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Abstract: Spacecraft component detection is essential for space missions, such as for rendezvous
and on-orbit assembly. Traditional intelligent detection algorithms suffer from drawbacks related
to high computational burden, and are not applicable for on-board use. This paper proposes a
convolutional neural network (CNN)-based lightweight algorithm for spacecraft component detection.
A lightweight approach based on the Ghost module and channel compression is first presented
to decrease the amount of processing and data storage required by the detection algorithm. To
improve feature extraction, we analyze the characteristics of spacecraft imagery, and multi-head
self-attention is used. In addition, a weighted bidirectional feature pyramid network is incorporated
into the algorithm to increase precision. Numerical simulations show that the proposed method can
drastically reduce the computational overhead while still guaranteeing good detection precision.

Keywords: spacecraft component detection intelligent algorithm; lightweight

1. Introduction

On-orbit service has gradually become a research hotspot in the aerospace field [1,2].
The dynamics and control of spacecraft and space situational awareness are the basis of
on-orbit service [3–5], in which spacecraft detection is an important technology for provid-
ing necessary information for subsequent space missions [6–8]. The detection of spacecraft
components is the first step of any on-orbit service, such as on-orbit refueling, on-orbit
maintenance of spacecraft, and classical on-orbit inspection of a spacecraft formation [9].
It is necessary to detect the components of the spacecraft and then locate the major com-
ponents. Spacecraft component detection can accurately detect the position and type of
spacecraft components. The main components of spacecraft include the main body, solar
panels, antennae, etc. [10].

The current methods for spacecraft component detection can be broadly divided
into two kinds, namely nonintelligent and intelligent methods. Nonintelligent spacecraft
component detection is mainly based on the data characteristics of the target to obtain
target models or manually set features. In [11], a kind of illumination fuzzy similarity
fusion invariant moment was proposed to effectively solve the problem of spacecraft target
detection with different poses and illumination conditions. In [12], a target detection
method based on the improved directional gradient histogram feature was proposed.
Reference [13] proposed a multiple-feature fusion spacecraft local detection method. Good
detection results were obtained, although the generalization ability of the model was
not good. Nonintelligent spacecraft component detection methods have high complexity
and require more running time and storage space. They have poor generalization ability
and do not consider the texture interference caused by the Earth’s background, which
makes it difficult for them to meet the challenges of many uncertain factors in spacecraft
component detection.
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With the development of artificial intelligence, object detection technology has made
great breakthroughs and can meet the mission requirements in terms of accuracy and real-
time performance. Due to the particularity of spacecraft missions, spacecraft component
detection based on deep learning is still in its infancy, and there are few related research
works. Reference [14] used the YOLO model to identify spacecraft components under
different perspectives, distances, and occlusions. The results show that the accuracy of
the model was more than 90%. Reference [15] applied Mask R-CNN (Mask region-based
convolutional neural network) to achieve space spacecraft feature detection. Taking the
R-FCN (region-based fully convolutional network) and light-head R-CNN as references,
the model was optimized and improved to improve the detection efficiency. Reference [16]
proposed an improved multi-layer convolutional neural network based on LeNet for spatial
object recognition, which improved recognition accuracy. Reference [17] proposed an R-
CNN spacecraft component detection algorithm based on regional convolutional neural
networks. On the basis of Mask R-CNN, a new feature extraction structure was constructed
by combining DenseNet, ResNet, and FPN. The feature propagation between layers was
enhanced by the idea of dense connection. Because of the poor set of training samples, the
software was used to construct spacecraft images with different angles and heights.

However, the number of model parameters of the R-CNN and LeNet algorithms is too
large to run on space-borne equipment with limited computing power. Moreover, many
existing methods [13–16] fail to fully consider the interference of illumination, noise, and
the Earth background.

This paper proposes a lightweight spacecraft component detection algorithm based
on the Ghost module, namely YOLOv5-GMB. Taking YOLOv5 [18] as the framework,
the algorithm is compressed by combining the improved Ghost module and the channel
compression method. To overcome the degradation of spacecraft component detection
performance, this paper introduces multi-head self-attention (MHSA) [19], which uses
the characteristics of MHSA’s global attention to improve the ability to capture different
information. Meanwhile, data with different scales are fused by a weighted bidirectional
feature pyramid network (BiFPN) [20]. The effectiveness of the proposed method is
improved, and the robustness of the algorithm is enhanced. We expand the dataset by
enhancing data augmentation to make the model more robust to images acquired in
different environments. At the same time, the detection ability of objects with different
sizes is improved.

