
����������
�������

Citation: Zhang, Z.; Li, X.; Wang, X.;

Zhou, X.; An, J.; Li, Y. TDE-Based

Adaptive Integral Sliding Mode

Control of Space Manipulator for

Space-Debris Active Removal.

Aerospace 2022, 9, 105. https://

doi.org/10.3390/aerospace9020105

Academic Editor: George Z. H. Zhu

Received: 28 October 2021

Accepted: 24 January 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

TDE-Based Adaptive Integral Sliding Mode Control of Space
Manipulator for Space-Debris Active Removal
Zhibin Zhang 1, Xinhong Li 1, Xun Wang 1,*, Xin Zhou 2, Jiping An 1 and Yanyan Li 1

1 Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China;
zhangzhibinseu@163.com (Z.Z.); 13366159269@189.cn (X.L.); ajp112233@alumni.sjtu.edu.cn (J.A.);
yanyanli0212@163.com (Y.L.)

2 Beijing Institute of Remote Sensing information, Beijing 100192, China; zx284061096@163.com
* Correspondence: wxhello123@163.com

Abstract: The safe and dependable removal of large-scale space debris has been a long-standing
challenge that is critical to the safety of spacecraft and astronauts. In the process of capturing and
deorbiting space debris, the space manipulator must achieve extremely high control and precision.
However, strong couplings, model uncertainties, and various inevitable unknown disturbances cause
many difficulties in coordinated control of the space manipulator. To solve this challenge, this study
examines the stabilization control of a space manipulator after capturing non-cooperative large-scale
space debris and presents an adaptive integral sliding mode control (AISMC) scheme with time-delay
estimation (TDE). The coupling term and lumped uncertainty are estimated by TDE technology,
which eliminates the requirement of prior knowledge. Adaptive sliding mode control (ASMC) is
used as desired injecting dynamics to compensate TDE errors, and a PID-type integral sliding mode
surface is designed to reduce steady-state errors. The Lyapunov criterion is used to prove the global
stability of the controller. Simulation results show that the controller has high tracking accuracy and
strong robustness.

Keywords: active debris removal; space manipulator; postcapture control; TDE; AISMC

1. Introduction

Space debris has huge kinetic energy, posing a major threat to spacecraft in orbit and
astronauts’ space activities. If active removal is not implemented, frequent collisions would
occur, and the amount of space debris will rapidly and uncontrollably increase, posing
a huge threat to the space system’s safety [1]. Active debris removal (ADR) is an effective
space debris mitigation approach that can prevent secondary debris formation at its source
and avoid the Kessler syndrome [2,3]. ADR mainly targets large debris, such as failed
spacecraft and rocket bodies. Through appropriate means, LEO debris can be burned into
the atmosphere [4], while GEO debris can be lifted into the grave orbit, thus enabling
clean-up of the space environment.

The capture and deorbit removal technology using a robotic arm is an extremely
promising ADR scheme. In comparison to soft capture technologies such as tether-net cap-
ture [5], it avoids entanglement and critical oscillation and provides higher controllability
and safety, albeit at the cost of increased control accuracy [6]. Normally, the capturing
operation by space robotics can be divided into three phases: approach, contact, and
postcapture phase [7]. For the safety of the following operation tasks, it is desired to
stabilize the combined system as soon as possible in the postcapture phase [8]. The key
to ADR is to accomplish force/torque control of space robots to catch and decelerate de-
bris targets. The challenges are estimating and processing system uncertainties, such as
external disturbances, model parameter uncertainty, measurement errors, unknown and
uncertain inertia [9,10].
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The postcapture control of space robots has been extensively studied. Xu proposed
a method for dual-arm space robots to capture moving targets by combining visual predic-
tion and trajectory planning, and successfully captured moving targets in free-floating and
base-controlled modes [11]. Luo used angular momentum allocation to achieve postcapture
stability of the space robot system, which can successfully handle the speed restriction
problem with variable joint performances [7]. Wang proposed an optimal unrolling strat-
egy for the postcapture stage, considering the roll time and control torque, and designed
a coordination control scheme to track the designed reference path [12]. Huang studied
the postcapture attitude takeover control problem. Considering the uncertainty of inertial
parameters, a novel reconfigurable control law was designed by command filtering adap-
tive back-stepping control to guarantee the system performance and global asymptotic [13].
Liu studied the target unrolling scheme of the flexible base space robot after capture and
designed a coordination controller to track the planned trajectory [14]. However, the
aforementioned study did not take into account the impact of parameter uncertainties and
unknown disturbances at the same time.

The estimation and compensation of the manipulator system’s uncertainties and
external disturbances is a critical issue to resolve [15–17]. Fuzzy logic [18] and neural
network [19] can provide accurate estimates of uncertainties. However, using approximate
principles in a space manipulator system for estimation necessitates a large amount of
calculation, which makes it challenging to apply in practical applications. Lumped uncer-
tainty can also be estimated by disturbance observer or extended state observer [20], but
the design of observer adaptive gain is often complicated. All of the approaches above can
provide reliable estimates of unknown quantities, but they all require prior knowledge of
dynamic uncertainty, namely, the upper limit must be known in advance [21]. Unfortu-
nately, since these values are dependent on a variety of factors such as load fluctuation,
external disturbances, dynamic uncertainties, and so on, it is difficult to presuppose these
values. In addition, time delay estimation (TDE) is also an effective method to deal with
uncertainty [22,23]. TDE can estimate uncertainty accurately through a simple structure
without any prior knowledge of the uncertainty bounds, but when the uncertainty changes
sharply in a short time, or there are hard nonlinearities such as saturation and Coulomb
friction, the TDE errors will increase significantly, leading to serious degradation of con-
trol performance. At the same time, TDE errors are inevitable owing to sampling time
constraints, hence TDE errors must be compensated.

