

Ga =
[ √

h11e1 · · ·
√

h1me1 · · ·
√

hn1en · · ·
√

hnmen
]
,

Ea =
[ √

h11e1 · · ·
√

h1mem · · ·
√

hn1e1 · · ·
√

hnmem
]T ,

ek =

0, . . . , 0, 1︸ ︷︷ ︸
k

, 0, . . . , 0

T

, (k ∈ Z+),

Fa = diag(ε11, · · · ε1m, · · · , εn1, · · · , εnm),
∣∣εij
∣∣ ≤ 1, i = 1, 2, . . . , n; j = 1, 2, . . . , m.

Remark 2. The equivalence of N [P, Q] and Ma for square matrix has been proved in Refer-
ence [33], here we generalize it to more general non-square matrix and the proof process is similar to
the reference and is omitted here.

Then, degradation of the health parameters w is viewed as the source of uncer-
tainties for the identified models. Taking all parameter matrices in Equation (23) into
Corollary 1, we can get the parameter matrices of turboshaft engine at design point with
norm-bounded uncertainties.

M ,
{

M|M =

[
A B
C D

]
+

[
GaFaEa GbFbEb
GcFcEc GdFdEd

]
, FT

i Fi ≤ I, i ∈ {a, b, c, d}
}

(26)

where
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A =

[
−3.9519 −0.0524
0.5239 −1.2656

]
, Ga =

[
0.1560 0.0383 0 0

0 0 0.1538 0.0716

]
, Ea =


0.1560 0

0 0.0383
0.1538 0

0 0.0716

,

B =

[
1.0788
0.3116

]
, Gb =

[
0.2118 0

0 0.0526

]
, Eb =

[
0.2118
0.0526

]
,

C =
[

0 1
]
, Gc =

[
0 0

]
, Ec = 02×2, D = 0, Gd = 0, Ed = 0.

Therefore, a group of turboshaft engine linear models at design point in Equation (23)
with aging and deterioration are rewritten as nominal model in Equation (26) with norm-
bounded uncertainties.

Remark 3. Since the model set L is only a subset of norm-bounded uncertainties modelM, the
conservatism is introduced.

It should be noticed that the steady-state error may exist in the control system with
static state feedback controller. This error can be eliminated by achieving the integral
action via internal model principle [34,35]. The turboshaft engine control system can be
augmented as 

.
¯
x(t) = A¯

x(t) + B¯
u(t)

¯
u

c
(t) = K

¯
x

c
(t)

(27)

where
¯
x ,

[
δxT z T

]T
, z ,

∫
[δycmd − δy(t)]dt. The turboshaft engine control system

is a constant speed control system [29,36], so δycmd ≡ 0 is always true. A and B are
augmented system matrices that can still be decomposed into a norm-bounded form as

A =
¯
A + ∆

¯
A,B =

¯
B + ∆

¯
B,[

∆
¯
A ∆

¯
B
]
=

¯
G

¯
F
[
¯
Ea

¯
Eb

] (28)

where
¯
A =

[
A 0
−C 0

]
,
¯
B =

[
B
−D

]
,
¯
G =

[
Ga 0 Gb 0
0 Gc 0 Gd

]
,
¯
Ea =

[
Ea Ec 0 0
0 0 0 0

]T

,
¯
Eb =

[
0 0 Eb Ed

]T ,

¯
F = diag(Fa,−Fc, Fb,−Fd,).

However, the augmented state vector contains three variables: gas generator speed
(Ng), power turbine speed (Np) and integration of power turbine speed (z), only Ng and
Np are sensed and transmitted physically. So, the states are transmitted by two packets
in state channels. Then, the controller design, the augmented state is divided into two
parts—X1(t) = δx1(t),X2(t) =

[
δxT

2 (t) zT(t)
]T and the r = 2 in Theorem 1. The control

input is fuel flow (Wf) transmitted by one packet in the control channel, and m = 1 in
Theorem 1.

4. Application and Simulations on the Turboshaft Engine DECS

This section presents the application of the method proposed, and four simulations
are performed. The first numerical calculation shows that the method proposed is less
conservative in comparison to references [19,24]. The second simulation shows that the
method proposed is effective for multiple delays and packet dropouts. The third simulation
shows that the guaranteed cost control is more robust than a legacy cascade PI controller
for multiple delays and packet dropouts. The fourth simulation presents the robustness of
the method for aging and deterioration.