The remaining paper is organized as follows. Section 2 introduces the algorithm flow
and the construction of the spacecraft dataset. Section 3 introduces lightweight methods.
Section 4 gives the details of the experiment and the test results, and then analyses the test
results. Finally, Section 5 contains the conclusion.

2. Description of Spacecraft Component Detection
2.1. Component Detection Process

As the first step of on-orbit service, spacecraft component detection provides the
type and location information of spacecraft components for subsequent missions. Due to
the motion of spacecraft and the rotation of the Earth, the brightness, shape, and Earth
background are constantly changing, which brings challenges for detection. Considering
these factors, to achieve high accuracy and lightweight spacecraft component detection, this
paper proposes a CNN-based spacecraft component detection model named YOLOv5-GMB.
The overall flow of the algorithm is shown in Figure 1. The steps are as follows:

Step 1. Input the image to be detected;
Step 2. Image features are extracted using the CSPDarknet53 fusion Ghost module,

and then spatial pyramid pooling (SPP) is used to convert the feature maps of different
sizes into fixed-size feature vectors to achieve fusion with different features;

Step 3. Implement global self-attention using MHSA to improve the ability to capture
global information;
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Step 4. Here, BiFPN is used to introduce learnable weights to learn the importance
of different input features. At the same time, top-down and bottom-up multiscale feature
fusion are repeatedly applied to stitch feature maps of different scales;

Step 5. Input the feature map into YOLO Head for object classification. Finally, the
classification results and detection frames are generated. Then, the classification results
and position information of each component of the spacecraft are obtained;

Step 6. Output the detection images and spacecraft component information.
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Figure 1. Overall flowchart of component detection.

2.2. Dataset Construction

Remote sensing image and spacecraft attitude estimate datasets, such as RSSCN7
and SPEED, make up the majority of the space field’s current datasets. There are few
corresponding datasets for spacecraft component detection due to the difficulty of image
capture and the significant background interference. We gathered 1000 spacecraft photos
from fake or real images and movies from space organizations that had been issued
concerning spacecraft. Some spacecraft photographs are combined with the view of Earth
or other planets using image fusion technology. A dataset of 1000 spaceship photos is
created by reducing the resolution of select photographs to account for the onboard camera’s
low pixel count. The dataset is separated into training and test sets with a ratio of 80%
to 20% (800 and 200, respectively). The fully built spacecraft dataset is shown in Figure 2
through a number of samples.
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3. Lightweight Algorithm for Spacecraft Component Detection
3.1. Baseline Detection Algorithm

The two categories of currently-used lightweight techniques are model compression
and compact model design. Pruning, model quantization, and knowledge distillation
are the key techniques used in model compression, which is applied to large existing
models. A number of small models, including MobilenetV2-V3 [21,22], ShufflenetV2 [23],
and GhostNet [24], have been presented in response to the necessity of deploying neural
networks on embedded devices. These models use a small number of FLOPs to attain
good performance. Although model compression on currently large models makes the
model simpler, the smaller model is still quite large. It is feasible to create an algorithm
that can function on hardware with low processing power by using a compact model. In
the ImageNet classification test, three lightweight CNN algorithms are evaluated. The
experimental data are displayed in Figure 3. The author of MobilenetV3 only provides two
versions, small and large. While the other algorithms provide three versions, we test all
versions. On ImageNet validation datasets, all results are presented with single-class top-1
accuracy. When the model FLOPs are the same, the findings show that GhostNet has the
highest detection accuracy. Therefore, to create lightweight algorithms, we use the Ghost
module in the optimal GhostNet model and channel compression.
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3.2. Lightweight of Network Structure

The one-stage YOLO series, which has distinct benefits in real-time detection and
precision, is crucial for the task of object detection. As a result, we pick YOLOv5 as the
starting point. We utilize YOLOv5s as the framework, since being lightweight is important.
The YOLO head serves as the detector, the BiFPN serves as the algorithm’s neck, and
the MHSA fused by CSPMarknet53 serves as the algorithm’s backbone. Because of the
Ghost module and channel compression, the approach is lightweight. Figure 4 depicts the
structure of the algorithm.