To compensate for the abovementioned TDE errors and achieve increased accuracy and
robustness, TDE is frequently combined with robust control strategies such as ASMC [24,25],
TSMC [26,27], etc. Baek proposed an ASMC scheme based on TDE technology and adopted
an adaptive law, which achieved good tracking performance in the case of small jitter.
However, the adaptive law would appear singularity when the sliding variable crosses
zero, and the tracking accuracy needs to be improved [28]. Bae took the fuzzy sliding
mode control scheme as the auxiliary control scheme of time-delay control (TDC), which
has less chattering [29]. The adaptive robust TDC proposed by Roy provides robustness
against the TDE errors, and the evaluation of switching gains does not depend on any
threshold values, which alleviates the over- and underestimation problems of switching
gains [30]. Lee proposed an adaptive integral sliding mode control (AISMC) with TDE, and
the dynamic injection part uses adaptive gain dynamics to achieve applicable high tracking
accuracy, but the finite-time stability of the system cannot be guaranteed [31]. Much of
the preceding research solely focused on system stability and did not investigate systems’
steady-state performance. When an ASMC based on TDE technology tracks any trajectory,
external disturbances may introduce certain steady-state errors that are difficult to fix by
parameter adaptation, preventing the ASMC from achieving satisfactory performance.

According to the discussion above, a novel TDE-based AISMC is proposed to achieve
improved tracking accuracy and reduced chattering. The proposed controller integrates
AISMC as injecting desired dynamics into TDC and inherits the advantages of both TDE
based ASMC and TDC. The PID-type integral sliding surface can reduce the steady-state
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errors and improve system stability. The gain dynamics is adaptively updated when the
sliding variable changes, allowing the controller to accommodate parameter variation
induced by robot attitude changes. The sign function term in the traditional SMC is
retained to ensure the robustness of the system, and the chattering effect is effectively
reduced through the adaptation of the switching gain. The main contribution lies in
the following.

1. The PID-type integral sliding mode surface is designed to effectively reduce the
steady-state errors and ensure the robustness of motion throughout the state space.

2. The asymptotic performance of the controller is improved by the exponential reaching
law and the sliding mode surface can be reached in finite time.

3. A new adaptive law is utilized to update the gain parameters in response to the
system’s dynamic changes, improving the closed-loop system’s tracking accuracy
and stability.

The rest of this paper is structured as follows. In Section 2, we describe the problem
to be solved and model the postcapture combined spacecraft. In Section 3, a model-free
TDE-based AISMC method is designed for controlled systems containing uncertainties and
disturbances, and its closed-loop stability is demonstrated. Our controller is applied to the
free-flying space manipulator (FFSM) consisting of a five-DOF robotic arm coupled with
a six-DOF base, and simulation results are presented in Section 4. The research conclusions
are given in Section 5.

2. Problem Formulation and Preliminaries

As illustrated in Figure 1, the mission scenario explored in this study involves a service
FFSM being deployed to capture a failed spacecraft in LEO. In the postcapture stage, the
space manipulator’s end-effector securely grasps the target to form a combined system,
causing a significant shift in inertial parameters. The entire system is composed of a six-
DOF spacecraft base and an n-DOF manipulator. Compared with the space manipulator
without load, the difficulties of postcapture control lie in: (1) Space debris is usually a non-
cooperative target, so it is difficult to identify the parameters accurately. (2) The base is
subject to greater interference and requires greater control force and torque for stabilization.
(3) Higher control accuracy is required to avoid collisions.
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The dynamic equation of space manipulator established by Lagrange method can be
expressed as [32,33][

HB HBM
HBM
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]
︸ ︷︷ ︸
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[ ..
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︸ ︷︷ ︸

..
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[
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]
︸ ︷︷ ︸

C

+

[
τdB
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]
︸ ︷︷ ︸

τd
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]
︸ ︷︷ ︸

τ
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where q = [ xT
B θT

M ]
T ∈ <6+n is the generalized coordinate, xB = [rT

B , θT
B ]

T , rB and θB are
the position and attitude angle of the base, θM = [θ1, θ2, · · · , θn] is the joint angle of the
robotic arm; H ∈ <(6+n)×(6+n) is the inertial matrix of the system, HB ∈ <6×6, HM ∈ <n×n

and HBM ∈ <6×n are the inertial matrix of the spacecraft, the robotic manipulator, and the
coupling dynamics between the spacecraft and the manipulator respectively; C ∈ <6+n is
the generalized Coriolis and centrifugal force term of the system, CB and CM are the Coriolis
and centrifugal force terms that correspond to the base and manipulator, respectively;
τd ∈ <6+n stands for unknown external disturbances; τ ∈ <6+n is the generalized driving
force and torque of the system, including the driving force and torque FB when the base is
in attitude and orbit control, and the joint driving torque τM.

To facilitate the design of the controller, the dynamic model Equation (1) can be
rewritten as ..

q = −H−1(C + τd) + (H−1 − Ĥ−1)τ + Ĥ−1τ

= N + Ĥ−1τ
(2)

where Ĥ is the nominal part of H, and N = −H−1(C + τd) + (H−1 − Ĥ−1)τ is the lumped
uncertainty containing model uncertainties and external disturbances.

3. TDE-Based AISMC

For the large-scale debris capture operation scenario considered in this study, the
controller is designed to track desired trajectories to enable the combination to obtain
a stable attitude and configuration. This is achieved by simultaneously controlling the
movement of the spacecraft base and the robotic arm in free-flying mode. To address the
inherent nonlinearity, parameter uncertainties, and external disturbances of the system,
the control scheme combining TDE and SMC is widely used. However, the SMC based on
TDE technology still has large steady-state errors that are difficult to reduce via parameter
adaptation. Therefore, a PID-type integral sliding mode surface is used in this section
to reduce the steady-state errors. On this basis, we present a TDE-based AISMC with
exponential reaching law and demonstrate its stability.