In the DECSs, since a time-triggered data bus is utilized, the transmission delays are
less than one sampling period T = 0.02 s. We assume that the lower bounds of multiple
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delays are half period h11 = h12 = 0.01 s, and the upper bounds of multiple delays are
one period. The controller gain K for the system with different delays/dropouts are upper
bound and uncertainties are calculated for the augmented system by the method proposed.

Firstly, to illustrate that the method proposed is less conservative, we get a base
LQR controller K =

[
3.6734 23.8746 −88.4129

]
at nominal point by setting Q =

diag(1, 1, 100) and R = 0.01. When we assume that h21 = h22 in two channels (namely, a
single delay system), the maximum allowable value of h21 and h22 are obtained as 0.107 s by
the method in this paper and setting γ1 = γ2 = 0.38. Correspondingly, the maximum value
of h21 and h22 are 0.101 s by the method in references [19,24]. Then, for a multiple delay
system, we fixed the value of h21, max = 0.09 s, the maximum allowable value of h22 is ob-
tained as 0.111 s by the method in this paper and setting γ1 = γ2 = 0.42. Correspondingly,
the maximum value of h22 is 0.108 s by using the method in references [19,24].

Then, to verify the effectiveness of the controller designed by the method proposed,
we take

[
h21 h22

]
∈
{[

0.02
0.02

]T

,
[

0.12
0.12

]T

,
[

0.12
0.22

]T

,
[

0.22
0.12

]T

,
[

0.22
0.22

]T
}

,

γ1 = γ2 = 0.38, U1 = 0.1 ∗ I, Q = diag(1, 1, 100), R = 0.01,
¯
x

T
(0) =

[
−1.3%x1,des 0 0

]
,

.
¯
x

T

(0−) = 0,

(29)

where h21 and h22 denote upper bound of time delays and packet dropouts of two channels,
subscript des means the designed point value and the initial value can be reached by setting
the power angle from 100% to 95%. The guaranteed cost controller Kh21,h22 and the least
upper bound of cost functions Jmin for the system with different delays, packet dropouts
and uncertainties are calculated and listed in Table 2.

Table 2. Calculation results and performances of system with multiple delays and packet dropouts.

Situation
No. [h21h22] Kh21,h22

Jmin
(×10−3)

Setting
Time (s)

Fluctuation
of Np (%)

1 [0.02 0.02] K0.02,0.02 = [−0.9082 − 5.4541 4.3927] 6.5 2.78 –0.59
2 [0.12 0.12] K0.12,0.12 = [−0.6877 − 4.1765 3.3489] 9.1 3.26 –0.69
3 [0.12 0.22] K0.12,0.22 = [−0.7356 − 4.3553 3.5235] 9 3.10 –0.71
4 [0.22 0.12] K0.22,0.12 = [−0.7174 − 4.3014 3.4805] 9.1 3.18 –0.67
5 [0.22 0.22] K0.22,0.22 = [−0.5477 − 3.3125 2.7058] 11.8 3.66 –0.78
6 [0.12 0.22] K0.22,0.22 = [−0.5477 − 3.3125 2.7058] /* 3.66 –0.78

* The symbol ‘/’ means the controller for this simulation is not recalculated, so there is no corresponding cost
function value Jmin.

The simulations are performed on the turboshaft engine simulation platform, which
is built based on the TrueTime toolbox [37]. During the simulation, we take the time
delays as their worst values—which are one sampling period 0.02 s—and set the maximum
consecutive packet dropouts of the two channels in DECS at n1,max = {0,5,5,10,10,5} and
n2,max = {0,5,10,5,10,10}, corresponding situation 1 to situation 6. At the beginning of the
simulations, the engine is driven to the initial status in Equation (29). Then, the power
level angle changed from 95% to 100% again to make the whole system converge to its
equilibrium point. The system response with delays and different packet dropouts are
pictured in Figure 3, and dynamic performances are also listed in Table 2. All the data have
been normalized by their designed point values to present in percentage.

