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Abstract: Aircraft trajectory planning is affected by various uncertainties. Among them, those in
weather prediction have a large impact on the aircraft dynamics. Trajectory planning that assumes a
deterministic weather scenario can cause significant performance degradation and constraint violation
if the actual weather conditions are significantly different from the assumed ones. The present study
proposes a fundamental framework to plan four-dimensional optimal descent trajectories that are
robust against uncertainties in weather-prediction data. To model the nature of the uncertainties, we
utilize the Global Ensemble Forecast System, which provides a set of weather scenarios, also referred
to as members. A robust trajectory planning problem is constructed based on the robust optimal
control theory, which simultaneously considers a set of trajectories for each of the weather scenarios
while minimizing the expected value of the overall operational costs. We validate the proposed
planning algorithm with a numerical simulation, assuming an arrival route to Leipzig/Halle Airport
in Germany. Comparison between the robust and the inappropriately-controlled trajectories shows
the proposed robust planning strategy can prevent deteriorated costs and infeasible trajectories that
violate operational constraints. The simulation results also confirm that the planning can deal with a
wide range of cost-index and required-time-of-arrival settings, which help the operators to determine
the best values for these parameters. The framework we propose is in a generic form, and therefore it
can be applied to a wide range of scenario settings.

Keywords: robust aircraft trajectory optimization; robust optimal control; 4D trajectory; optimal
descent; continuous descent operations; Global Ensemble Forecast System

1. Introduction

Aircraft trajectory planning, theoretically leading to a trajectory optimization prob-
lem, requires a variety of models and input data to predict a trajectory. They include the
aircraft performance models, e.g., the equations of motion (EoM), meteorological models
and predicted weather data. Reliable flight planning is based on accurate predictions and
calculations of aircraft trajectories. However, those models and input data generally contain
errors, and they usually bring uncertainties to trajectory planning. One of the most serious
uncertainties comes from weather prediction. Conventional deterministic planning algo-
rithms only assume a fixed future weather situation based on an available weather forecast
and optimize the trajectory for the assumed scenario. However, the weather situation can
sometimes change rapidly within a very short time. If the assumed future weather scenario
is greatly different from the true weather situation that the aircraft actually experiences,
the objectives for the optimization can be deteriorated and the planned trajectory is no
longer the optimal trajectory. In addition to that, such a trajectory plan can also be infea-
sible in the sense that it violates operational limitations, such as speed limits, which is
critical for flight safety. To this end, the present study proposes a framework for planning

Aerospace 2022, 9, 109. https://doi.org/10.3390/aerospace9020109 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9020109
https://doi.org/10.3390/aerospace9020109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-2939-2258
https://orcid.org/0000-0002-6034-1531
https://orcid.org/0000-0002-1293-0657
https://orcid.org/0000-0002-4664-1693
https://doi.org/10.3390/aerospace9020109
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9020109?type=check_update&version=2


Aerospace 2022, 9, 109 2 of 23

four-dimensional (4D) optimal descent trajectories that are robust against uncertainties in
weather prediction.

The descent phase of flight, together with continuous descent operations (CDO), holds
potential to make air traffic more efficient and environmentally friendly [1]. Nowadays,
societies are concerned about the impacts of aircraft operations on the climate. To deal with
this concern, worldwide collaborative projects are being carried out to renovate the current
air traffic management (ATM) systems, aiming at reducing negative environmental impacts.
In particular, reductions in fuel use, noise and gaseous emissions are the key performance
indicators in Europe’s vision for aviation, Flightpath 2050 [2]; and the related research
programs by Single European Sky ATM Research (SESAR) (in Europe) [3], Collaborative
Actions for Renovation of Air Traffic Systems (CARATS) in Japan [4] and Next Generation
Air Transportation System (NextGen) in the United States [5]. In Europe, the European
Union (EU) formulated the Single European Sky (SES) performance scheme to comply with
the above expectations [6]. In these long-term plans, continuous climb/descent operations
(CCO/CDO) are considered to be the crucial components contributing to these goals: one
goal is enabling low to idle thrust settings by having continuous descents, and avoiding
level flight segments especially at low altitudes [1,7,8]. In 2018, the European Organisation
for the Safety of Air Navigation (Eurocontrol) assessed the benefit pool of CDO for Europe
and reported it in [9]. According to the report, traffic data of 2017 showed that the average
time in level flight from top of descent (ToD) performed by non-CDO flights was 217 s, and
the per-flight fuel savings by potential CDO implementation was estimated to be 46 kg,
equivalent to 145 kg of CO2 emissions or 20 BC of fuel costs. The report also estimated
that CDO can reduce noise emissions by 1–5 dB per flight. Considering these benefit
estimations, CDO and the optimized profile descents (OPDs), the corresponding concept of
NextGen, are listed in the road maps as one of the key measures to allow the ATM systems
to become more efficient and eco-friendly [3–5]. These more recent types of descent have
been implemented in several regions throughout the world following these plans [10–12].

Trajectory optimization contributes to facilitating the CDO and maximizing its poten-
tial benefits. Studies on simulating and optimizing descent trajectories, which eventually
lead to CDO trajectories, have been carried out intensively in the last decade [11,13,14]. The
necessity of re-optimizing trajectories has also been raised in [15–19] by examining the de-
viation of an aircraft’s energy state from the planned reference trajectory as a useful trigger.
However, to the best of the authors’ knowledge, these prior works assumed deterministic
scenarios and ignored the impacts of uncertainties. Robust aircraft trajectory planning has
recently become a field for intensive research, and several applications for ATM have been
proposed. Franco et al. proposed a probabilistic trajectory predictor based on the proba-
bilistic transformation method to transform uncertainties from ground speed to estimated
flight time and fuel consumption [20]. The method was extended by Hernández-Romero,
who developed methods to solve the probabilistic aircraft conflict detection and resolution
(CD&R) problem [21]. Franco et al. also applied mixed-integer linear programming to
analyze arrival time uncertainty [22]. Legrand et al. solved a robust planning problem with
dynamic programming [23].