3.1. Controller Design

The control objective is to make the generalized coordinate q follow the reference
coordinate qd, which means that the tracking error e = qd − q is suppressed as much as
possible. The sliding mode control system’s response is composed of the approaching
motion of the moving point and the sliding mode motion on the sliding mode surface. The
choice of sliding surface has a great influence on the system’s tracking effect. Ordinary
sliding mode control may cause steady-state errors due to external disturbances when
tracking any trajectory. To achieve the control goal and reduce the steady-state errors, the
PID-type sliding variable is defined as follows

s = e + KD
.
e + KP

∫ t

0
e(τ)dτ (3)

where KD and KP are positive diagonal gain matrices. The above PID-type sliding variable
is used to eliminate the reaching phase and to provide an ideal sliding motion (

.
s = s = 0).

With Equations (2) and (3), the AISMC controller with exponential approach law can
be designed as follows:

τ = −ĤN + Ĥ(
..
qd + KD

.
e + KPe + Kss + Gsgns) (4)

where Ks = diag(Ks1, Ks2, · · · , Ksn) ∈ <n×n is a time-varying positive diagonal gain matrix,
known as the gain dynamics, which determines the convergence speed and convergence
performance of the controller. G = diag(G1, G2, · · · , Gn) ∈ <n×n is a time-varying positive
diagonal gain matrix, called switching gain, used to compensate for lumped uncertainty.
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Since N contains unknown terms which cannot be obtained directly, an estimated
value N̂ is obtained from the delayed sampling of N by using TDE [22,23]. In other words,
we have

N̂ = N(t− L) =
..
q(t− L)− Ĥ−1τ(t− L) (5)

where L is the delay constant, usually taken as the actual sampling time to ensure that L is
small enough. Substituting Equation (5) into Equation (4) and omitting the time variable t,
then the TDE-based AISMC is obtained.

τ = −Ĥ
..
qt−L + τt−L︸ ︷︷ ︸+

TDE

Ĥ(
..
qd + KD

.
e + KPe + Kss + Gsgns)︸ ︷︷ ︸

AISMC

(6)

A block diagram for the proposed TDE-based AISMC is illustrated in Figure 2. Acceler-
ation

..
q is obtained by differential algorithm,

..
q = (

.
q− .

qt−L)/L, to avoid direct measurement
of acceleration.
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Substitute Equation (6) into Equation (2), replace the sliding variable s with Equation (3),
the closed-loop dynamics becomes

.
s =

..
e + KD

.
e + KPe = −Ñ − Kss− Gsgns (7)

where Ñ = N− N̂ is called TDE errors. If N can be accurately estimated, that is, Ñ = 0, then
the system has exponential approaching law, and the approaching speed can be adjusted
by selecting appropriate parameters Ks and G. If the sampling time L is sufficiently small,
the estimation N̂ in Equation (5) can be as close to N as possible.

The bounded condition of TDE errors is given in [30,34], if Ĥ satisfies the follow-
ing condition

||E− H−1Ĥ||2 < 1 (8)

for all t ≥ 0, the TDE errors are bounded by constant, i.e., |Ñ| ≤ N∗, then the stability
of the system is guaranteed. In practice, information such as the system’s nominal mass
parameters and the maximum allowable payload is always available, so it is always possible
to obtain a matrix Ĥ that satisfies the condition Equation (8).

In reality, due to the inherent measurement noise and limited sampling period [35],
TDE errors cannot be completely avoided. The robust term Gsgns can compensate the
TDE errors, and also serve as the equal-velocity approaching law term so that the velocity
is nonzero when s approaches zero, ensuring the finite time arrival of the approaching
motion [36]. To ensure fast approaching and restrain chattering at the same time, Ks should
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be increased while G should be appropriately decreased. Especially when the error is small,
a small G should be used to avoid chattering.

The gain dynamics is updated by the following adaptive law:

.
Ksi = αi|si|sgn(|si| − Ksi/βi) (9)

where αi is the adjustable positive gain adapted to the speed, βi is the normalization factor
related to the tracking accuracy, satisfying βi < N∗/||s||∞. When |si| > Ksi/βi, the gain
dynamics Ksi increases, which reduces the TDE errors and tracking errors. If |si| < Ksi/βi,
the gain dynamics Ksi is reduced to prevent the gains from being too high when the errors
are acceptable. Ksi/βi determines the tracking accuracy, and the normalization factor
βi is used to adjust the size of Ksi relative to |si|. The item Ksi/βi can be regarded as
the acceptance layer of tracking accuracy. The smaller the acceptance layer, the higher
the tracking accuracy. By adjusting βi, the tracking accuracy can be ensured within an
appropriate range.

The switching gain is updated by the following adaptive law:

.
Gi =

{
ϕi|si|sgn(||s||∞ − ε)

ϕiε
i f Gi > 0
i f Gi = 0

(10)

where, ϕi is the adjustable positive gain that adapts to the speed, and ε is a small positive
number, which determines the boundary of the increase or decrease of the switching
gain Gi.

