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Abstract: Previous studies have implied that the AR (aspect ratio) of the transverse groove signifi-
cantly affects the stability of the boundary vortex within the groove and thus drives the variation in
the drag-reduction rate. However, there is no theoretical model describing the relationship between
the AR and the stability of the boundary vortex, resulting in difficulty in developing a forward
method to obtain the optimum AR. In this paper, the velocity potential of the groove sidewalls
to the boundary vortex is innovatively described by an image vortex model, thus establishing the
relationship between the AR and the induced velocity. Secondly, the velocity profile of the migration
flow is obtained by decomposing the total velocity inside the groove, by which the relationship
between the AR and the migration velocity is established. Finally, the analytical solution of the
optimal AR (ARopt = 2.15) is obtained based on the kinematic condition for boundary vortex stability,
i.e., the induced velocity equals the migration velocity, and the forms of boundary vortex motion at
other ARs are discussed. Furthermore, the stability of the boundary vortex at the optimal AR and
the corresponding optimal drag-reduction rate are verified by the large eddy simulations method.
At other ARs, the motion forms of the boundary vortex are characterized by “vortex shedding” and
“vortex sloshing,” respectively, and the corresponding drag-reduction rates are smaller than those for
vortex stability.

Keywords: transverse groove; drag reduction; aspect ratio; boundary vortex stability; LES

1. Introduction

Reducing the friction drag of aircraft has been an active research field for several
decades. An assessment showed that reducing the skin-friction drag by 1% of a Boeing 777F
freighter means annual savings of around 3700 tons of kerosene [1]. Among many drag-
reduction technologies, the transverse-grooved surfaces imitating dolphin skin [2,3] that
are regular perpendicular to the streamwise direction have been extensively investigated
for engineering applications because of their remarkable drag-reduction properties (the
highest drag-reduction rate in the flat plate was up to 16% [4]) and good applicability [5,6].

There is no definite conclusion regarding the actual drag-reduction mechanism of
transverse-grooved surfaces, and some different theories have been adopted. In one view, the
transverse grooves on a flat wall should be classified as the ”D” and ”K” type roughness. The
vortices formed within the grooves weaken the turbulence structure in the boundary layer
near the wall, thus delaying the transition from laminar to turbulent flow [7,8]. The other
more popular perspective indicates that the vortices (they are called boundary vortices in this
paper) within transverse grooves change the sliding friction into the rolling friction at the
solid–liquid interface, which is also named the “micro air-bearing phenomenon” [9–15]. In
addition, the studies of Mariotti et al. [16,17], Pasqualetto et al. [18], Howard et al. [19], and
Lang et al. [3,20] showed that the vortices formed in the transverse grooves (and small cavities)
increase the momentum in the boundary layer near the wall, thus effectively controlling
the flow separation. However, none of the qualitative descriptions of the drag-reduction
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mechanism can be applied in the design of grooves, so a large number of optimization studies
on the geometric parameters of transverse grooves have to be conducted through numerical
simulations and experiments in engineering applications.

Previous parametric studies have found that the shape, spacing, depth, and AR (aspect
ratio, the ratio of width to height) of the transverse groove are important parameters affecting
the drag-reduction rate. Cui and Fu [21] conducted a numerical study on the pressure drop
in microchannel flow over different transverse-grooved surfaces and found that the drag-
reduction rate of V-shaped transverse grooves is better than that of rectangular transverse
grooves. Wu et al. [22,23] carried out a series of experiments and numerical simulations to
explore the drag reduction induced by crescent grooves and V-grooves. The results showed
that the drag-reduction rate of V-grooves is better than that of crescent grooves. The experi-
mental and numerical results of Liu et al. [24] indicated that the drag-reduction performance
in a pipeline was significantly affected by the spacing and widths of grooves, and a maximum
drag-reduction rate of 3.21% could be achieved at Re = 89,500. Li et al. [25] investigated
the drag-reduction characteristics of nanoporous transverse grooves through a water tunnel
experiment and found that a 40% drag-reduction rate was obtained with a groove depth of
100 nm. Bhatia et al. [26] explored the effect of groove depth on drag reduction and found
that the drag-reduction rate reached 10.8% when the ratio of groove depth to boundary-layer
thickness was about 0.003. Liu et al. [27] proposed a new idea for numerical optimization from
the perspective of entropy generation and adopted a Multi-Island Genetic Algorithm (MIGA)
to optimize the geometry of grooves. These works have a certain significance for guiding en-
gineering applications. However, conducting a large number of numerical and experimental
optimization works without a theoretical basis can be time-consuming, challenging, and ex-
pensive. In order to guide the engineering design of transverse grooves, a practical alternative
is to construct a theoretical model to solve the mathematical relationship between geometric
parameters based on the physical conditions that affect the drag-reduction properties.