As can be seen in Figure 3, the blue curve has the best performance, corresponding to
the minimum delay and dropout (situation 1). The green curve (overlapped with the light
blue curve) has the worst performance, corresponding to the maximum delay and dropout
(situation 5). Simulation results from situation 1 to situation 5 show that with the increase
in delays and dropouts, the performances of the guaranteed cost controller proposed will
decrease, but it can still ensure the system remains stable. So, the controller design method
proposed remains robust for multiple delays and packet dropouts. According to Table 2, we
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know that situation 3 and situation 6 have the same multiple delays and packet dropouts.
However, in the simulations, situation 3 uses the multiple delay controller (K0.12,0.22), and
situation 6 uses the single delay controller (K0.22,0.22). The result of situation 3 (yellow
curve) is better than the result of situation 6 (light blue curve). So, for the practical multiple
delay systems, the multiple delays controller is better than the single delay controller.
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of corresponding guaranteed cost controllers.

Thirdly, to compare the guaranteed cost controller proposed with the traditional
cascade PI controller used in the turboshaft engine control system, we set the maxi-
mum delay of two channels as [h21h22] = [0.12 0.22] and perform the simulations under
the guaranteed cost controller and baseline cascade PI controller in the versatile simu-
lation platform [30]. The controller parameters for inner loop are KP1 = 3.16 × 10−5,
KI1 = 7.9× 10−5 and the controller parameters for outer loop are KP2 = 4.817, KI2 = 10.44,
which are tuned by MATLAB SISO design toolbox with no uncertainties. During the
simulation, the power level angle changed from 95% to 100% again to make the whole
system converge to its equilibrium point. The responses are shown in Figure 4. Although
from Np we see that the cascade PI controller makes the system respond faster, the response
oscillations of the system are more severe (orange curve). The guaranteed cost controller
ensures stability and no oscillation for NECS with multiple delays and packet dropouts
(blue curve). From the input Wf and gas generator speed Ng, we can see that the system
under guaranteed cost control has faster responses. All of these show that the proposed
guaranteed cost controller is more robust for multiple delays and packet dropouts, but the
cost is that the drop-down amplitude of power turbine speed becomes worse.
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Finally, we confirm the robustness of the guaranteed cost controller designed for
engine aging and deterioration by simulation. In each simulation, the [h21h22] is fixed to
[0.12 0.22], and the health parameters degrade in which the flow modifiers (w7 and w8)
from 1 to 1.02 and other health parameters (w1 to w6) from 1 to 0.98 at 0.01 intervals. During
the simulation, the power level angle changed from 95% to 100% again, to make the power
turbine speed Np converge to its equilibrium point. The system responses are pictured
in Figure 5. From scenario 1 to scenario 3, engine deterioration became more and more
severe. However, the guaranteed cost controller could still ensure the system was robust
for multiple delays, packet dropouts and deterioration. The cost is that to keep the power
turbine speed Np at the desired constant value, more fuel Wf and higher gas generator
speed Ng are needed. Also, this may cause fuel Wf and gas generator speed Ng to exceed
the limits.
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5. Conclusions

In this paper, a DECS with multiple-packet transmission delays and packet dropouts in
both sensor channels, actuator channels and uncertainties is built. Then, a less conservative
guaranteed cost controller design method is proposed using the LMI-based method. Finally,
the method proposed is used to design controllers for the turboshaft engine distributed
control system to deal with the problem of multiple delays and packet dropouts in the
system, as well as the engine aging and deterioration. The simulations illustrate that the
guaranteed cost controller proposed is robust for both a single delay system and multiple
delay system, and the multiple delay controller performs better than the single delay
controller for the turboshaft engine DECS. Also, the guaranteed cost controller designed is
more robust than the cascade PI controller for multiple delays, and is effective for turboshaft
engine aging and deterioration. This paper provides a design reference for the practical
implementation of distributed engine control systems in the future.
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Appendix A The Specific Expression of Formulas in Theorem 1

This part shows the specific expression of the formulas Φ
(1)
11 , Φ

(1)
12 , Φ

(1)
22 , Φ

(2)
11 ,

Φ
(2)
12 , Φ

(2)
22 ,

¯
Ξ31,l and

¯
Ξ32,l in Equations (12) and (13) of Theorem 1.