The proposed adaptive law Equation (10) doesn’t require boundary information of
uncertainties and disturbances and is activated when the sliding variable s deviates from
zero. To elaborate, for Gi > 0, the adaptive law has two different forms according to the
output of the sign function: ||s||∞ ≥ ε and ||s||∞ < ε. When ||s||∞ ≥ ε, the switching gain
Gi increases until ||s||∞ < ε. With the increase of switching gain, the sliding variable s
approaches the sliding manifold more quickly. Once the sliding variable enters the vicinity
of the sliding manifold, i.e., ||s||∞ < ε, the switching gain Gi decreases while the sliding
variable stays in the vicinity of the sliding manifold. The parameter ε plays a key role in the
trade-off between tracking ability and chattering suppression. If ε is too small, the adaptive
speed is slow and there is obvious chattering. On the contrary, if ε is too large, the tracking
performance of the AISMC scheme is poor. In order to avoid system instability caused by
excessive chattering, the range of G is limited to G ≤ N∗.

The softening effect of the well-designed adaptive gain ensures the smooth movement
of the system’s trajectory and prevents the damage of mechanical components. As the
injecting desired dynamics, AISMC can effectively suppress the TDE errors, ensure system
stability while reducing chattering of sliding mode control. Without knowing the upper
boundaries of the disturbances, the TDE technique employed in the study simply assumes
that they are bounded. If the disturbances are infinite, then the system is uncontrollable.

Figure 2 is the schematic diagram of the proposed controller. The blue box represents
the ISMC part, the red box represents the adaptive law, and the yellow box represents TDE

3.2. Stability Analysis

Before showing the UUB property of the proposed control law (6), we introduce
a Lemma that will be helpful in the proof of the main results.

Lemma 1. For the system (2) controlled by Equation (6), if the TDE errors are bounded, i.e.,
Ñ < N∗, then the gain dynamics is upper bounded, i.e.,Ksi < N∗.
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Proof of Lemma 1. According to the definition, the range of the parameter βi is
βi < N∗/||s||∞. If |si| >Ksi/βi, then

Ksi < |si|βi ≤ ||s||∞βi < ||s||∞
N∗

||s||∞
= N∗ (11)

When |si|∞ < Ksi/βi, according to the adaptive law Equation (9), there is
.
Ksi < 0, then

the gain Ksi is reduced. Therefore, Ksi < N∗ for all t ≥ 0. �

The stability of the system can be proved by the Lyapunov stability criterion. The
range of the sliding variable si is assumed to be in ∀|si| > max(Ksi/βi, ε). The Lyapunov
function is defined as follows:

V =
1
2

sTs +
1
2

n

∑
i=1

1
αi
(Ksi − N∗)2 +

1
2

n

∑
i=1

1
ϕi
(Gi − N∗)2 (12)

with time derivative as

.
V = sT .

s +
n

∑
i=1

1
αi
(Ksi − N∗)

.
Ksi +

n

∑
i=1

1
ϕi
(Gi − N∗)

.
Gi (13)

From Equations (7), (9) and (10), Equation (13) becomes

.
V = sT(−Ñ − Kss− Gsgns) +

n
∑

i=1
(Ksi − N∗)

.
Ksi +

n
∑

i=1
(Gi − N∗)

.
Gi

≤ −
n
∑

i=1
|si|Ñi −

n
∑

i=1
Ksisi

2 −
n
∑

i=1
|si|Gi +

n
∑

i=1
(Ksi − N∗)|si|+

n
∑

i=1
(Gi − N∗)|si|

= −
n
∑

i=1
Ksisi

2 +
n
∑

i=1
|si|(−Ñi − Gi + Ksi − N∗ + Gi − N∗)

= −
n
∑

i=1
Ksisi

2 +
n
∑

i=1
|si|(Ksi − Ñi − 2N∗)

≤ −
n
∑

i=1
Ksisi

2 +
n
∑

i=1
|si|(Ksi − N∗)

≤ −
n
∑

i=1
Ksisi

2

(14)

The gain dynamics Ksi > 0, then
.

V ≤ 0, the sliding variable s will enter the range
of |si| ≤ max(Ksi/βi, ε) in finite time. Since

.
V is not guaranteed to be nonpositive in this

vicinity of the sliding manifold, the sliding variable s may move in and out of this vicinity
repeatedly. Once the sliding variable s leaves the region |si| ≤ max(Ksi/βi, ε),

.
V becomes

negative again, which steers it back toward the sliding manifold.
The first time when the sliding variable s enters the region |si| ≤ max(Ksi/βi, ε),

there is |si| ≤ max(N∗/βi, ε). It can be proved that the Lyapunov function Equation (12)
is bounded

1
2
||s||22 ≤ V ≤ 1

2

n

∑
i=1

(max(N∗/βi, ε))2 +
1
2

n

∑
i=1

1
αi
(N∗)2 +

1
2

n

∑
i=1

1
ϕi
(N∗)2 = V∗ (15)

When the sliding variable s leaves the region |si| ≤ max(Ksi/βi, ε),
.

V becomes negative
again and V decreases immediately. It follows then that we have

||s||2 ≤
√

2V∗ =

√
n

∑
i=1

(max(N∗/βi, ε))2 +
n

∑
i=1

1
αi
(N∗)2 +

n

∑
i=1

1
ϕi
(N∗)2 (16)

This means that the sliding variable s is UUB, and Equation (16) guarantees that the
fluctuation of the sliding variable s in the vicinity of the sliding manifold is upper-bounded.
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3.3. Comparison Schemes

To gain additional insight, the scheme Equation (6) proposed in this study is com-
pared with the original TDC scheme [22], an existing TDE-based ASMC scheme [28], and
an existing TDE-based AISMC scheme [31].