With fewer arguments, the Ghost module creates more features. In comparison to the
standard CNN, the Ghost module’s computational cost and overall parameter requirements
are lower, but the size of the output feature map remains constant. Theoretical speedup
using the Ghost module is as follows:

rs = n·h′ ·w′ ·c·k·k
n
s ·h′ ·w′ ·c·k·k+(s−1)· ns ·h′ ·w′ ·d·d

= c·k·k
1
s ·c·k·k+

s−1
s ·d·d

≈ s·c
s+c−1 ≈ s

(1)
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The sizes of d× d and k× k are similar, and s� c. In the same way, the compression
ratio can be calculated as follows:

rc =
n · c · k · k

n
s · c · k · k + (s− 1) · n

s · d · d
≈ s · c

s + c− 1
≈ s (2)

where c is the number of channels of the input feature map, k is the kernel size, the averaged
kernel size of each linear operation is d× d, h′ is the height of the output feature map, w′ is
the width of the output feature map, n is the number of channels of the output feature map,
and s refers to the number of Ghost features, which is the same as the speedup ratio.

We used the Ghost module to design improved Ghost bottlenecks, as shown in Figure 5.
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The initial few Ghost modules in Ghost bottlenecks have minimal dimensions as a
result of the channel compression we utilize, which significantly reduces the breadth of the
model. The ReLU activation function was removed from the first Ghost module because
MobileNetV2 suggests that it will obliterate data in low-dimensional space. We performed
experiments and evaluated the outcomes.

The experiment demonstrates that the average accuracy (mAP) is 1.1% greater than
that of the original activation function once the ReLU activation function of the first five
Ghost modules is removed. The detection speed on the GPU is 1.5 ms faster than that on the
CPU, which results in a 6% reduction in detection time. Utilizing a linear layer is essential
because it stops nonlinearity from erasing information, according to experimental findings.

We may increase the generality and accuracy of the method, as well as the utilization
of features, by adding a convolution layer to the shortcut of the residual block.

3.3. Improvement in Detection Accuracy

The movement of the spacecraft and the rotation of the Earth have an impact on
the identification of spacecraft components. Because of interference from changes in the
brightness, shape, and Earth backdrop of spacecraft components, detection algorithm
performance suffers. This study suggests a combination of CNN and Transformer models,
employing CNN to extract features and MHSA to collect global information, enabling
detection algorithms to recognize spacecraft components under complicated disturbances.
The combination of CNN and Transformer models is inspired by DETR [25] and BoTNet [26].
Figure 6 depicts the MHSA’s organizational structure. The MHSA module has the potential
to mine feature representations, attain global self-attention, and enhance the capacity to
acquire diverse information by using a self-attention mechanism. Due to the low resolution
of feature maps at the end of the backbone, to reduce the computation cost, we use MHSA
in the last CSP module of the backbone. Since the convolutional layer has the characteristics
of weight sharing, we can use the pointwise convolutional layer instead of the linear layer
to reduce the parameters of the model.
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In the inspection task of spacecraft components, multiscale inspection is very impor-
tant, especially for smaller spacecraft components. However, the existing path aggregation
network (PANet) does not make good use of the extracted features, and the weights of
features with different sizes are the same, which makes it difficult to meet the requirements
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of small object detection. However, BiFPN can perform multiscale feature fusion easily
and quickly without adding too much cost. It introduces learnable weights to learn the
importance of different input features, and repeatedly applies top-down and bottom-up
multiscale feature fusion. This structure makes full use of features of different sizes, has
strong semantic information, and can improve the accuracy of multiscale object detection.
The structures of PANet and BiFPN are shown in Figure 7.
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3.4. Loss Function

The loss function includes the following three types of losses: confidence loss function
Lobject, bounding box loss function Lbox, and classification loss function Lclass. The loss
function is the weighted sum of three losses, as shown in the following equation:

L = λ1Lobject + λ2Lbox + λ3Lclass (3)

The confidence loss function Lobject calculates binary cross-entropy for the confidence
score in the prediction box and the IOU values of the prediction box and the ground truth
box. The classification loss function is similar to the confidence loss, and the classification
loss is calculated by the category score of the prediction box and the the ground truth box.
The bounding box loss function Lbox uses CIoU to take into account the distance, overlap
rate, scale, and aspect ratio between the target and anchor to make the bounding box more
stable, encourage fast convergence, and improve performance. Among them, λ1, λ2, and λ3
represent the weights of the three loss functions in the total loss function. The mathematical
expression of the CIoU function is shown as follows:

LCIoU = 1− IoU +
ρ2(b, bgt

)
e2 + αν (4)

The variables are shown in the following formulae:

IoU =

∣∣∣∣B ∩ Bgt

B ∪ Bgt

∣∣∣∣ (5)

ν =
4

π2

(
arctan

wgt

hgt
− arctan

w
h

)2
(6)

α =
ν

(1− IoU) + ν
(7)
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where B and Bgt represent the predicted box and the ground truth, respectively; e represents
the diagonal length of the bounding box; ρ represents the center point distance between the
predicted box and the ground truth; b and bgt represent the center point of the predicted
box and the ground truth, respectively; h and w represent the height and width of the
predicted box, respectively; and hgt and wgt represent the height and width of the ground
truth, respectively.

We use YOLOv5 as the framework; the backbone is fused with MHSA, and BiFPN
is used as the neck. The algorithm is compressed by incorporating the improved Ghost
module and channel compression method, named YOLOv5-GMB. In the experiment, we
compare the lightweight algorithms of different backbones to show the advantages of the
algorithm in terms of the number of parameters, mAP, and detection speed. At the same
time, we also verify the effectiveness of the improved strategy.

4. Experimental Results and Discussion

In this paper, the strategy of transfer learning is used in the experimental process.
First, the COCO dataset is used to pretrain our proposed network model, and the weight
parameters of the pretrained model are obtained. Then, the weight parameters of the pre-
trained model are fine-tuned using the constructed spacecraft dataset. Thus, the detection
of spacecraft components is completed.

We use the MobileNetv3, ShuffleNetv2, and GhostNet algorithms to replace the back-
bone of YOLOv5 and adjust the neck accordingly. The lightweight detection algorithms,
including YOLOv5-Mobilenetv3, YOLOv5-Shufflenetv2, and YOLOv5-GhostNet, are ob-
tained to train with the constructed spacecraft components dataset.

4.1. Evaluation Index

The performance of a model is usually evaluated using precision (P), recall (R), mean
average precision (mAP), and frames per second (FPS), where P = TP/(TP + FP). The TP
and FP all represent the numbers of tested positive samples, but FP is actually negative.
Here, R = TP/(TP + FN), where FN represents the number of samples that are positive
but tested negative. Moreover, Equation (8) is as follows:

mAP =
∑C

i=1 APi[t]
C

(8)

where t is the IOU threshold; Equation (9) is as follows:

AP[t] =
∫ 1

0
PdR (9)

where C represents the total number of classes.
Here, FPS (frames per second) is the number of images that can be processed per second.
Precision indicates the ratio of the number of correctly predicted positive samples to

the number of all predicted positive samples. Recall represents the ratio of the number of
correctly predicted positive samples to the total number of true positive samples. Finally,
mAP represents the average AP of all categories within all images.