Φ
(1)
11 =

¯
Ψ

(1)

+ ε
[

U1G G 0 · · · 0
]T[ U1G G 0 · · · 0

]
,

Φ
(2)
11 =

¯
Ψ

(2)

+ ε
[

U1G G 0 · · · 0
]T[ U1G G 0 · · · 0

]
,

Φ
(1)
12 = Φ

(2)
12 =

 I 0 0 · · · 0
0 0 K̂1 · · · K̂s

Ea
¯
M2 0 EbK̂1 · · · EbK̂s


T

,

K̂l =

 0
¯
Kl 0 0 0︸ ︷︷ ︸

7

,
¯
Kl = DjFi, ∀l = (j− 1)× r + i; i = 1, 2, . . . , r; j = 1, 2, . . . , m

Φ
(1)
22 = Φ

(2)
22 = diag

{
−Q−1,−R−1,−εI

}
,

¯
Ψ

(1)

=
¯
Ψ1 +

¯
Ψ2 +

¯
Ψ

(1)

3 +
¯
Ψ4 +

¯
Ψ

T

4 ,
¯
Ψ

(2)

=
¯
Ψ1 +

¯
Ψ2 +

¯
Ψ

(2)

3 +
¯
Ψ4 +

¯
Ψ

T

4 ,

¯
Ψ1 = diag

{
¯
Ψ1,1

¯
Ψ1,2 · · ·

¯
Ψ1,s+1

}
¯
Ψ1,1 =

 n
∑

l=1

(¯
Q1l + h2

1l

¯
R4l + (ηl − h1l)

2¯
R5l + (h2l − ηl)

2¯
R6l

)
¯
P

∗ 0

,

ηl = γlh1l + (1− γl)h2l ,
¯
Ψ1,l+1 = diag

{
¯
Q2l −

¯
Q1l 0

¯
Q3l −

¯
Q2l −

¯
Q3l −

¯
R4l −

¯
R5l −

¯
R6l 0 0

}
¯
Ψ2 =

[
E2,1 · · · E2,s+1

] ¯
Ω2,11

¯
Ω2,12

∗
¯
Ω2,22

[ E2,1 · · · E2,s+1
]T ,

ei =

[
0 · · · 0︸ ︷︷ ︸

i−1

I 0 · · · 0︸ ︷︷ ︸
2+9s−i

]T

,

E2,1 =
[

e1 e2
]
, E2,l+1 =

[
e2+9(l−1)+1 e2+9(l−1)+5

]
,

¯
Σ21 =

 −4
s
∑

l=1

¯
R1l 0

0
s
∑

l=1
h2

1l

¯
R1l

,
¯
Σ22,l =

[
−2

¯
R1l

6
h1l

¯
R1l

0 0

]
,
¯
Σ23,l =

 −4
¯
R1l

6
h1l

¯
R1l

∗ − 12
h2

1l

¯
R1l

,

¯
Ω2,11 =

¯
Σ21,

¯
Ω2,12 =

[
¯
Σ22,1 · · ·

¯
Σ22,s

]
,
¯
Ω2,22 = diag

{
¯
Σ23,1 · · ·

¯
Σ23,s

}
,

¯
Ψ

(1)

3 =
[

E(1)
3,1 · · · E(1)

3,s+1

]
diag

{
¯
Σ

(1)

3,1 · · ·
¯
Σ

(1)

3,s+1

}[
E(1)

3,1 · · · E(1)
3,s+1

]T

−
s
∑

l=1

[
Γ
(1)
31,l Γ

(1)
32,l

] ¯
Ξ

(1)

3,l
¯
Xl

∗
¯
Ξ

(1)

3,l

[ Γ
(1)
31,l Γ

(1)
32,l

]T
,

E(1)
3,1 = e2, E(1)

3,l+1 =
[

e2+9(l−1)+3 e2+9(l−1)+4 e2+9(l−1)+7
]
,
¯
Σ

(1)

3,1 =
s
∑

l=1

[
(ηl − h1l)

2R2l + (h2l − ηml)
2R3l

]
,

¯
Σ

(1)

3,l+1 =


−4

¯
R3l −2

¯
R3l

6
(h2l−ηl)

¯
R3l

∗ −4
¯
R3l

6
(h2l−ηl)

¯
R3l

∗ ∗ − 12
(h2l−ηl)

2

¯
R3l

,
¯
Ξ

(1)