The original TDC scheme in [22] is expressed as

τ = −Ĥ
..
qt−L + τt−L︸ ︷︷ ︸

TDE

+ Ĥ(
..
qd + KD

.
e + KPe)︸ ︷︷ ︸

Injecting desired dynamics

(17)

The existing TDE-based ASMC scheme in [28] is expressed as

τ = −Ĥ
..
qt−L + τt−L︸ ︷︷ ︸

TDE

+ Ĥ(
..
qd + KD

.
e + Kss + Gsgn(s))︸ ︷︷ ︸

ASMC

(18)

with the adaptive gain G updated by

.
Gi =

{
ϕi
{

αi
−1|si |}

sgn(||s||∞−ε)sgn(||s||∞ − ε)
ϕiαi

−1|si|
i f Gi > 0
i f Gi = 0

(19)

The existing TDE-based AISMC scheme in [31] is expressed as

τ = −Ĥ
..
qt−L + τt−L︸ ︷︷ ︸

TDE

+ Ĥ(
..
qd + KD

.
e + KPe + Kss)︸ ︷︷ ︸

AISMC

(20)

with the gain dynamics Ks updated by

.
Ksi = αi|si|sgn(|si| − K2

si/βi) (21)

Both Equation (6) and Equation (20) have integral sliding mode surfaces. Compared
with Equation (20), Equation (6) has one more robust term Gsgn(s) and a simpler adaptive
law of Ks. The robust term ensures the robustness of the system, which is reflected in the
proof process of the two controllers. The disadvantage is that chattering is generated, which
cannot be eliminated through the adaptation of the switching gain. As the control group,
Equations (17) and (18) have ordinary sliding mode surfaces. Similarly, Equation (18)
has one more adaptive robust term than Equation (17). The controller (6) proposed in
this research can be regarded as an extended and enhanced version of the other three
controllers. In detail, if G= 0, then Equation (6) degenerates into the controller (20). If
KP= 0, the integral sliding surface becomes an ordinary sliding surface, then Equations (6)
and (20) degenerate to Equations (18) and (17) respectively.

4. Numerical Simulation

Simulations were conducted in MATLAB and Simulink for the free-flying space ma-
nipulator consisting of a five-DOF arm coupled with a six-DOF base. The terminal time
is set as t f = 20 s, the simulation step is dt = 0.01 s. The fifth-order polynomial is used to
design trajectories for the joints of the arm as well as the spacecraft base [37].

Unknown nonlinear disturbances are common problems in the coordinated control
of space manipulators, which usually include environmental perturbations such as atmo-
spheric drag, joint friction, and vibrations generated by solar panels and manipulator links.
The combination of trigonometric functions is used to simulate external disturbances in
the simulation [38,39].

The relevant parameter settings of the spacecraft and manipulator are shown in
Table 1. The parameters of the proposed controller are carefully tuned and detailed as fol-
lows: KD = 100diag(1, 1, · · · , 1), KP = 100diag(2, 2, 2, 1, 1, · · · , 1), G(0) = 2 × 10−4diag
(1, 1, · · · , 1), Ks(0) = 80diag(1, 1, · · · , 1), α = 3× 104diag(1, 1, 1, 6, 6, 6, 3, 3, · · · , 3), ε = 10−4,
β = 4 × 107diag(1, 1, 1, 6, 6, 6, 3, 3, · · · , 3), ϕ = 10−2diag(1, 1, 1, 10, 10, · · · , 10), b = 105diag
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(1, 1, · · · , 1), a = 10−7diag(1, 1, 1, 10, 10, · · · , 10). To ensure a fair comparison, apply the
above parameters to the other controllers entirely.

Table 1. Initialization of simulation parameters.

Parameters Value

Mass of the spacecraft base mB = 400 kg
Inertia of the spacecraft base Ixx = Iyy = Izz = 266 kg·m2

Mass of the links of the arm m1 = 3 kg, m2 = 10 kg, m3 = 10 kg, m4 = 1.5 kg,
m5 = 1.5 kg

Length of the links of the arm l1 = 0.18 m, l2 = 0.62 m , l3 = 0.62 m ,
l4 = 0.09 m, l5 = 0.09 m

Mass of the target mT = 100 kg
Inertia of the target Ixx = Iyy = Izz = 16.7 kg·m2

Spacecraft base’s initial position rB0 = [0.1, 0.3,−0.2]Tm
Spacecraft base’s initial attitude θB0 = [0.11, 0.08,−0.1]Trad

Arm joints’ initial angle θM0 = [10, 20, 60, 35,−40]Tπ/180rad
Spacecraft base’s target position rBT = [0, 0, 0]Tm
Spacecraft base’s target attitude θBT = [0, 0, 0]Trad

Arm joints’ target angle θMT = [−25, 65, 50, 65,−25]Tπ/180rad
Disturbances applied on the

position of base τdBr = [0.4 sin(0.3t), 0.3 cos(0.1t), 0.2 sin(0.3t)]T

Disturbances applied on the
attitude of base τdBθ

= [0.4 sin(0.3t), 0.3 cos(0.1t), 0.2 sin(0.3t)]T

Disturbances applied on the
robotic arm

τdM = [0.1 sin(1.2t), 0.08 sin(0.1t) + 0.1,−0.1 sin(0.6t), · · ·
0.09 sin(0.8t + π/4)− 0.1, 0.1 cos(t) + 0.1]T

To estimate the uncertainties and disturbances more accurately and reduce the TDE
errors as much as possible, the sampling time is set as the simulation step L = dt = 0.01 s.
Assuming that the parameters of the space manipulator are known, the estimated mass of
the target is m̂T = 80kg, and the estimated moment of inertia is ÎT = diag(12, 12, 12)kg·m2.
To obtain a more realistic scenario to analyze the performance of the proposed controller,
the velocity measurement error is considered in the simulation.