Another major way to formalize robust trajectory planning is to utilize robust optimal
control theory. In prior publications, terminology was not fixed. The relevant method-
ologies were referred to as either “robust”, “stochastic” or “probabilistic” optimal control,
depending on the authors. This class of methods transforms a stochastic optimal control
problem to an equivalent deterministic problem. The transformation is typically carried
out by either applying types of the polynomial chaos (PC) expansion or utilizing a set of
scenarios representing the considered uncertainties (e.g., a dataset from ensemble weather
forecasing). The theoretical aspects of this approach have been intensively studied in recent
years from the control-theory perspective. Fisher et al. applied PC to solutions for con-
strained mechanical systems, e.g., trajectory generation, and examined its performance [24].
Cottrill proposed a solution algorithm for stochastic optimal control problems, combining
the Gauss pseudospectral method (GPM) and the generalized PC (gPC) [25]. Applications
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of these methods to aircraft trajectory optimization were also studied by Li et al. [26] and
Piprek [27]. However, there is a gap between these control-theory-oriented research works
and their applications to practical operational problems of ATM, as these works mainly
focused on theoretical properties of the method, and did not consider detailed models and
constraints that characterize realistic ATM scenarios. Several works have been reported
to address ATM applications. González-Arribas et al. applied robust optimal control for
cruise flight with an uncertain wind condition by employing ensemble prediction systems
(EPS) [28] and confirmed the method could reduce the impact of uncertain wind on the
planning, taking as reference one year of trajectory data and multiple origin–destination
pairs [29]. This robust planning method was extended in [30] to the consideration of ex-
posure to convection and cost-index based profiles. Recently, the same authors proposed
a heuristic method based on parallel graphics processing unit (GPU) computation [31],
finding robust trajectories in computational times that are compatible with real operations
(∼1 s), and considering not only the level flight, but step-climbs and step-descents. In addi-
tion to these works, Matsuno et al. applied stochastic optimal control to CD&R problems
and solved them with gPC and GPM [32]. These prior works have revealed the importance
of robust trajectory planning; however, they are limited to the en-route phase of flight.
Robust trajectory planning has the potential to contribute to the descent phase as well.
For example, it can improve the predictability of CDO, as robust planning is able to manage
uncertainties in the aircraft’s position at certain times. On the contrary, the descent phase
typically requires the optimizer to deal with more operational constraints than the cruise
phase (e.g., speed/altitude constraints and waypoint location), which may limit the room
for finding optimal trajectories. Therefore, research should also be carried out for descent
trajectory to comprehend the benefits and limitations of robust planning. In the authors’
previous publication, we applied robust optimal control to CDO trajectory planning and
evaluated its performance with various parameter settings [33], considering trajectories in
a vertical plane.

The present study aims to allow robust trajectory planning to be utilized for more
operation-oriented analysis. To this end, it extends the methodologies published in [33] so
that they can be applied to 4D trajectory planning. The ability to optimizing 4D trajectories
makes it possible to consider existing horizontal arrival route structures in planning. Unlike
the prior studies mentioned above, we formalize the planning problem as a multiple-phase
optimal control problem to include waypoints and speed/altitude limitations prescribed
for the arrival route. We assume the algorithm is used for in-flight trajectory planning on a
flight deck and consider a pre-tactical planning horizon of at least 1–2 h prior to reaching
ToD. It is worth noting that unconsidered uncertainties can make the aircraft deviate from
the planned trajectory at execution. It is out of the scope of this study to investigate the
impact of adhering to the planned trajectory or tactically re-optimizing the trajectory during
execution. Studies on these topics for deterministic planning can be found in [15,16].

2. Models for Robust Trajectory Planning

This section discusses the models for trajectory planning. The International System of
Units’ units (SI units) are used, unless explicitly stated differently.

2.1. Uncertainty Models of Weather Prediction

The present study deals with uncertainties in weather prediction, which cause errors
between the forecast and the true weather that the aircraft actually experiences during its
flight execution. In order to model those uncertainties, we utilize the weather forecast data
from the so-called Global Ensemble Forecast System (GEFS). It is a set of weather forecast
scenarios provided by the National Oceanic and Atmospheric Administration (NOAA) [34]
and is available online. We use version 11.0 for the present study (the newer version,
12.0, was released recently with 32 ensemble members). GEFS consists of 21 separate
weather forecasts called weather ensemble members (Figure 1). Each member is obtained
by perturbing the initial conditions of the weather dynamics to represent uncertainties
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in the meteorological models used for the forecast [35]. Small perturbations in the initial
conditions evolve and lead to different weather states. The forecasts are updated every 6 h.
A detailed investigation of GEFS and its application to cruise-trajectory planning can be
found in [17]. The data are provided in a GRIdded Binary (GRIB2) format, which involves
three dimensional grids specified by latitude, longitude and pressure level. The grid
resolution is 1◦ for the latitude and the longitude, and 50 hPa for the pressure level.

Figure 1. GEFS consists of Nw different ensemble members (Nw = 21 for this study). A different
b-spline approximation surface (blue surface) is obtained for a different GEFS member, based on the
corresponding GRIB2 data (red dots).

We utilize the GEFS data to obtain the ambient temperature Tmp, the pressure p
and the wind speed vector, which holds the horizontal components u and v. The wind-
speed components are positive for the west-to-east wind flow and the south-to-north flow,
respectively. GEFS does not contain the vertical wind component. When creating the
weather models, we make the following assumptions:

Assumption 1 (Horizontal wind field). We assume the wind field only has horizontal compo-
nents and ignore the vertical one. This assumption is justified as the vertical component is usually
one order of magnitude lesser than the horizontal components [36].

Assumption 2 (Stationary atmosphere). We assume the atmosphere is stationary; i.e., its time
evolution is not considered. Therefore, the atmospheric quantities, i.e., the wind components,
the temperature, the pressure and the density, are treated as functions of the aircraft 3D position.

Under these assumptions, the GRIB2-style data of GEFS are symbolically expressed as:

uG = uG(φG, λG, pG), vG = vG(φG, λG, pG), TmpG = TmpG (φG, λG, pG), (1)

where φ and λ are the latitude and longitude in degrees, respectively; and the subscript G
denotes the quantities are for a grid point. We interpolate these discrete data so that the
weather model will be available at any aircraft position, or any combination of (φ, λ, h). We
use the three dimensional b-spline function denoted with Equation (A1) for interpolation
(see Appendix A).

One remark for integrating these weather models into trajectory planning is that the
aircraft dynamics normally use the geometric altitude h instead of the pressure level p to
describe the height (see Section 2.2). Therefore, we need a conversion law between the two
quantities. To this end, we use the conversion formula that NOAA officially provides:

p(h) = 1013.25×
(

1− 0.0065
288.15

h
)5.2561

. (2)
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It is worth noting that this conversion is equivalent to assuming the International Standard
Atmosphere (ISA) for the air pressure [37]. If we apply Equation (2) to substitute p in
Equation (A1), the b-spline weather model for the w-th member of the weather ensemble
can be rewritten as functions of the aircraft 3D position: f bs(w)(φ, λ, p(h)). We apply this
b-spline interpolation to each member of GEFS to obtain member-specific weather models
(Figure 1). The b-spline-based weather models for the weather scenario w are symbolically
expressed as:

u(w)(φ, λ, h) = ubs (w)(φ, λ, p(h))

v(w)(φ, λ, h) = vbs (w)(φ, λ, p(h)) (3)

T(w)
mp (φ, λ, h) = Tbs (w)

mp (φ, λ, p(h)) for w = 1, · · · , Nw.