3,l =

 ¯
R2l 0

0 3
¯
R2l

,
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Γ
(1)
31,l =

[
e2+9(l−1)+2 − e2+9(l−1)+3 e2+9(l−1)+2 + e2+9(l−1)+3 − 2e2+9(l−1)+8

]
,

Γ
(1)
32,l =

[
e2+9(l−1)+1 − e2+9(l−1)+2 e2+9(l−1)+1 + e2+9(l−1)+2 − 2e2+9(l−1)+9

]
,

¯
Ψ

(2)

3 =
[

E(2)
3,1 · · · E(2)

3,s+1

]
diag

{
¯
Σ

(2)

3,1 · · ·
¯
Σ

(2)

3,s+1

}[
E(2)

3,1 · · · E(2)
3,s+1

]T

−
s
∑

l=1

[
Γ
(2)
31,l Γ

(2)
32,l

] ¯
Ξ

(2)

3,l
¯
Yl

∗
¯
Ξ

(2)

3,l

[ Γ
(2)
31,l Γ

(2)
32,l

]T
,

E(2)
3,1 = e2, E(2)

3,l+1 =
[

e2+9(l−1)+1 e2+9(l−1)+3 e2+9(l−1)+6
]
,
¯
Σ

(2)

3,1 =
s
∑

l=1

[
(ηl − h1l)

2R2l + (h2l − ηml)
2R3l

]
,

¯
Σ

(2)

3,l+1 =


−4

¯
R2l −2

¯
R2l

6
(ηl−h1l)

¯
R2l

∗ −4
¯
R2l

6
(ηl−h1l)

¯
R2l

∗ ∗ − 12
(ηl−h1l)

2

¯
R2l

,
¯
Ξ

(2)

3,l =

 ¯
R3l 0

0 3
¯
R3l

,

Γ
(2)
31,l =

[
e2+9(l−1)+2 − e2+9(l−1)+4 e2+9(l−1)+2 + e2+9(l−1)+4 − 2e2+9(l−1)+8

]
,

Γ
(2)
32,l =

[
e2+9(l−1)+3 − e2+9(l−1)+2 e2+9(l−1)+3 + e2+9(l−1)+2 − 2e2+9(l−1)+9

]
,

¯
Ψ4 =

[
U1 I 0 · · · 0

]T
[

A
¯
M2 −

¯
M2 Â1 · · · Âs

]
,

Âl =

 0
¯
Al 0 · · · 0︸ ︷︷ ︸

7

,
¯
Al = BDjFi, ∀l = (j− 1)× r + i, i = 1, 2, . . . , r; j = 1, 2, . . . , m.

Appendix B Proof of Theorem 1

Appendix B provides the proof of Theorem 1. The proof is mainly based on Lyapunov-
Krasovskii functional, decomposition of time-varying delay, Wirtinger integral inequality
and reciprocally convex combination inequality methods.

Construct a Lyapunov-Krasovskii functional as:

V(t) = V1(t) + V2(t) + V3(t) (A1)

where

V1(t) = xT(t)Px(t) +
s
∑

l=1

[∫ t
t−h1l

xT(s)Q1lx(s)ds +
∫ t−h1l

t−ηl
xT(s)Q2lx(s)ds +

∫ t−ηl
t−h2l

xT(s)Q3lx(s)ds

+h1l
∫ 0
−h1l

∫ t
t+θ xT(s)R4lx(s)dsdθ + (ηl − h1l)

∫ −h1l
−ηl

∫ t
t+θ xT(s)R5lx(s)dsdθ

+(h2l − ηl)
∫ −ηl
−h2l

∫ t
t+θ xT(s)R6lx(s)dsdθ

]
,

V2(t) =
s

∑
l=1

h1l

∫ 0

−h1l

∫ t

t+θ

.
xT

(s)R1l
.
x(s)dsdθ

V3(t) =
s

∑
l=1

[
(ηl − h1l)

∫ −h1l

−ηl

∫ t

t+θ

.
xT

(s)R2l
.
x(s)dsdθ + (h2l − ηl)