4.2. Experimental Details

The hardware configuration of the experimental environment is as follows: the CPU is
an AMD R7 5800 H, the GPU is an NVIDIA RTX 3070, the operating system is Windows
10, and the compilation environment is Python 3.8 + PyTorch 1.8.0 + CUDA 11.3. In the
experiment, the batch size (the number of data samples in a batch training) is 8, the image
size is 640 × 640, the epoch is 2000, and the initial learning rate is 0.001. To achieve high
accuracy of the training model, the transfer learning strategy is used to pretrain the model
on the COCO dataset and then train the model on the constructed spacecraft components
dataset. We use the warm-up strategy, which uses a small learning rate to start training
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to ensure the stability of the model, and we increase the learning rate after the model
becomes stable to make the model converge quickly. Using the cosine annealing strategy,
the learning rate is decayed by the cosine function to obtain the optimal model. The change
in the loss function in the training process is shown in Figure 8. It can be seen that the
network converges quickly.
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The algorithm is for the detection of spacecraft components. The main features are
the presence of small objects and the large influence of background interference. For the
problem of small objects, we regenerate a new anchor box by clustering all labels, which
makes the anchor box more suitable for the dataset. At the same time, we use the image
scaling method to scale some large images to generate small images, which can enhance
the network’s detection ability for small objects. For problems with a large impact of
background interference, we use data augmentation to make the model predict multiple
different versions of the same image for better detection ability.
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In this paper, we enhance the luminance, saturation, and noise of the image to ac-
commodate the effects of luminance and noise in space. When dealing with geometric
distortions, we added random scaling, cropping, translation, clipping, and rotation. In addi-
tion to the above global pixel enhancement method, we also use mosaic data enhancement,
using four images for stitching, and each image has its corresponding bounding box. After
the four images are stitched together, a new image and the corresponding bounding box of
this image are also obtained. The effectiveness of data enhancement lies in expanding the
dataset to make the model more robust to images acquired in different environments.

We improve robustness through data augmentation and the model structure. The
structure of the algorithm makes full use of multiscale information by introducing BiFPN
and generating new anchor boxes suitable for the dataset by aggregating all labels. These
methods increase the robustness of the algorithm to scale. We use enhanced data enhance-
ment to perform targeted enhancement according to the imaging characteristics of the
spacecraft. This method improves the robustness of the algorithm to disturbance. For the
test set, images are acquired in different environments. Therefore, the test results of the
algorithm reflect the robustness and generalization performance of the algorithm.

4.3. Test and Results

We use YOLOv5 as the framework to compress the backbone parameters with the
fusion of the improved Ghost module and CSPDarknet53, and then train on the COCO
dataset to obtain a pretraining model. The evaluation indexes of the model are obtained by
training on the spacecraft components dataset. We found that the model has the potential
for further compression. We compress the resulting YOLOv5s-Ghost model with 10%
steps using the channel compression method. The evaluation indexes of the models are
compared. We stop compression at 50% because the model indexes dropped seriously at
higher compression ratios. We take the YOLOv5s-Ghost model with a compression ratio of
50% as our lightweight model and name it YOLOv5sl-Ghost.

Due to the obvious decline of indicators, we add MHSA and BiFPN to the YOLOv5sl-
Ghost algorithm to improve the detection ability of the algorithm and obtain the YOLOv5-
GMB algorithm. Table 1 compares YOLOv5-GMB with other detection algorithms, includ-
ing YOLOv5s, YOLOv5s Ghost, and YOLOv5sl Ghost.

Table 1. Experimental data indicators of YOLOv5-GMB and other detection algorithms.

Model Precision Recall mAP Parameter GFLOPs

YOLOv5s 0.97 0.81 0.86 7.1 M 16
YOLOv5s-Ghost 0.94 0.76 0.81 3.7 M 8
YOLOv5sl-Ghost 0.9 0.68 0.74 0.9 M 2.3
YOLOv5-GMB 0.95 0.71 0.81 1 M 2.4

Through data analysis, we compress the algorithm through the Ghost module and
channel compression. Compared with the original YOLOv5s, the number of model pa-
rameters is reduced by 87%, the number of model calculations is reduced by 85%, and
the total number of parameters is only 0.9 m. The detection time is reduced by 65% and
22% on the CPU and GPU, respectively, which improves the detection speed and greatly
reduces the number of model parameters. The parameters of the YOLOv5-GMB model are
slightly increased, but the accuracy is improved by 7%, which is roughly comparable to the
performance of YOLOv5s-Ghost with 3.6 times larger parameters.

4.4. Ablation Experiments

In this paper, ablation experiments are designed based on YOLOv5sl Ghost and combined
with different improvement strategies. The experimental results are shown in Table 2.
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Table 2. Ablation study on spacecraft dataset.