The air density ρ, also required for trajectory calculation, can be obtained by the gas
equation

ρ(w)(φ, λ, h) =
p(h)

R T(w)
mp (φ, λ, h)

, (4)

where R = 287.058 J kg−1 K−1 is the gas constant of dry air.

2.2. Flight Performance Models

We consider an aircraft as a dynamic system whose states are governed by the point-
mass EoMs and are controlled through control inputs. When deriving the EoMs, we make
the following assumptions.

Assumption 3 (Geodetic coordinate system). We express the aircraft position in the geodetic
coordinates, where the aircraft position is specified with the angular coordinates, i.e., φ and λ,
and the vertical position parameter, i.e., h. (Three different coordinate systems are usually used as
reference frames fixed to the elliptical earth. They include the geodetic coordinates, the earth-centered
earth-fixed Cartesian coordinates and the earth-surface Cartesian coordinates [38]. The third system
is often referred to as the north–east–down (NED) coordinates, since normally its x-axis points to
the north, its y-axis to the east and its z-axis downward.) This coordinate system is selected to align
the aircraft dynamics with the weather model (Section 2.1). The components of wind u and v are
positive for the west-to-east wind flow and the south-to-north flow, respectively.

Assumption 4 (WGS-84 Earth model). We utilize the WGS-84 Earth model defined by National
Imagery and Mapping Agency (NIMA) [39]. It is an ellipsoidal earth model and is widely used for
Flight Management System (FMS) [40]. The derivation of the aircraft EoM for this earth model is
beyond the theme of this publication (see [38] for details).

Assumption 5 (Engine thrust is controlled by the thrust coefficient). We employ the Base of
Aircraft Data family 4 (BADA4) engine thrust model [41], where the thrust T is parametrized with
the thrust coefficient CT and p:

T = T(CT , p). (5)

We treat CT as a control variable representing thrust control and limit it to the following range:

CTidle(M, p) ≤ CT ≤ CTMCRZ (M, p), (6)

where CTidle and CTMCRZ are the thrust coefficients for the idle and the maximum-cruise engine
ratings for turbofan engines. They are functions of Mach number M and p.

Under these hypotheses, the aircraft’s 4D dynamics are expressed as:

d
dt
{VTAS, γ, ψ, φ, λ, h, m}T =

{
fV , fγ, fψ, fφ, fλ, fh, fm

}T , (7)
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where

fV =
T − D

m
− g sin γ, fγ =

L cos φb −mg cos γ

mVTAS
, fψ =

L sin φb
mVTAS cos γ

,

fφ =
VTAS cos γ cos ψ + v

Rφ + h
, fλ =

VTAS cos γ sin ψ + u
(Dφ + h) cos φ

, fh = VTAS sin γ,

fm = −FC. (8)

The aircraft state variables are x = {VTAS, γ, ψ, φ, λ, h, m}T , where VTAS is the true air speed
(TAS), γ is the flight path angle, ψ is the heading and m is the gross mass. The control
inputs, needed to close the set of differential equations, are u = {CT , φb, CL, δSB}T , where
φb is the bank angle, CL is the lift coefficient and δSB is the speed brake control. Rφ stands
for the radius of curvature of the meridian’s ellipse [38] and Dφ for the radius of curvature
in the prime vertical [39] of the WGS-84 Earth model given as a function of φ:

Rφ(φ) =
a(1− e2)

(1− e2 sin2 φ)3/2
, Dφ(φ) =

a
(1− e2 sin2 φ)1/2

, (9)

where a = 6.378× 106 m is the equatorial radius and e = 8.18× 10−2 is the eccentricity. D
is the drag force and is written as:

D =
1
2

ρV2
TASS

(
CDclean + CDSB δSB

)
, (10)

where S is the area of the wing, CDclean is the drag coefficient in the clean configuration
and CDSB is the coefficient of the speed brake effect. The two coefficients are taken from
BADA4 [41]. The second term on the right-hand side of Equation (10) represents the effect
of speed brake control on drag. We neglect the effect of flap and slat controls. FC represents
the fuel consumption and we used the BADA4 model: FC = FC (VTAS, CT , p, Tmp).

To simplify the aircraft dynamics and make the problem easier and faster to solve, we
make additional assumptions.

Assumption 6 (Heading as a control input). We assume ψ can be changed instantaneously
instead of following the rotational dynamics (Equations (7) and (8)). We neglect the corresponding
dynamics and treat ψ as a control variable, since it still appears in other dynamics (Equation 8).
This also allows us to ignore φb and remove it from the control inputs.

Assumption 7 (Vertical equilibrium). We assume the vertical forces acting on the aircraft are
balanced:

L = mg cos γ. (11)

This assumption leads to dγ/dt = 0 in Equation (7) and allows us to neglect the γ-dynamics.
γ is excluded from the state variables and we include it in the control inputs instead. This type
of model is called the γ-command model and is widely used for trajectory calculation for ATM
purposes [13,15,42–44]. It also allows us to remove CL from the control inputs. This is because CL
can be calculated automatically if γ is specified in Equation (11) as:

CL =
2L

ρ V2
TAS S

=
2 m g cos γ

ρ V2
TAS S

. (12)

Under these assumptions, the EoMs are simplified as

d
dt
{VTAS, φ, λ, h, m}T =

{
fV , fφ, fλ, fh, fm

}T , (13)
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where the aircraft state variables are x = {VTAS, φ, λ, h, m}T and the control variables are
u = {CT , γ, ψ, δSB}T .

Currently, we have the time t as the independent variable for our formalization.
From the optimal control viewpoint, this means t is required to be in the same domain
[t0, t f ] for any of the state variables. In other words, the initial time t0 and the final time
t f must be the same for the trajectories of any state and control variables. As we discuss
in Section 3.2, we eventually aggregate the EoM to cover the dynamics for all the weather
scenarios to create a robust optimal control problem. t being in the same domain means
the arrival time at the final position must be common for any member of the trajectory
ensemble. However, this is normally not true. A different weather situation, especially a
different wind speed, causes different ground speed, and consequently the arrival time
should be varied. Therefore, we need a different independent variable to properly model
the variations in trajectory with respect to time. We make the following assumption:

Assumption 8 (Along-track distance as the independent variable). Instead of t, we treat the
along-track distance s, another strictly increasing variable, as the independent variable. As seen
in Figure 2, s is defined as the distance along the aircraft path projected onto the earth surface and
expressed using the ground speed VGS:

s =
∫ t f

t0

VGS dt, (14)

where VGS is expressed as:

VGS =
√
(VTAS cos γ cos ψ + v)2 + (VTAS cos γ sin ψ + u)2. (15)

Figure 2. Relationship between the true air speed VTAS and the ground speed VGS.