The research of Gautam [28] inspired us to solve the mathematical relationship be-
tween geometric parameters based on the stability of the boundary vortex. He conducted
experiments on cavity-embedded flat plates with different ARs. The results showed that
with the cavity geometry varied, the stability of the boundary vortex and the streamlines at
the slip boundary also changed, which in turn affected the surface drag. In other words, it
indicates that the AR affects the stability of the boundary vortex, thus driving the variation
in the drag-reduction rate. Unfortunately, to the best of the authors’ knowledge, the physi-
cal relationship between the AR and the stability of the vortex within the groove has not
been established. It is significant as a guide for the engineering design of the optimal AR.
Therefore, the purpose of this study is to solve the optimal AR of the transverse V-groove
based on the vorticity kinematics conditions of boundary vortex stability.

This paper is organized as follows. First, the influence of boundary vortex stability on
drag-reduction performance is qualitatively analyzed in Section 2. Second, in Section 3, the
relationship between the AR and kinematic parameters (velocity induced by image vortices
and migration velocity decomposed by mainstream velocity) is established, respectively,
and then the optimal AR is solved based on the equilibrium between induction velocity
and migration velocity. Then, in Section 4, the vorticity kinematics characteristics of the
boundary vortices in grooves with different ARs are calculated by numerical simulation,
and the drag-reduction performances of grooves with different ARs are compared, which
is then followed by conclusions in Section 5.

2. Influence of Boundary Vortex Stability on Drag-Reduction Performance

According to our previous research [4], the drag-reduction performance of grooves
is determined by the reduction in viscous resistance and the increase in pressure drag.
Moreover, we analyzed the influence of groove depth on the viscous drag-reduction rate
(benefits) and the pressure drag-increase rate (costs). In this section, another key factor, the
stability of the boundary vortex, that affects the compromise between benefits and costs
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is qualitatively analyzed to prove that it is also a necessary condition for obtaining the
optimal drag-reduction rate.

Figure 1a,b show the schematic diagram of the slip surface above the transverse
grooves when the boundary vortices are stable and unstable, respectively. When the
boundary vortices are stable, they act as “air bearings,” separating the boundary layer
from the solid wall, thus forming a smooth slip surface that results in fluid sliding over
the grooved plate, while the vortices sloshing in the grooves may lead to large fluctuations
in the slip surface when the boundary vortices are unstable. On the one hand, these
fluctuations may cause dramatic shear between the boundary layer and the boundary
vortices, and the aerodynamic configuration of the “air bearing” is destroyed, both of
which are unfavorable for reducing viscous drag. On the other hand, the unsmooth slip
surface aggravates the stagnation of the high-momentum fluid in the boundary layer on
the groove windward side, which increases the additional pressure drag compared with
the case when the boundary vortices are stable.
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Figure 1. Schematic diagram of the slip surface over transverse grooves. (a) Stable boundary vortex;
(b) unstable boundary vortex.