The trajectory planning results and the tracking trajectories of the proposed controller
are shown in Figure 3. Figure 3a is the trajectory tracking result of the end effector in
three-dimensional task space, Figure 3b,c are the trajectory tracking results of the base
attitude and position respectively, and Figure 3d is the tracking result of the joint trajectory
of the manipulator. It can be seen that TDE can accurately estimate the uncertainties and
disturbances, and the coordinated controller can successfully realize the high-precision
stability control of the target and the spacecraft.

To verify the superiority of the PID-type integral sliding mode surface, the proposed
control method is compared with the other three control schemes in Section 3.3.

Figures 4 and 5 show the tracking errors and control torques under the four controllers.
The subscripts a-c represent the x, y, z components of the base attitude, d-f represent the x,
y, z components of base position, g–k represent joints 1–5 of the robotic arm, respectively.
The proposed TDE-based AISMC scheme and the other three schemes can suppress TDE
errors and achieve high control accuracy. The proposed TDE-based AISMC and the existing
AISMC are superior to the ASMC and the traditional TDC in terms of tracking error,
indicating that the integral sliding mode surface can effectively eliminate the steady-state
errors, and improve the control accuracy by nearly one order of magnitude compared
with the ordinary sliding mode surface. Through the pairwise comparison of TDE-based
AISMC and AISMC, ASMC and TDC, it can be found that the existence of robust items can
ensure the robustness of the system and improve the accuracy of the controller to a certain
extent, with the disadvantage of generating some chattering. As can be seen from Figure 5,
chattering occurs in TDE based AISMC and ASMC schemes, mainly because when the
error is close to zero, the change rate of the error will be relatively large, resulting in the
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sliding variable exceeding the acceptable range of switching gain. The parameter ε in the
adaptive law (10) plays a crucial role in the trade-off between robustness and vibration
reduction. When ε is too small, there is significant chattering in the TDE-based AISMC
scheme. Conversely, if ε is too large, the robust performance and tracking accuracy will be
reduced. On the other hand, chattering only occurs locally, indicating that the adaptive
update of the switching gain can significantly suppress chattering.
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To evaluate the control performance quantitatively, the integral of time multiplied
by the absolute value of the error (ITAE) and the integral of the square value (ISV) of
the control input’s norm are used. The ITAE is used as a numerical measure of tracking
performance for the entire error curve, and the ISV depicts the energy consumption [40].
These are defined as follows:

ITAE =
∫ t f

0
t||e(t)||1dt (22)

ISV =
∫ t f

0
||τ(t)||2

2dt (23)

Table 2 summarizes the error indicators and control input results of the four controllers
under different disturbances. Disturbances τd1 are shown in Table 1. τd2 have three times
the frequency of τd1. τd3 have three times the amplitude of τd1. The symbol * represents
the best performance of the four controllers. As can be seen from Table 2, the control
accuracy of the proposed controller is the best under different disturbances. Even if the
frequency and amplitude of external disturbances increase, the controller can still estimate
and compensate for the external disturbances well. The TDE-based AISMC proposed in this
study has the highest tracking accuracy (ITAE), but the control input energy consumption
(ISV) is slightly larger than the existing AISMC. Similarly, the tracking accuracy of the



Aerospace 2022, 9, 105 11 of 16

TDE-based ASMC is also higher than that of traditional TDC. These two sets of results show
that the robust term can reduce steady-state errors and increase the system’s robustness,
but also increase the energy consumption of the control input. Because the errors are small
and the chattering effect is barely noticeable, compared with the ordinary sliding surface,
the integral sliding surface can effectively reduce errors and improve control accuracy.
Simulation results verify the effectiveness of the proposed TDE-based AISMC scheme.
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Table 2. ITAE and ISV of different control schemes.

Disturbance Controller Proposed AISMC ASMC TDC

τd1
ITAE * 1.041 × 10−3 1.913 × 10−3 4.725 × 10−3 6.264 × 10−3

ISV 393.9 387.2 377.6 * 377.2

τd2
ITAE * 1.041 × 10−3 1.912 × 10−3 4.726 × 10−3 6.263 × 10−3

ISV 368.2 361.3 351.7 * 351.3

τd3
ITAE * 1.041 × 10−3 1.914 × 10−4 4.726 × 10−3 6.264 × 10−3

ISV 489.1 482.4 472.8 472.4

* The best value.

5. Conclusions

The problem of coordination control after capturing large space debris with parameter
uncertainties and external disturbances was studied in this study, and a robust TDE-based
AISMC scheme was proposed. TDE technology was used to compensate for the coupling
term and lumped uncertainty, thus eliminating the requirement for prior knowledge.
The PID-type integral sliding mode surface can greatly reduce the steady-state errors
and increase the system stability at the same time. Compared with previous TDE-based
controllers, the proposed method has better tracking performance and stronger robustness.
Compared with the single-arm space manipulator, the double-arm space manipulator can
greatly enhance the adaptability of the robot to complex tasks, and at the same time improve
the utilization efficiency of the working space. In the future, the process of capturing space
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debris by the dual-arm space manipulator will be studied, including target racemization
and capture, as well as postcapture control.

Author Contributions: Conceptualization, Z.Z. and X.L.; data curation, X.Z.; formal analysis, Z.Z.
and J.A.; funding acquisition, X.L. and X.W.; investigation, J.A.; methodology, Z.Z. and Y.L.; project
administration, X.L.; resources, X.Z.; software, X.W.; supervision, X.L. and X.W.; validation, X.Z.,
J.A. and Y.L.; writing—original draft, Z.Z. and J.A.; writing—review and editing, X.W. and Y.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Defense Science and Technology Innovation
Zone of China, grant number 00205501.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liou, J.C. An active debris removal parametric study for LEO environment remediation. Adv. Space Res. 2011, 47, 1865–1876. [CrossRef]
2. Kessler, D.J.; Cour-Palais, B.G. Collision frequency of artificial satellites: The creation of a debris belt. J. Geophys. Res. Space Phys.