The feature of s being in the same domain [s0, s f ] for any member of trajectory en-
semble is justified by the commonality constraints we will introduce in Section 3.2, which
require the aircraft to fly the common 3D route regardless of the weather scenario. The selec-
tion of s as the alternative independent variable can also be seen in prior studies [28,43,44].
We perform this transformation, applying the chain rule d/dt = d/ds · ds/dt. Here,
ds/dt = VGS due to Equation (14), and therefore the time derivative can be written as
d/dt = VGS · d/ds. Applying this formula to Equation (13), we can change the independent
variable from t to s. This conversion removes t from the EoMs. Instead, we treat it as an
additional state variable and include its evolution in the set of EoMs. The resulting EoMs
are:

d
ds
{VTAS, φ, λ, h, m, t}T =

1
VGS

{
fV , fφ, fλ, fh, fm, 1

}T , (16)

where the independent variable is s, the state variables are x = {VTAS, φ, λ, h, m, t}T and
the control variables are u = {CT , γ, ψ, δSB}T . We use these EoMs for the robust trajectory
planning. For facilitating the following discussion, we define the aircraft dynamics vector
as f = { fV , fφ, fλ, fh, fm, 1}T/VGS.
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3. Robust Descent Trajectory Planning
3.1. Deterministic Formalization as a Basis

Before formalizing a robust trajectory planning problem, we first create the corre-
sponding deterministic problem to be a basis of the robust formalization. We split the
trajectory into phases so that we can consider phase-specific constraints, and we express
the total number of phases with Np. An overview of the phase-specific constraints and
symbols is summarized in Figure 3. To deal with these phases, we apply the multiple-phase
optimal control theory to the planning problem [33,45]. The variables in the optimal control
problem are the state vector x and the control vector u, and the independent variable s. We
add the superscript <p> to x or u to denote the variable is for the phase p (= 1, · · · , Np). s0
and s f are used to represent the s of the initial and final positions, respectively. We also use
sp to describe the s of the edge between the p-th and the p + 1-th phases. According to the
definition, s f and sNp are equal.

Figure 3. Overview of the constraints and symbols specific to phases. The constraints are categorized
as phase-interior constraints and phase-edge constraints. Continuity of the trajectory is assumed for x at
phase edges.

The deterministic multiple-phase optimal control problem consists of the following
constraints. We discuss them using generic expressions in this section and show the details
in Section 4.1.

Constraint D1: Aircraft EoM
The aircraft trajectory for the phase p is expressed as a set of differential equations:

dx<p>

ds
= f

(
x<p>, u<p>) for p = 1, · · · , Np. (17)

We assume f to be unchanged across the considered phases.

Constraint D2: Initial/final conditions
The initial and final conditions can be specified as:

ginit

(
x<1>(s0)

)
= 0, g f in

(
x<Np>(s f )

)
≤ 0, (18)

where ginit and g f in are sets of functions defining the initial and final conditions, respec-
tively. The final conditions are allowed to be inequality constraints.
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Constraint D3: Path constraints
The path constraints define limitations inside each phase, not at the phase edges:

g<p>
low ≤ g<p>

path
(
x<p>, u<p>) ≤ g<p>

up for p = 1, · · · , Np, (19)

where g<p>
path is a set of functions defining the constraints, and g<p>

low and g<p>
up are the

corresponding lower and upper bounds. The path constraints include operational limita-
tions, e.g., CAS and altitude limitations, representing the flight envelope and the arrival
route structure.

Constraint D4: Phase-edge event conditions
The event conditions represent requirements the trajectory has to meet at phase edges:

g<p>
event

(
x(sp)

)
≤ 0 for p = 1, · · · , Np − 1. (20)

These conditions typically represent speed and altitude limits at waypoints.

Constraint D5: Phase-linkage conditions
The phase-linkage conditions are specific to multiple-phase formalization and connect

the trajectories of the state variables at each phase edge, ensuring continuity of trajectory:

x<p>(sp)− x<p+1>(sp) = 0 for p = 1, · · · , Np − 1. (21)

If we define g<p>
linkage = x<p>(sp)− x<p+1>(sp), the linkage conditions are expressed as:

g<p>
linkage

(
x<p>, x<p+1>, sp

)
= 0 for p = 1, · · · , Np − 1. (22)

This study does not impose these conditions on the control inputs. This means we allow
instant change of control at phase edges.

With the above constraints, we aim to minimize the following objective functional.

Objective: Minimum operational costs
We set operational costs as the objective for the deterministic planning to minimize:

Jdet (BC). The operational costs are defined as a combination of the time-related costs Jtime (BC)
and the fuel costs J f uel (BC). The time-related costs are defined as the costs charged for
the flight time for the considered flight phases represented by the final time t<Np>(s f ).
A linear relationship is assumed between the time costs and the final time through the
coefficient Ctime (BC/s) as: Jtime = Ctime t<Np>(s f ). We model the coefficient utilizing the
cost index CI = 60 · Ctime/C f uel (kg/min) (the unit is aligned Airbus’s CI definition [46]),
where C f uel (BC/kg) denotes the jet fuel price. If we substitute Ctime with CI , we obtain

Jtime =
CI C f uel

60
t<Np>(s f ). (23)

On the other hand, we define the fuel costs as the costs charged for the fuel burn FB (kg)
for the considered flight phases: J f uel = C f uel FB. The fuel burn can be expressed as the
difference between the initial and the final aircraft mass: FB = m<1>(s0)− m<Np>(s f ),
as shown in Appendix B. Thus, the fuel costs are written as:

J f uel = C f uel

{
m<1>(s0)−m<Np>(s f )

}
, (24)



Aerospace 2022, 9, 109 10 of 23

leading to:

Jdet = Jtime + J f uel = C f uel

{
CI
60

t<Np>(s f ) + m<1>(s0)−m<Np>(s f )

}
. (25)

To summarize, the deterministic multiple-phase optimal control problem is expressed as:

Find u<1>, · · · , u<Np>, s1, · · · , s f

min operational costs Equation (25)

subject to aircraft EoM Equation (17)

initial/final conditions Equation (18)

path constraints Equation (19)

phase-edge event conditions Equation (20)

phase-linkage conditions Equation (22)