∫ −ηl

−h2l

∫ t

t+θ

.
xT

(s)R3l
.
x(s)dsdθ

]
Taking the derivative of V(t) along the trajectories of system Equation (9) and analo-

gous to the proof in Reference [38]. When τl(t) ∈ [h1l , ηl ], we take

ξ1(t) =
[

xT(t)
.
xT

(t) xT(t− h11) xT(t− τ1(t)) xT(t− η1) xT(t− h21)
∫ t

t−h11
xT(s)ds

∫ t−h11
t−η1

xT(s)ds
∫ t−η1

t−h21
xT(s)ds

1
η1−τ1(t)

∫ t−τ1(t)
t−η1

xT(s)ds 1
τ1(t)−h11

∫ t−h11
t−τ1(t)

xT(s)ds · · · xT(t− h1s) xT(t− τs(t)) xT(t− ηs) xT(t− h2s)∫ t
t−h1s

xT(s)ds
∫ t−h1s

t−ηs
xT(s)ds

∫ t−ηs
t−h2s

xT(s)ds 1
ηs−τs(t)

∫ t−τs(t)
t−ηs

xT(s)ds 1
τs(t)−h1s

∫ t−h1s
t−τs(t)

xT(s)ds
]T

.
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Then we can get that
.

V1(t) ≤ ξT
1 (t)Ψ1ξ1(t) (A2)

where

Ψ1 = diag
{

Ψ1,1 Ψ1,2 · · · Ψ1,s+1
}

Ψ1,1 =

 n
∑

l=1

(
Q1l + h2

1lR4l + (ηl − h1l)
2R5l + (h2l − ηl)

2R6l

)
P

∗ 0

,

ηl = γlh1l + (1− γl)h2l ,
Ψ1,l+1 = diag

{
Q2l −Q1l 0 Q3l −Q2l −Q3l −R4l −R5l −R6l 0 0

}
,

.
V2(t) ≤ ξT

1 (t)Ψ2ξ1(t) (A3)

where

Ψ2 =
[

E2,1 · · · E2,s+1
][ Ω2,11 Ω2,12

∗ Ω2,22

][
E2,1 · · · E2,s+1

]T ,

ei =

[
0 · · · 0︸ ︷︷ ︸

i−1

I 0 · · · 0︸ ︷︷ ︸
2+9s−i

]T

,

E2,1 =
[

e1 e2
]
, E2,l+1 =

[
e2+9(l−1)+1 e2+9(l−1)+5

]
,

Σ21 =

 −4
s
∑

l=1
R1l 0

0
s
∑

l=1
h2

1lR1l

, Σ22,l =

[
−2R1l

6
h1l

R1l

0 0

]
, Σ23,l =

[
−4R1l

6
h1l

R1l

∗ − 12
h2

1l
R1l

]
,

Ω2,11 = Σ21, Ω2,12 =
[

Σ22,1 · · · Σ22,s
]
, Ω2,22 = diag

{
Σ23,1 · · · Σ23,s

}
,

and .
V3(t) ≤ ξT

1 (t)Ψ
(1)
3 ξ1(t) (A4)

where

Ψ
(1)
3 =

[
E(1)

3,1 · · · E(1)
3,s+1

]
diag

{
Σ
(1)
3,1 · · · Σ

(1)
3,s+1

}[
E(1)

3,1 · · · E(1)
3,s+1

]T

−
s
∑

l=1

[
Γ
(1)
31,l Γ

(1)
32,l

][ Ξ
(1)
3,l Xl

∗ Ξ
(1)
3,l

][
Γ
(1)
31,l Γ

(1)
32,l

]T
,

E(1)
3,1 = e2, E(1)

3,l+1 =
[

e2+9(l−1)+3 e2+9(l−1)+4 e2+9(l−1)+7
]
, Σ

(1)
3,1 =

s
∑

l=1

[
(ηl − h1l)

2R2l + (h2l − ηml)
2R3l

]
,

Σ
(1)
3,l+1 =


−4R3l −2R3l

6
(h2l−ηl)

R3l

∗ −4R3l
6

(h2l−ηl)
R3l

∗ ∗ − 12
(h2l−ηl)

2 R3l

, Ξ
(1)
3,l =

[
R2l 0
0 3R2l

]
,

Γ
(1)
31,l =

[
e2+9(l−1)+2 − e2+9(l−1)+3 e2+9(l−1)+2 + e2+9(l−1)+3 − 2e2+9(l−1)+8

]
,

Γ
(1)
32,l =

[
e2+9(l−1)+1 − e2+9(l−1)+2 e2+9(l−1)+1 + e2+9(l−1)+2 − 2e2+9(l−1)+9

]
,

Meanwhile, for any matrices M1 and M2 with appropriate dimension, we can easily
notice that