1978, 83, 2637–2646. [CrossRef]
3. Kessler, D.J.; Johnson, N.L.; Liou, J.C.; Matney, M. The kessler syndrome: Implications to future space operations. Adv. Astronaut. Sci.

2010, 137, 2010.
4. Zhong, R.; Zhu, Z.H. Dynamics of nanosatellite deorbit by bare electrodynamic tether in low earth orbit. J. Spacecr. Rocket. 2013,

50, 691–700. [CrossRef]
5. Kang, J.; Zhu, Z.H.; Wang, W.; Wang, C.; Li, A. Dynamics and de-spin control of massive target by single tethered space tug.

Chin. J. Aeronaut. 2019, 32, 653–659. [CrossRef]
6. Zhao, P.Y.; Liu, J.G.; Wu, C.C. Survey on research and development of on-orbit active debris removal methods. Sci. China

Technol. Sci. 2020, 63, 2188–2210. [CrossRef]
7. Luo, J.; Xu, R.; Wang, M. Detumbling and stabilization of a tumbling target using a space manipulator with joint-velocity limits.

Adv. Space Res. 2020, 66, 1689–1699. [CrossRef]
8. Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S. A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci.

2014, 68, 1–26. [CrossRef]
9. Li, S.; She, Y. Recent advances in contact dynamics and post-capture control for combined spacecraft. Prog. Aerosp. Sci. 2021, 120,

100678. [CrossRef]
10. Liu, C.; Yue, X.; Yang, Z. Are nonfragile controllers always better than fragile controllers in attitude control performance of

post-capture flexible spacecraft? Aerosp. Sci. Technol. 2021, 118, 107053. [CrossRef]
11. Yan, L.; Xu, W.; Hu, Z.; Liang, B. Virtual-base modeling and coordinated control of a dual-arm space robot for target capturing

and manipulation. Multibody Syst. Dyn. 2019, 45, 431–455. [CrossRef]
12. Wang, M.; Luo, J.; Yuan, J.; Walter, U. Detumbling strategy and coordination control of kinematically redundant space robot after

capturing a tumbling target. Nonlinear Dyn. 2018, 92, 1023–1043. [CrossRef]
13. Huang, P.; Lu, Y.; Wang, M.; Meng, Z.; Zhang, Y.; Zhang, F. Postcapture Attitude Takeover Control of a Partially Failed Spacecraft

with Parametric Uncertainties. IEEE Trans. Autom. Sci. Eng. 2019, 16, 919–930. [CrossRef]
14. Liu, Y.; Liu, X.; Cai, G.; Chen, J. Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling

target in post-capture phase. Multibody Syst Dyn. 2020, 52, 281–311. [CrossRef]
15. Feng, Q.; Zhu, Z.H.; Pan, Q.; Liu, Y. Pose and motion estimation of unknown tumbling spacecraft using stereoscopic vision.

Adv. Space Res. 2018, 62, 359–369. [CrossRef]
16. Xie, Z.; Sun, T.; Kwan, T.; Wu, X. Motion control of a space manipulator using fuzzy sliding mode control with reinforcement

learning. Acta Astronaut. 2020, 176, 156–172. [CrossRef]
17. Zhang, T.; Yue, X.; Yuan, J. An online one-step method to identify inertial parameters of the base and the target simultaneously

for space robots in postcapture. IEEE Access 2020, 8, 189913–189929. [CrossRef]
18. Yang, C.; Jiang, Y.; Na, J.; Li, Z.; Cheng, L.; Su, C.Y. Finite-Time Convergence Adaptive Fuzzy Control for Dual-Arm Robot with

Unknown Kinematics and Dynamics. IEEE Trans. Fuzzy Syst. 2019, 27, 574–588. [CrossRef]
19. Yao, Q. Adaptive fuzzy neural network control for a space manipulator in the presence of output constraints and input

nonlinearities. Adv. Sp. Res. 2021, 67, 1830–1843. [CrossRef]
20. Zhu, Y.; Qiao, J.; Guo, L. Adaptive sliding mode disturbance observer-based composite control with prescribed performance of

space manipulators for target capturing. IEEE Trans. Ind. Electron. 2019, 66, 1973–1983. [CrossRef]

http://doi.org/10.1016/j.asr.2011.02.003
http://doi.org/10.1029/JA083iA06p02637
http://doi.org/10.2514/1.A32336
http://doi.org/10.1016/j.cja.2019.01.002
http://doi.org/10.1007/s11431-020-1661-7
http://doi.org/10.1016/j.asr.2020.06.025
http://doi.org/10.1016/j.paerosci.2014.03.002
http://doi.org/10.1016/j.paerosci.2020.100678
http://doi.org/10.1016/j.ast.2021.107053
http://doi.org/10.1007/s11044-018-09647-z
http://doi.org/10.1007/s11071-018-4106-4
http://doi.org/10.1109/TASE.2018.2875139
http://doi.org/10.1007/s11044-020-09774-6
http://doi.org/10.1016/j.asr.2018.04.034
http://doi.org/10.1016/j.actaastro.2020.06.028
http://doi.org/10.1109/ACCESS.2020.3030232
http://doi.org/10.1109/TFUZZ.2018.2864940
http://doi.org/10.1016/j.asr.2021.01.001
http://doi.org/10.1109/TIE.2018.2838065


Aerospace 2022, 9, 105 16 of 16

21. Roy, S.; Baldi, S.; Fridman, L.M. On adaptive sliding mode control without a priori bounded uncertainty. Automatica 2020, 111,
108650. [CrossRef]