To facilitate the following discussion, we rewrite the optimal control problem further.
We gather the variables for all phases into a single vector as x̃ = {x<1>, · · · , x<Np>}T ,
ũ = {u<1>, · · · , u<Np>}T to cover the entire trajectory. We use the tilde symbol to denote
the variables covering all the phases. Using this all-phase expression, the EoM can be
expressed as:

dx̃
ds

= f (x̃, ũ). (26)

If we also apply the all-phase principle with the tilde symbol to the path constraints,
the phase-edge event condition and the phase-linkage conditions, they are rewritten as:

g̃low ≤ g̃path(x̃, ũ) ≤ g̃up, (27)

g̃event

(
x̃, s1, · · · , sNp−1

)
≤ 0, (28)

g̃linkage

(
x̃, s1, · · · , sNp−1

)
= 0. (29)

As a result, the deterministic optimal control is finally expressed as:

Find ũ, s1, · · · , s f

min operational costs Equation (25)

subject to aircraft EoM Equation (26)

initial/final conditions Equation (18)

path constraints Equation (27)

phase-edge event conditions Equation (28)

phase-linkage conditions Equation (29)

3.2. Robust Trajectory Planning

In the development of robust optimization, several types of measure of robustness
have been proposed [47]. The most common measure is achieved by optimizing the
problem for the worst case among the anticipated scenarios. This strategy takes a scenario
that produces the highest costs and optimizes the problem for it. Such costs are expressed
with the max function, and thus this type of method is also called the min–max method.
However, a solution optimized for the worst case, which usually happens rarely, is often
too conservative for the other cases, which are more probable. To deal with this issue,
another definition of robustness has also been proposed. It regards a robust solution as the
one that is optimized for the moments of the overall costs covering any realization of the
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uncertainty sets: such as the expected value (the first moment) or the variance (the second
moment), or even higher moments [28]. This study takes the latter definition and optimizes
the trajectory in terms of the expected value of the operational costs.

We formulate the robust planning problem based on the deterministic formalization
discussed in Section 3.1. We take a set of Nw GEFS members as possible realizations of
the uncertain weather during the flight. We define robust trajectories as (1) trajectories
that are feasible in any GEFS weather scenarios in the sense that they do not violate the
operational limitations, and (2) trajectories that are optimized for the expected value of
the costs. Feasibility of the trajectories is achieved by making the EoM and the operational
limitations hard constraints regardless of weather conditions within the uncertainty range
provided by GEFS data. We apply robust optimal control similarly to [28,33]. Unlike prior
works, such as [26], assuming common control inputs to different weather scenarios, we
basically consider that both the aircraft states and control inputs are different for different
weather scenarios. We explicitly express the variables as x̃(w), ũ(w) with the superscript
to show the variables are for the weather scenario w. On the contrary, we assume the
independent variable s are in a common domain s ∈ [s0, s f ] for any w. We also assume sp
for the intermediate phase edges p = 1. · · · , Np − 1 are common to the different weather
scenarios. Therefore, s, s0, s f and sps do not need the superscript.

The robust optimal control problem holds the following constraints based on the
corresponding deterministic constraints.

Robust constraint R1: Aggregated aircraft EoM
We apply the deterministic EoM (Equation (26)) to each weather scenario w = 1, · · · , Nw

as dx̃(w)/ds = f (x̃(w), ũ(w)). We assume the aircraft dynamics do not change across scenarios,
and therefore f does not need the superscript. We call this set of Nw trajectories the trajectory
ensemble. The trajectory for the weather scenario w is the w-th member of the trajectory
ensemble. Then we aggregate the set of EoMs as:

d
ds

 x̃(1)
...

x̃(Nw)

 =


f
(

x̃(1), ũ(1)
)

...
f
(

x̃(Nw), ũ(Nw)
)
. (30)

We call this set of EoMs aggregated aircraft EoM. With this aggregated dynamic constraint,
the trajectory ensemble is computed and optimized simultaneously.

Robust constraint R2: Commonality constraints
If we solve the aggregated EoM, a different trajectory is calculated for each weather

scenario. From the operational point of view, however, such a set of trajectories will make
pilots unsure about which trajectory to follow, as they do not know which weather scenario
to expect. To give them single reference, this study proposes the commonality constraints
limiting the aircraft’s 3D positional trajectories φ̃(s), λ̃(s) and h̃(s) common to all weather
scenarios:

φ̃(w)(s) = φ̃(1)(s), λ̃(w)(s) = λ̃(1)(s), h̃(w)(s) = h̃(1)(s) for w = 2, · · · , Nw. (31)

These commonality constraints let the problem be different from just repeating the deter-
ministic optimization Nw times, as each of the trajectory ensemble members needs to share
the common positional profile and thus cannot be optimized individually.

Robust constraint R3: Initial/final conditions
We assume the trajectory planning starts with the common initial aircraft state regard-
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less of the weather scenario. Considering Equation (18), the initial aircraft state x̃(w)(s0)
and the final state x̃(w)(s f ) must satisfy:

ginit

(
x̃(w)(s0)

)
= 0, g f in

(
x̃(w)(s f )

)
≤ 0 for w = 1, · · · , Nw. (32)

ginit and g f in without the superscript (w) mean these functions are independent of w.

Robust constraint R4: Path constraints
We apply Equation (27) to each weather scenario w

g̃low ≤ g̃path

(
x̃(w), ũ(w)

)
≤ g̃up for w = 1, · · · , Nw. (33)

The path constraints, including the flight envelope, operational limitations, etc., are hard
and must be met regardless of the weather scenario. Therefore, the lower and upper bounds
are independent of the weather scenario w.

Robust constraint R5: Phase-edge event conditions
The events at phase edges, such as speed and altitude limitations, must be hard

constraints as well. Based on Equation (28), the constraints are expressed as:

g̃event

(
x̃(w), s1, · · · , sNp−1

)
≤ 0 for w = 1, · · · , Nw. (34)

Robust constraint R6: Phase-linkage conditions
The continuity of the trajectory at any phase edge is naturally required for any weather

scenario. Considering Equation (29), the robust linkage conditions are:

g̃linkage

(
x̃(w), s1, · · · , sNp−1

)
= 0 for w = 1, · · · , Nw. (35)

In addition to the above constraints, we introduce an additional constraint related to the
arrival time at the final state.

Robust constraint R7: Required time of arrival
We consider the required time of arrival (RTA) for the final position. The trajectories of

t are uncommon to trajectory ensemble members and therefore the final time t<Np>(w)(s f )
is different for each w. We define the robust RTA as a constraint for the expected value of
the arrival time: E[t<Np>(s f )] = tRTA, where the time constraint tRTA is a given parameter.
This study assumes each GEFS member is equally probable. Under this assumption, this
constraint is:

1
Nw

Nw

∑
w=1

t<Np>(w)(s f ) = tRTA. (36)

We also derive the robust objective functional based on the deterministic one.