To further analyze the influence of boundary vortex stability on the flow within
the grooves, Figure 2 compares the schematic diagrams of velocity profiles when the
boundary vortex is stable and unstable. Figure 2a shows the case that the boundary
vortex stabilizes on a symmetrical V-shaped transverse-grooved plate without the adverse
pressure gradient and disturbance sources. In this state, the boundary vortex is stable on
the centerline of the groove and acts as “fluid bearings” [9,10] on the boundary to lubricate
the free stream “slip over” [9] the grooved regions. It induces a steady slip velocity (for
more definitions and descriptions of slip velocity, refer to [4]), Us1, on the horizontal
surface, which reduces the velocity gradient near the wall and significantly reduces viscous
resistance in comparison to a flat plate (the solid line shown in Figure 2a is the velocity
profile on the centerline of the groove, and the dashed line is the velocity profile on the
flat plate at the corresponding position). In addition, large-scale stagnation of fluid on the
windward side can be avoided due to the “smoothness” of the slip surface, and then the
increase in pressure drag is prevented [4,13,14]. When the boundary vortex is unstable,
it moves upstream or downstream. Figure 2b shows the case that the boundary vortex
deviates from the center of the groove and moves upstream. In this case, the slip surface
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fluctuates with the movement of the boundary vortex, and then the fluid stagnates over a
wide range on the windward side, forming a wide high-pressure area. Moreover, assuming
that the circulation remains constant whether the boundary vortex is stable or unstable,
then the magnitude of slip velocity, Us2, corresponds to the projection of Us1 that is fictional
in Figure 2b on the horizontal axis (i.e., Us2 < Us1). It is detrimental to the reduction in
viscous resistance because the velocity gradient near the wall is not significantly reduced.
Similarly, as shown in Figure 2c, when the boundary vortex moves downstream, part of the
fluid from the groove’s leeward surface moves outwards induced by the boundary vortex,
forming a wide relative low-pressure area. Meanwhile, the performance of reducing the
viscous resistance is also worse than that when the boundary vortex is stable due to the
decrease in slip velocity (Us3 < Us1). In summary, as shown in Figure 2b,c viscous resistance
decreases slightly and the pressure drag increases substantially when the boundary vortex
is unstable, both of which result in unsatisfactory drag-reduction performance.
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The analysis above shows that maintaining the stability of the boundary vortex within
grooves is the essential vorticity kinematics condition for perfect drag-reduction perfor-
mance. Without considering the effects of an adverse pressure gradient, a curvature of the
plate, and external perturbations, the stability of the boundary vortices is mainly related
to the AR of the transverse groove [28,29]. Therefore, based on the vorticity kinematics
condition of boundary vortex stability, the theoretical solution of the optimal AR is solved
in Section 3.
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3. Theoretical Solution of AR for Maintaining the Stability of Boundary Vortices

In the groove of a 2D plate without adverse pressure gradient and external perturba-
tions, the stability of the boundary vortices is affected by the groove wall (which prevents
the boundary vortices from moving downstream) and the migration flow (which causes
the boundary vortices to move downstream) [30–32], as shown in Figure 3. The influence
of a groove on a boundary vortex can be quantitatively described by the velocities induced
by two image vortices with equal vorticity and direction opposite to that of the boundary
vortex [31,32]. In Figure 3, UBC represents the velocity induced by image vortex B at the
center of boundary vortex C, UAC represents the velocity induced by image vortex A at
the center of boundary vortex C, and Um represents the vector sum of these two induced
velocities, which is called the total induced velocity. The effect of migration flow on the
boundary vortex is described by the migration velocity Uc.
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Figure 3. Vorticity kinematics conditions for stabilizing boundary vortices.

The kinematic condition of vortex stability claims that the boundary vortex is stable
when |Um| = Uc [31]. Based on this equation, the optimum AR can be derived in the
procedure shown in Figure 4:

Step 1. Construct the relationship between AR and induced velocity Um.
Step 2. Construct the relationship between AR and migration velocity Uc.
Step 3. The theoretical solution of the optimal AR is obtained based on the dynamic

conditions of vortex stability (|Um| = Uc).
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3.1. Induced Velocity Induced by Image Vortices

To quantitatively evaluate the total induced velocity Um, it is necessary to deduce the
velocity field induced by the two image vortices. The cross-section of an image vortex is
assumed to be a circle with a radius R surrounded by an unbounded irrotational flow, as
shown in Figure 5. This vortex has a constant vorticity ω within the circle and with no
vorticity outside. At point P, the velocity magnitude is q, which can be expressed as
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q =

{
ωr
2 , r < R

ωR2

2r , r ≥ R
(1)

where r denotes the distance between point P and the center of the image vortex. Assume
that the angle between the direction of flow velocity at point P and the real axis of the
complex plane is θ + π/2, and then the velocity vector at point P can be described as in
Equation (2)

U + Vi = qe(θ+π/2)i (2)

in which U represents the velocity component in the horizontal direction, and V stands for
the vertical velocity component.
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When the flow field outside the image vortex is assumed to be potential flow, the
velocity field around the vortex can be described with a simple and general method of
the complex potential function represented by W = ϕ + ψi, where ϕ = ϕ(x′, y′) denotes
the potential function outside the image vortices, and ψ = ψ(x′, y′) represents the flow
functions outside the image vortices. The coordinates of a point P outside the image vortex
are written in the form Z = x′ + y′i = reθi, and then the derivative of W with respect to Z
at point P can be represented by Equation (3).