22. Hsia, T.C.; Gao, L.S. Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers.
In Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990;
pp. 2070–2075. [CrossRef]

23. Hsia, T.C.; Lasky, T.A.; Guo, Z. Robust Independent Joint Controller Design for Industrial Robot Manipulators. IEEE Trans.
Ind. Electron. 1991, 38, 21–25. [CrossRef]

24. Li, M.; Chen, Y. Robust Adaptive Sliding Mode Control for Switched Networked Control Systems with Disturbance and Faults.
IEEE Trans. Ind. Inform. 2019, 15, 193–204. [CrossRef]

25. Roy, S.; Kar, I.N. Adaptive sliding mode control of a class of nonlinear systems with artificial delay. J. Frankl. Inst. 2017, 354,
8156–8179. [CrossRef]

26. Ahmed, S.; Wang, H.; Tian, Y. Adaptive High-Order Terminal Sliding Mode Control Based on Time Delay Estimation for the
Robotic Manipulators with Backlash Hysteresis. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 1128–1137. [CrossRef]

27. Chen, G.; Jin, B.; Chen, Y. Nonsingular fast terminal sliding mode posture control for six-legged walking robots with redundant
actuation. Mechatronics 2018, 50, 1–15. [CrossRef]

28. Baek, J.; Jin, M.; Han, S. A New Adaptive Sliding-Mode Control Scheme for Application to Robot Manipulators. IEEE Trans.
Ind. Electron. 2016, 63, 3628–3637. [CrossRef]

29. Bae, H.J.; Jin, M.; Suh, J.; Lee, J.Y.; Chang, P.H.; Ahn, D.S. Control of robot manipulators using time-delay estimation and fuzzy
logic systems. J. Electr. Eng. Technol. 2017, 12, 1271–1279. [CrossRef]

30. Roy, S.; Kar, I.N.; Lee, J.; Jin, M. Adaptive-Robust Time-Delay Control for a Class of Uncertain Euler-Lagrange Systems. IEEE Trans.
Ind. Electron. 2017, 64, 7109–7119. [CrossRef]

31. Lee, J.; Chang, P.H.; Jin, M. Adaptive Integral Sliding Mode Control With Time-Delay Estimation for Robot Manipulators.
IEEE Trans. Ind. Electron. 2017, 64, 6796–6804. [CrossRef]

32. Xie, Z.; Sun, T.; Kwan, T.H.; Mu, Z.; Wu, X. A New Reinforcement Learning Based Adaptive Sliding Mode Control Scheme for
Free-Floating Space Robotic Manipulator. IEEE Access 2020, 8, 127048–127064. [CrossRef]

33. Xu, W.; Liang, B.; Xu, Y. Survey of modeling, planning, and ground verification of space robotic systems. Acta Astronaut. 2011, 68,
1629–1649. [CrossRef]

34. Hsia, T.C. Simple robust schemes for cartesian space control of robot manipulators. Int. J. Robot. Autom. 1994, 9, 167–174.
35. Cho, G.R.; Chang, P.H.; Park, S.H.; Jin, M. Robust tracking under nonlinear friction using time-delay control with internal model.

IEEE Trans. Control Syst. Technol. 2009, 17, 1406–1414. [CrossRef]
36. Wang, A.; Jia, X.; Dong, S. A new exponential reaching law of sliding mode control to improve performance of permanent magnet

synchronous motor. IEEE Trans. Magn. 2013, 49, 2409–2412. [CrossRef]
37. Zhang, X.; Ming, Z. Trajectory Planning and Optimization for a Par4 Parallel Robot Based on Energy Consumption. Appl. Sci.

2019, 9, 2770. [CrossRef]
38. Jia, S.; Shan, J. Finite-Time Trajectory Tracking Control of Space Manipulator under Actuator Saturation. IEEE Trans. Ind. Electron.

2020, 67, 2086–2096. [CrossRef]
39. Qiao, J.; Wu, H.; Yu, X. High-precision attitude tracking control of space manipulator system under multiple disturbances.

IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 4274–4284. [CrossRef]
40. Viveiros, C.; Melício, R.; Igreja, J.M.; Mendes, V.M.F. Performance Assessment of a Wind Turbine Using Benchmark Model: Fuzzy

Controllers and Discrete Adaptive LQG. Procedia Technol. 2014, 17, 487–494. [CrossRef]

http://doi.org/10.1016/j.automatica.2019.108650
http://doi.org/10.1109/robot.1990.126310
http://doi.org/10.1109/41.103479
http://doi.org/10.1109/TII.2018.2808921
http://doi.org/10.1016/j.jfranklin.2017.10.010
http://doi.org/10.1109/TSMC.2019.2895588
http://doi.org/10.1016/j.mechatronics.2018.01.011
http://doi.org/10.1109/TIE.2016.2522386
http://doi.org/10.5370/JEET.2017.12.3.1271
http://doi.org/10.1109/TIE.2017.2688959
http://doi.org/10.1109/TIE.2017.2698416
http://doi.org/10.1109/ACCESS.2020.3008399
http://doi.org/10.1016/j.actaastro.2010.12.004
http://doi.org/10.1109/TCST.2008.2007650
http://doi.org/10.1109/TMAG.2013.2240666
http://doi.org/10.3390/app9132770
http://doi.org/10.1109/TIE.2019.2902789
http://doi.org/10.1109/TSMC.2019.2931930
http://doi.org/10.1016/j.protcy.2014.10.257

	Introduction 
	Problem Formulation and Preliminaries 
	TDE-Based AISMC 
	Controller Design 
	Stability Analysis 
	Comparison Schemes 

	Numerical Simulation 
	Conclusions 
	References