Robust objective: Expected value of the operational costs
As discussed above, we minimize the expected value of the operational costs:

Jrobust = E[Jdet] =
C f uel

Nw

Nw

∑
w=1

{
CI
60

t<Np>(w)(s f ) + m<1>(w)(s0)−m<Np>(w)(s f )

}
. (37)
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To summarize the discussion, the robust optimal control problem for robust trajectory
planning can be described as:

Find ũ(1), · · · , ũ(Nw), s1, · · · , s f

min expected operational costs Equation (37)

subject to aggregated aircraft EoM Equation (30)

commonality constraints Equation (31)

initial/final conditions Equation (32)

path constraints Equation (33)

phase-edge event conditions Equation (34)

phase-linkage conditions Equation (35)

required time of arrival Equation (36)

Figure 4 shows the overview of the process of the proposed robust planning strategy.
The trajectory optimization starts with the common initial state x0 and each weather
scenario is applied to the corresponding part of the aggregated EoM to make the members
of the trajectory ensemble. The ensemble can provide the expected range of trajectory
variation. Each ensemble member leads to its own value of the objective, and we minimize
the mean value. This means of optimization simultaneously considers Nw members of the
trajectory ensemble.

Figure 4. Overview of the process of the proposed robust planning strategy.

It is well known that optimal control problems generally do not have closed-form
analytic solutions, except for a few known, simplified problems, such as the linear quadratic
optimal control problem [48]. We utilize the co-called pseudospectral method, a numerical
computation method where the continuous optimal control problem is discretized into
so-called pseudospectral nodes. Among several kinds, we take the Legendre–Gauss pseu-
dospectral method (LGPM). The resulting discrete optimization problem is categorized as a
nonlinear programming (NLP) problem, for which a variety of solvers are widely available.
We utilize IPOPT (interior point optimizer) [49], an open-source software package for
large-scale nonlinear optimization. We use an open-source optimization tool CasADi [50]
to interface IPOPT with Python. An equal number of pseudospectral nodes is assumed in
this study for any phase p.

4. Case Studies
4.1. Scenario Settings

We apply the proposed planning algorithm to an aircraft descending to Leipzig/Halle
Airport in Germany (ICAO code: EDDP) through the transition procedure for runway 08R
(Figure 5). This transition route is designed for CDO operation and used only at night time
(CDO NIGHT). The relevant waypoints are listed in Table 1.
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Figure 5. The horizontal route for the simulation. The arrival route for the CDO operation (CDO
NIGHT) of RWY08R at Leipzig/Halle Airport, Germany (original source in black: AIP Germany [51],
modified for research purpose in purple). The dotted lines and the symbols c, d1, · · · , d6 show the
phase separation. The lengths of c, d1 and d2 phases do not necessarily reflect reality in this figure.

Table 1. Waypoints used for the simulation.

Name Coordinates Altitude Speed

MAXEB N51 12.4 E012 13.9 FL80 or above IAS 250 kt
DP808 N51 19.3 E011 48.9 5500 ft or above IAS 230 kt
DP807 N51 23.5 E011 48.4 5000 ft or above IAS 210 kt
DP442 N51 23.8 E011 53.5 - -

GAMKO (FAF) N51 24.1 E011 59.7 3000 ft or above IAS 180 kt

The optimal trajectory is calculated from the en-route waypoint LUXAR, and the
initial conditions for the simulation are as listed in Table 2. In the initial state, the aircraft is
assumed to pass LUXAR with level flight at a cruising altitude of 35,000 ft with 63,700 kg
of total mass. We split the descent trajectory into several phases. We take the relevant
waypoints as phase edges that the aircraft flies over, though they are actually defined as
fly-by waypoints. The phase-specific constraints for the optimization are listed in Table 3.
We require the CAS to stay slower than 250 kt below 10,000 ft. This constraint comes from
the FAA regulation (14 CFR § 91.117). MMin and MMO are the minimum Mach number
and the maximum operating Mach number, respectively.

Table 2. Initial states for the waypoint LUXAR.

States Symbols Conditions

Along-track distance s0 0 m

Coordinates (φ0, λ0)
(N49◦55′48.00′′,
E021◦10′31.00′′)

Altitude h0 35,000 ft
Mass m0 63,700 kg
Time t0 0 s

In addition to the phase-specific constraints, we also have inter-phase limitations for
the control inputs as described in Table 4. In the table, CTidle and CTMCRZ are the thrust
coefficients for the idle rating and maximum-cruise rating. To calculate the constraints
in Tables 3 and 4, we utilize BADA4’s CAS model for VCAS; the thrust coefficient models
for CTidle and CTMCRZ ; and the values of minimum/maximum Mach number for Mmin
and MMO [41]. We take the GEFS data published on the September 22nd, 2020 at 0:00.
We use 746.73 $/ton for the jet fuel price published by IATA [52] for October 8th, 2021.
With relevant unit changes, the unit fuel costs are calculated as C f = 0.64 BC/kg.
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Table 3. Phases and phase-specific constraints.

Phase Description Path Constraints Final Conditions

c Cruise Mmin ≤ M ≤ MMO
h = h0, γ = 0 ◦, δSB = 0

d1 ToD to 10,000 ft Mmin ≤ M ≤ MMO h = 10,000 ft
VCAS ≤ 350 kt 230 kt ≤ VCAS ≤ 250 kt

d2 10,000 ft to MAXEB 230 kt ≤ VCAS ≤ 250 kt (φ, λ) = (φ, λ)MAXEB
h ≥FL80, VCAS =250 kt

d3 MAXEB to DP808 230 kt ≤ VCAS ≤ 250 kt (φ, λ) = (φ, λ)DP808
h ≥5500 ft, VCAS =230 kt

d4 DP808 to DP807 210 kt ≤ VCAS ≤ 230 kt (φ, λ) = (φ, λ)DP807
h ≥ 5000 ft, VCAS = 210 kt

d5 DP807 to DP442 180 kt ≤ VCAS ≤ 210 kt (φ, λ) = (φ, λ)DP442
h ≥ 3000 ft

d6 DP442 to GAMKO 180 kt ≤ VCAS ≤ 210 kt (φ, λ) = (φ, λ)GAMKO
h = 3000 ft, VCAS = 180 kt

Table 4. Limitations for the control inputs across the phases.