−dW
dZ

∣∣∣∣
Zp

= U −Vi = qe−(θ+π/2)i (3)

Because point P can represent any point outside the vortex, substituting Equation (1)
into Equation (3) and integrating the equation yields W.

W =
Γivi
2π

lnZ (4)

in which Γiv represents the circulation of the image vortex, which is equal to ωπR2. For the
vortex with circulation Γiv and centered at Z0, the complex potential function outside the
vortex is

W =
Γivi
2π

ln(Z− Z0) (5)

where ZB = −a/2 + 0i and ZC = a/2 + 0i represent the coordinates of the center points of
image vortices A and B, respectively, in the coordinate system shown in Figure 3. Therefore,
the complex flow function of the two image vortices in a groove can be obtained by
substituting the coordinates of the centers of the image vortices: WB = Γivi

2π ln
(
Z + a

2
)



Aerospace 2022, 9, 749 7 of 26

WC = Γivi
2π ln

(
Z− a

2
)
. In addition, the complex potential function of the flow field induced

by the two image vortices is (i.e., WB + WC)

Wm =
Γivi
2π

ln
(

Z2 − a2

4

)
(6)

Now, differentiation of Equation (6) with respect to Z at point P (ZP = yi) yields
Equation (7), which represents the velocity induced by the image vortices at the centerline
of the transverse grooves

Uiv = − Γivy

π
(

y2 + a2

4

) (7)

Moreover, as shown in Figure 3, the relationship between a, b, and AR can be derived
as a = 4bh

s = 4b
AR , where h and s represent the groove height and width, respectively.

Therefore, the total induced velocity Um at the center of the boundary vortex, i.e., the total
induced velocity, is stated by Equation (8), which is determined by the circulation of the
image vortex and the geometric parameters of the groove

Um = − Γiv

π
(

1 + 4
AR2

)
b

(8)

where b ∈
(

0, 2s2h
s2+4h2

)
and AR ∈ (0,+∞). Figure 6a,b show six representative realizations

of Equations (7) and (8), respectively. When b is a constant value that represents the
position of the boundary vortex, the velocity profiles induced by image vortices within
the groove vary with ARs, as shown in Figure 6a, which means that the velocity profile
inside the groove is significantly affected by the side walls of the groove. Figure 6b shows
the variation in the virtual distance Rvd = |Um| × π/Γiv [33] that is inversely proportional
to the total induced velocity with b and AR at the center of the boundary vortex. It can be
observed that when AR is constant, the virtual distance Rvd decreases with the increase in
b, which means that the fuller the boundary vortex, the greater the total induced velocity.
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Figure 6. Influence of geometric parameters on velocity distribution within the groove. (a) Variation
in velocity profiles induced by image vortices with AR at the groove centerline when b is a constant
value and h = 0.2 mm; (b) variation in the virtual distance Rvd representing the total induced velocity
with b and AR at the center of the boundary vortex.

In sum, Equation (8) establishes the relationship between the AR of the groove and
the induced velocity of the image vortex, which describes the velocity field potential of the
sidewall inside the groove.
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3.2. Migration Velocity Decomposed by Total Velocity

From the perspective of vorticity kinematics, the total velocity profile (Ums) inside a
transverse groove is affected by the boundary vortex, image vortices, and migration flow,
as described in Equation (9)

Ums = Uiv + Ubv + Umv (9)

where Ums represents the total velocity, Uiv is the total induced velocity that is solved by
Equation (8), Ubv denotes the velocity components induced by the boundary vortex that
can be expressed as Equation (1), and Umv stand for the migration velocity. Therefore, the
velocity profile of the migration flow within the groove can be obtained by subtracting the
components of the velocity profile associated with the image vortices and boundary vortex.