− 2
[
xT(t)M1 +

.
xT

(t)M2

][ .
x(t)− (A + GF(t)Ea)x(t)−

s

∑
l=1

(B + GF(t)Eb)Klx(t− τl(t))

]
= 0 (A5)

where Kl = DjKCi, l = (j− 1)× r+ i(1 ≤ i ≤ r, 1 ≤ j ≤ m). Then combining the Equations
(A2)–(A5) and using Schur complement, we can get that

.
V(t) ≤ ξT

1 (t)Θ
(1)ξ1(t) (A6)

where



Aerospace 2022, 9, 88 16 of 19

Θ(1) =

[
Θ

(1)
11 Θ

(1)
12

∗ Θ
(1)
22

]

Θ
(1)
11 = Ψ(1) + ε

[
Ea 0 Eb

~
K1 · · · Eb

~
Ks

]T[
Ea 0 Eb

~
K1 · · · Eb

~
Ks

]
,

~
Kl =

[
0 Kl 0 0 0︸ ︷︷ ︸

7

]
, Kl = DjKCi, ∀l = (j− 1)× r + i, i = 1, 2, . . . , r; j = 1, 2, . . . , m,

Θ
(1)
12 =

[
M1 M2 0 · · · 0

]TG, Θ
(1)
22 = −εI,

Ψ4 =
[

M1 M2 0 · · · 0
]T
[

A −I
~
A1 · · ·

~
As

]
,

~
Al =

[
0 Al 0 · · · 0︸ ︷︷ ︸

7

]
, Al = BDjKCi,

∀l = (j− 1)× r + i, i = 1, 2, . . . , r; j = 1, 2, . . . , m.
Ψ(1) = Ψ1 + Ψ2 + Ψ

(1)
3 + Ψ4 + ΨT

4

When τl(t) ∈ (ηl , τ2l ] we take that

ξ2(t) =
[

xT(t)
.
xT

(t) xT(t− h11) xT(t− τ1(t)) xT(t− η1) xT(t− h21)
∫ t

t−h11
xT(s)ds

∫ t−h11
t−η1

xT(s)ds
∫ t−η1

t−h21
xT(s)ds

1
h21−τ1(t)

∫ t−τ1(t)
t−h21

xT(s)ds 1
τ1(t)−η1

∫ t−η1
t−τ1(t)

xT(s)ds · · · xT(t− h1s) xT(t− τs(t)) xT(t− ηs) xT(t− h2s)∫ t
t−h1s

xT(s)ds
∫ t−h1s

t−ηs
xT(s)ds

∫ t−ηs
t−h2s

xT(s)ds 1
h2s−τs(t)

∫ t−τs(t)
t−h2s

xT(s)ds 1
τs(t)−ηs

∫ t−ηs
t−τs(t)

xT(s)ds
]T

.

Then, we can get that

.
V1(t) = ξT

2 (t)Ψ1ξ2(t),
.

V2(t) = ξT
2 (t)Ψ2ξ2(t),

.
V3(t) = ξT

2 (t)Ψ
(2)
3 ξ2(t) (A7)

where

Ψ
(2)
3 =

[
E(2)

3,1 · · · E(2)
3,s+1

]
diag

{
Σ
(2)
3,1 · · · Σ

(2)
3,s+1

}[
E(2)

3,1 · · · E(2)
3,s+1

]T

−
s
∑

l=1

[
Γ
(2)
31,l Γ

(2)
32,l

][ Ξ
(2)
3,l Yl

∗ Ξ
(2)
3,l

][
Γ
(2)
31,l Γ

(2)
32,l

]T
,

E(2)
3,1 = e2, E(2)

3,l+1 =
[

e2+9(l−1)+1 e2+9(l−1)+3 e2+9(l−1)+6
]
, Σ

(2)
3,1 =

s
∑

l=1

[
(ηl − h1l)

2R2l + (h2l − ηml)
2R3l

]
,

Σ
(2)
3,l+1 =


−4R2l −2R2l

6
(ηl−h1l)