Controls Symbols Lower Bounds Upper Bounds

Thrust coefficient CT CTidle CTMCRZ

Flight path angle γ −4◦ 0◦

Heading ψ −180 deg 180 deg
Speed brake δSB 0 1

4.2. Robust vs. Scenario-Optimal Trajectories

In order to validate the proposed planning algorithm, we calculate deterministic
trajectories optimized for each weather ensemble member. We call these trajectories scenario-
optimal trajectories. They are obtained by applying the deterministic planning algorithm
(Section 3.1) to each weather scenario.

Figure 6 shows the lateral paths of the robust (in red) and the scenario-optimal (in blue)
trajectories for the case with CI = 30 kg/min without RTA, together with the waypoints
and the ToD locations, and Figure 7 shows the wind speed components along the robust
trajectories. Both robust and scenario-optimal trajectories reach 10,000 feet altitude at
MAXEB, so the end of d1 phase and the beginning of d3 phase are found to be equal.
With these variations in u and v trends, the scenario-optimal trajectories are varied between
LUXAR and MAXEB, whereas the robust trajectories share the common lateral path due
to the commonality constraints (Section 3.2). This single weather-scenario-independent
path facilitates the pilot following the trajectory plan no matter the weather, which is one of
the benefits of the proposed robust planning strategy. Nw repeats of the scenario-optimal
deterministic planning is not able to calculate such trajectories. There was no significant
difference in lateral path found after MAXEB.

The corresponding vertical trajectories are shown in Figure 8. Gaps between the robust
and the scenario-optimal trajectories are mainly in the d1 phase except for a case where
the aircraft flies lower in the following descent phases. A temporary horizontal segment is
shown in the d3 phase, where the aircraft flies from MAXEB at 10,000 ft height to DP808.
This is mainly due to the corresponding altitude restriction. The altitude is limited between
5500 ft and 10,000 ft in this phase, and the optimal trajectories maintain 10,000 ft, the highest
altitude allowed, as long as it is possible to minimize the drag.
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Figure 6. Lateral paths of the robust (red) and the scenario-optimal (blue) trajectories (with
CI = 30 kg/min, RTA not imposed). The red dots correspond to the waypoints and the black dots
show the ToD locations of the trajectories.

Figure 7. Trends of u and v along the robust trajectory for each weather scenario. The components
are positive for west-to-east wind and south-to-north wind, respectively.

Figure 8. Vertical paths of the robust (red) and the scenario-optimal (blue) trajectories (with
CI = 30 kg/min, RTA not imposed). The trajectories cover the last part of c-phase and the following
descent phases. The vertical lines corresponds to phase edges of the robust trajectory.

Figure 9 depicts the arrival time at GAMKO, fuel burn and operational costs that the
robust trajectory results in for each weather scenario. The average arrival time is 7566 s and
its standard deviation is 25.0 s, whereas the average fuel burn is 4176 kg and its standard
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deviation is 17.3 kg. These arrival times and fuel burns lead to 4933 BC for the average
operational costs and 18.4 BC for its standard deviation.

Figure 9. Arrival time at GAMKO, fuel burn and operational costs of the robust trajectory for each
weather scenario (CI = 30 kg/min, RTA not imposed).

4.3. Robust vs. Inappropriately-Controlled Trajectories

We introduce another type of trajectory named the inappropriately-controlled trajec-
tory. This is the type if the pilot follows one of the scenario-optimal trajectories in a
weather scenario different from the assumed one. The inappropriately-controlled trajecto-
ries represent situations where a deterministic situation is assumed for trajectory planning
and the pilot has to follow a trajectory optimized for a certain weather scenario but the
true weather is different. We calculate the inappropriately-controlled trajectory for the
weather scenario w by applying the scenario-optimal control inputs for the other scenarios
ũ(i)(i = 1, · · · , Nw and i 6= w). This leads to Nw − 1 inappropriately-controlled trajectories
for each weather scenario. An inappropriately-controlled trajectory can lead to better costs
than those with the robust trajectory when the assumed weather scenario i for the applied
scenario-optimal control is close to the true scenario w.

Figure 10 shows the costs of the robust trajectories (red dots) and the inappropriately-
controlled trajectories (box plots) for each weather ensemble member (the case with
CI = 30 kg/min and RTA not imposed). The robust trajectories achieve better opera-
tional costs than the average costs of the corresponding inappropriately-controlled tra-
jectories (green triangles) in all weather scenarios. Except for two scenarios (8 and 14)
among 21, the robust trajectory even results in lower costs than any of the corresponding
inappropriately-controlled trajectories. This means that the robust trajectories are expected
to achieve better performances in all objectives of the optimization. Trajectories planned in
a deterministic way can result in lower costs only when the assumed weather situation is
close to the actual weather.

Violation of operational constraints is another issue when the pilot only has a determin-
istic trajectory plan. We can see some limitations and specifications for VCAS are violated in
the case with CI = 20 kg/min and without RTA. Figure 11 shows the VCAS profiles of the
robust and inappropriately-controlled trajectories for the d3, · · · , d6 phases. We can see the
inappropriately-controlled trajectories contain higher VCAS than the robust ones, and some
of them violate the 250-kt limitation in the d3 phase. Other inappropriately-controlled tra-
jectories fail to meet the 180-kt final condition at the end of d6 phase. The robust trajectory
meets all the constraints.
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Figure 10. Total operational costs for each weather scenario (with CI = 30 kg/min, RTA not
imposed). The box plots show the ranges of costs of the inappropriately-controlled trajectories for the
corresponding weather scenarios, and their mean values are depicted with the green triangles. Each
box plot is based on the costs of Nw − 1 = 20 inappropriately-controlled trajectories. The red dots
show the costs for the robust trajectory.

Figure 11. CAS profiles in the last 4 phases (with CI = 20 kg/min, RTA not imposed). The black
profiles are inappropriately-controlled trajectories and the red are the robust trajectories. The ver-
tical lines are the phase edges and the horizontal dashed red lines show the limitations for the
corresponding phases. The red diamond at the end of d6 phase depicts the final condition.

4.4. Effects of Cost-Index and RTA Variations

We also test the proposed planning framework with varied parameter settings—CI
and tRTA—to investigate how robust trajectories change with their variations. We first
vary CI from 10 to 80 kg/min, while not imposing RTA. Figure 12 shows the relationship
between the average arrival time at the final state (GAMKO: FAF) and the average fuel
burn, depending on the values of CI . When a larger CI is applied to the trajectory planning,
the aircraft flies faster and arrives at GAMKO earlier to reduce the time costs. This method
of flight leads to more drag and requires more thrust. Consequently, more fuel is necessary.
Compared to the case with CI = 10 kg/min, the flight time is reduced by 564 s (7.2%) but
with 310 kg (7.6%) more fuel being burnt at CI = 80 kg/min.