Model Precision Recall mAP Parameter GFLOPs

YOLOv5sl-Ghost 0.9 0.68 0.74 0.9 M 2.3
YOLOv5sl-Ghost-MHSA 0.94 0.70 0.78 1 M 2.3
YOLOv5sl-Ghost-BiFPN 0.92 0.68 0.77 0.9 M 2.3

YOLOv5sl-Ghost-MHSA-BiFPN 0.95 0.71 0.81 1 M 2.4

To reduce the impact of model size and model parameter decline on the detection ability
of spacecraft components, this paper improves the ability to capture different information by
introducing MHSA and BiFPN to fuse information of different scales. Through experiments, it
is found that introducing the MHSA and BiFPN model to the YOLOv5sl-Ghost model slightly
increases the number of parameters and computations. However, the mAP is improved
by 7% compared with that when it is not used, which is almost the same performance as
YOLOv5s-Ghost. Therefore, the increase in the computation amount is worthwhile.

4.5. Experimental Results of the Comparative Method

Existing lightweight detection algorithms, such as MobileNetv3, ShuffleNetv2, and
GhostNet, have excellent performance in detection ability and are also the main backbones
of lightweight algorithms. We replace the backbone of YOLOv5 with the MobileNetv3,
ShuffleNetv2, and GhostNet algorithms and adjust the neck accordingly. Under the same envi-
ronment, the lightweight detection algorithms YOLOv5-Mobilenetv3, YOLOv5-Shufflenetv2,
and YOLOv5-GhostNet are obtained by training on the constructed spacecraft dataset and
compared with the algorithm in this paper. The evaluation indicators of the models are
compared. Table 3 lists the model evaluation indicators and makes a comparison.

Table 3. Comparison of multiple lightweight algorithms on spacecraft datasets.

Model Precision Recall mAP Parameter GFLOPs FPS (CPU) FPS (GPU)

YOLOv5-MobileNetv3 0.91 0.69 0.77 1.5 M 3.6 13 47
YOLOv5-ShuffleNetv2 0.9 0.66 0.76 1.5 M 3.6 9 43

YOLOv5-GhostNet 0.9 0.68 0.76 1.3 M 3.9 14 50
YOLOv5-GMB (Ours) 0.95 0.71 0.81 1 M 2.4 16 53

The experimental results show that the lightweight model YOLOv5-GMB in this paper
is superior to YOLOv5-MobileNetv3, YOLOv5-ShuffleNetv2, and YOLOv5-GhostNet in
terms of model parameter amount, model calculation amount, mAP, and FPS. The model
parameter amount is only 1 M, and the model calculation amount is only 2.4 GFLOPs. Com-
pared with the lightweight backbone YOLOv5 algorithm, the algorithm has the smallest
model, the best detection performance, and the highest FPS. Figure 9 shows the experimen-
tal results of the comparison method under fully illuminated conditions. Figure 10 shows
the experimental results of the comparison method under partially shadowed conditions.
The algorithm proposed in this paper can accurately detect all spacecraft components.
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Figure 9. The experimental results of the comparison method under fully illuminated conditions.
The left is the detection image. The right is a close-up of the test results. (a) YOLOv5-MobileNetv3
detection results. (b) YOLOv5-ShuffleNetv2 detection results. (c) YOLOv5-GhostNet detection results.
(d) YOLOv5-GMB detection results.
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Figure 10. The experimental results of the comparison method under partially shadowed conditions.
(a) YOLOv5-MobileNetv3 detection results. (b) YOLOv5-ShuffleNetv2 detection results. (c) YOLOv5-
GhostNet detection results. (d) YOLOv5-GMB detection results.

5. Conclusions

In this paper, a lightweight spacecraft component detection method is proposed. We
use the Ghost module and channel compression methods for their lightweight quality and
improve the algorithm according to the characteristics of spacecraft images. The proposed
YOLOv5 GMB only uses 1 M parameters to maintain a high precision of 0.95. The compara-



Aerospace 2022, 9, 761 14 of 15

tive experimental results show that, compared with the traditional lightweight detection
model, the proposed YOLOv5-GMB achieves better detection results with fewer parame-
ters and calculation amounts, which can effectively improve the detection efficiency while
reducing the model weight. However, under a more complex environment, our detection
performance cannot be guaranteed. This is also the direction of our future research.
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