R2l

∗ −4R2l
6

(ηl−h1l)
R2l

∗ ∗ − 12
(ηl−h1l)

2 R2l

, Ξ
(2)
3,l =

[
R3l 0
0 3R3l

]
,

Γ
(2)
31,l =

[
e2+9(l−1)+2 − e2+9(l−1)+4 e2+9(l−1)+2 + e2+9(l−1)+4 − 2e2+9(l−1)+8

]
,

Γ
(2)
32,l =

[
e2+9(l−1)+3 − e2+9(l−1)+2 e2+9(l−1)+3 + e2+9(l−1)+2 − 2e2+9(l−1)+9

]
,

Then, combining the Equations (A5) and (A7) and using Schur complement, we can get that

.
V(t) ≤ ξT

2 (t)Θ
(2)ξ2(t)

where

Θ(2) =

[
Θ

(2)
11 Θ

(2)
12

∗ Θ
(2)
22

]

Θ
(2)
11 = Ψ(2) + ε

[
Ea 0 Eb

~
K1 · · · Eb

~
Ks

]T[
Ea 0 Eb

~
K1 · · · Eb

~
Ks

]
,

Θ
(2)
12 =

[
M1 M2 0 · · · 0

]TG, Θ
(2)
22 = −εI,

Ψ(2) = Ψ1 + Ψ2 + Ψ
(2)
3 + Ψ4 + ΨT

4 ,
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In order to ensure that
.

V(t) < 0, both conditions must be met at the same time., namely

Θ(1) =

[
Θ

(1)
11 Θ

(1)
12

∗ Θ
(1)
22

]
< 0, Θ(2) =

[
Θ

(2)
11 Θ

(2)
12

∗ Θ
(2)
22

]
< 0,[

Ξ31,l Xl
∗ Ξ31,l

]
> 0,

[
Ξ32,l Yl
∗ Ξ32,l

]
> 0

(A8)

Then, Equation (A8) implies that M2 is non-singular, so there exists matrix U1 such

that M1 = U1M2. Denoting
¯
M2 = M−1

2 and portioning K and
¯
M2 as

K =
[

K1 K2 · · · Kr
]
,
¯
M2 =

[
¯
M

T

21 · · ·
¯
M

T

2r

]T

where Ki ∈ Rp×ri ,
¯
M2i ∈ Rri×n(i = 1, 2, . . . , r). By introducing new variables Fi = Ki

¯
M2i

(i = 1, 2, . . . , r), we have

Ci
¯
M2 = diag

(
0 · · · Iri · · · 0

)¯
M2 =

[
0 · · ·

¯
M

T

2i · · · 0

]T

Kl
¯
M2 = DjKCi

¯
M2 = DjFi,

l = (j− 1)× r + i; i = 1, 2, . . . , r; j = 1, 2, . . . , m.

In order to ensure that the cost function of the system have an upper bound J∗ for any
controller K, we make that

.
V(t) + xT(t)Qx(t) + uT(t)Ru(t) < 0. (A9)

Then, using Schur complement and denoting
¯
P =

¯
M

T

2 P
¯
M2,

¯
Q1l =

¯
M

T

2 Q1l
¯
M2,

¯
Q2l =

¯
M

T

2 Q2l
¯
M2,

¯
Q3l =

¯
M

T

2 Q3l
¯
M2,

¯
R1l =

¯
M

T

2 R1l
¯
M2,

¯
R2l =

¯
M

T

2 R2l
¯
M2,

¯
R3l =

¯
M

T

2 R3l
¯
M2,

¯
R4l =

¯
M

T

2 R4l
¯
M2,

¯
R5l =

¯
M

T

2 R5l
¯
M2,

¯
R6l =

¯
M

T

2 R6l
¯
M2 and pre- and post- multiplying both

sides of Equation (A9) with diag
(

¯
M

T

2 · · ·
¯
M

T

2 I I I

)
and its transpose, we can

get Theorem 1 and following inequality:

.
V(t) < −

[
xT(t)Qx(t) + uT(t)Ru(t)

]
< 0

Integrating the inequality above from 0 to ∞, we have that
V(∞) − V(0) ≤ −

∫ ∞
0

[
xT(t)Qx(t)+ uT(t)Ru(t)

]
dt and V(∞) = 0, then we can get the cost

function in Equation (14). �
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