As for the RTA, we use the symbol t∗f to represent the average arrival time at GAMKO
of the robust trajectories without RTA imposed. We vary tRTA from t∗f − 60 (s) to t∗f + 60 (s),
and we keep CI = 30 kg/min when tRTA is varied. Figure 13 depicts the trend of the
average fuel burn vs. the expected operational costs (Equation (37)) with various RTAs.
Earlier arrival times than t∗f require more fuel burn, whereas later arrival times require
less, as the aircraft needs to increase/decrease the overall speed to meet the arrival time
constraint, leading to more/less thrust, respectively. When the aircraft is required to arrive
at GAMKO 60 s earlier than t∗f in the trajectory plan, 33.4 kg more fuel is burnt. When
the arrival time is 60 s later, the fuel burn is 26.5 kg less. In terms of the expected value
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of the total operational costs, the case without RTA achieves the minimum costs. When
the average aircraft arrival time is required to be 60 s earlier than the optimal average
arrival time t∗f , the costs become 2.0 BC higher than for the case without RTA. If t∗f + 60 s
of RTA is required, 2.1 BC more costs are necessary. The change in the operational costs is
much smaller than that in the arrival time and fuel burn with the formalization and the
weather data we utilize for the present study. A different definition of the cost function
(Equation (37)) and a different set of GEFS data could provide larger differences. Yet,
as the expected trend is shown in Figure 13 (right): the case without RTA leads to the
minimum costs.

Figure 12. Trend of the average arrival time at GAMKO vs. the average fuel burn of the robust
trajectories with CI = [10; 80] kg/min. RTA is not imposed.

Figures 12 and 13 also confirm the proposed robust planning framework is able to deal
with these parameter changes. The ability to carry out this type of analysis is beneficial for
operators. If we interpolate the dots on Figure 12, we can obtain a curve of arrival-time and
fuel-burn trend. Such a figure provides airlines with information on how much additional
fuel or additional flight time they need to expect depending on their CI setting, and is
helpful for determining the value of CI to take. The same kind of interpolation can also be
applied to the figures in Figure 13, providing ATCs with insights on how much additional
costs and fuel burn they have to impose on the aircraft with a certain value of RTA. This
information allows the ATC and the pilot to negotiate for their best RTA, considering
benefits for both sides.

Figure 13. (Left) Trend of the average arrival time at GAMKO vs. fuel burn: ±60 s from the average
arrival time without RTA t∗f , i.e., tRTA = [t∗f − 60; t∗f + 60] for CI = 30 kg/min. (Right) Trend of the
average arrival time at GAMKO vs. the robust operational costs Jrobust (Equation (37)) with the same
RTA range.
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The simulation results we have discussed so far prove that the planning algorithm can
work for our scenario’s settings and weather data. In order to validate the algorithm more
thoroughly, we need to test it with a variety of conditions, including weather data, arrival
routes, initial conditions and CIs and RTAs. Further validation is one of the authors’ main
future intentions. Study in practical applications will also be authors’ future work.

5. Conclusions

This study proposes a fundamental framework and computational algorithms for
planning optimal descent trajectories that are robust against uncertainties in weather pre-
diction. We utilized a set of weather scenarios provided by GEFS to model the uncertainties
related to weather prediction. A deterministic multiple-phase optimal control problem
was built to form the basis of the robust optimal control problem, considering 4D aircraft
dynamics. We formalized a robust optimal control problem by aggregating the state and
control variables and the aircraft dynamics for each of the weather scenarios to create an
aggregated EoM. We introduced constraints characterizing the robust planning, i.e., the
commonality constraints, so that the robust trajectories can have the common 3D positional
profiles over the considered weather scenarios. Unlike conventional worst-case optimiza-
tion, the proposed robust optimal control minimizes the expected value of the costs for
the considered set of weather scenarios. We applied the proposed algorithm to descent
trajectory planning for Leipzig/Halle Airport. Comparison of robust and inappropriately-
controlled trajectories allowed us to confirm the proposed planning algorithm can prevent
high costs and infeasible trajectories that violate operational constraints in any weather
scenarios. Optimization results with different CI and RTA showed the proposed robust
optimal control can cope with these varying operational settings. The analyses with dif-
ferent parameter settings support operators, i.e., pilots, airlines and ATCs, in determining
the best values for those parameters. This study discussed a robust planning problem in
a generic form and proposed a fundamental framework which can be applied to a wide
range of scenario settings.

One of our main future intentions is to test the proposed planning algorithm with
a variety of weather scenarios, arrival routes, initial conditions and CI and RTA settings
to thoroughly validate its performance. We will also utilize the robust planning strategy
to solve operation-oriented problems, such as a RTA-assignment problem for a metering
FIX, where the time to reach the FIX is uncertain. In addition to these, we will apply the
planning algorithm to more advanced air/space structures such as trombones and point
merging to enhance its applicability.
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Appendix A. Three Dimensional B-Spline Function

We interpolate the GRIB2-style GEFS data (Equation (1)) using the three-dimensional
tensor-product b-spline function:

f bs(w)(φ, λ, p) = ∑
i

∑
j

∑
k

c(w)
i,j,k B(w)

i (φ) B(w)
j (λ) B(w)

k (p) for w = 1, · · · , Nw, (A1)

where f is either u, v or Tmp, c(w)
i,j,k is the b-spline coefficient; and B(w)

i , B(w)
j and B(w)

k are
the b-spline basis functions for the w-th member of the weather ensemble. The b-spline
coefficients and functions are calculated from GEFS data and are ensemble-member specific.

Appendix B. Derivation of Fuel Burn

The fuel burn FB is calculated from the fuel consumption FC:

FB =
∫ t<Np>(s f )

t<1>(s0)
FC dt =

Np

∑
p=1

∫ t<p>(sp)

t<p>(sp−1)
FC dt, (A2)

where the fuel burns for each phase p are summed up. Considering the transformation of
the independent variable (Section 2.2), we change the variable in the integral:

FB =
Np

∑
p=1

∫ sp

sp−1

FC
dt
ds

ds =
Np

∑
p=1

∫ sp

sp−1

FC
VGS

ds. (A3)

FC/VGS can be substituted by −dm/ds due to Equation (16). As a result, we can obtain:

FB =
Np

∑
p=1

∫ sp

sp−1

(
−dm

ds

)
ds = −

Np

∑
p=1

∫ m<p>(sp)

m<p>(sp−1)
dm

=
Np

∑
p=1

{
m<p>(sp−1)−m<p>(sp)

}
(A4)

The phase-linkage condition (Equation (22)) can simplify the summation as:

FB = m<1>(s0)−m<Np>(s f ). (A5)
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