Emily Jones [34] measured the total velocity profile of a transverse groove plate with
AR = 1.33, h = 2 mm, and Reh = 750 (based on the groove height), as shown by the black
dotted line in Figure 7a. The AR and the position of the vortex can be substituted into
Equation (8) to obtain the total induced velocity of the image vortices, as shown by the
red dotted line. Meanwhile, the velocity induced by the boundary vortex can be obtained
according to Equation (1). Finally, the migration velocity decomposed by the total velocity
in Equation (9) can be derived, as shown by the green dotted line. Similarly, the migration
flow in another groove (AR = 2, h = 0.2 mm, and Reh = 68) is obtained by decomposing
the corresponding total velocity profile calculated in our previous study [4], as shown in
Figure 7b. It can be observed that the total velocity profiles in the groove vary with the AR,
h, and Reh, but the migration velocity profiles after decomposition are similar.

The experimental and numerical studies of Feng et al. [35] imply that both the velocity
profile and pressure distribution inside the groove can be described by an exponent or
polynomial function. On the basis of their work, combined with the migration velocity
profiles in Figure 7, we assume that the migration velocity profile within grooves is

U+
mv = C1

(
Y+
)2

+ C2Y+ + C3 (10)

in which U+
mv is the dimensionless form of migration velocity, and Y+ is the dimensionless

form of ordinate Y (U+
mv = Umv/U∞ and Y+ = Y/h, where U∞ denotes the mainstream

velocity). C1, C2, and C3 are parameters related to the slope of the points D and C, as shown
in Figure 8. The migration velocities of points D and C refer to the velocities at the upper
boundary (i.e., the slip surface) and the center of the boundary vortex, respectively.

According to the slip theory, the velocity gradient on the slip surface can be expressed as

∂u
∂y

∣∣∣∣
slip

=
U+

s

L+
s

(11)

in which U+
s is the dimensionless form of slip velocity, and L+

s is the dimensionless form of
the slip velocity length. For points D and C, the slip velocities can be regarded as U+

d and
U+

c , respectively, and the slip lengths can be considered as L+
d and L+

c , and then the slopes
Kd and Kc for points D and C can be expressed as

Kd =
U+

d
L+

d
, Kc =

U+
c

L+
c

(12)

where U+
d and L+

d stand for the migration velocity of the slip surface and the distance from
the slip surface to the center of the boundary vortex, respectively. Similarly, U+

c and L+
c

are the migration velocity of the center of the boundary vortex and the distance from the
center of the boundary vortex to the bottom of the groove, respectively. According to the
geometric relationship shown in Figure 3, Ld and Lc can be represented by Equation (13).

Ld = R =
1
2

√
b2 +

a2

4
, Lc =

b
2
+

a2

8b
(13)
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Under the established coordinate axis shown in Figure 8, Equation (14) can be obtained
by substituting Equations (12) and (13), and the coordinates of point C, (0, U+

c ), into
Equation (10).

U+ =

(
U+

d
2L+

d
2
− U+

c

2L+
d L+

c

)
×
(
Y+
)2

+
U+

c

L+
c

Y+ + U+
c (14)

On the basis of Equation (14), the relationship between Ud and Uc can be obtained by
substituting the coordinates of point D, (L+

d , U+
d ).

Uc =
Ud(

Ld
Lc

+ 2
) (15)

In order to verify the relationship between Uc and Ud in Equation (15), Figure 9 shows
the comparison of the experimental results and numerical calculations with the theoretical
formula. It is observed that the theoretical formula is in good agreement with the results
of previous studies, which further indicates that the assumption of migration velocity
is reasonable.
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The value of Ud in Equation (15) cannot be expressed quantitatively without numerical
calculation or experiment. Our previous work shows that it is related to the circulation of
the boundary vortex (Γbv) and the geometric parameters of the groove [4]. Therefore, if the
boundary vortex circulation, Γbv, is assumed to be a known quantity, the physical relation
between the Γbv and Ud can be established first, and then the value of Uc can be measured
quantitatively by Γbv and geometric parameters. Moreover, the vorticity of the boundary
vortex within the transverse groove can be approximated as ω = −∂u/∂y ≈ −Ud/Ld.
Therefore, Ud can be expressed as Ud = −Γbv/πLd, and then substituted for Equation (15),
the quantitative formula of Uc can be expressed as

Uc =
Γbv

−πLd

(
Ld
Lc

+ 2
) (16)

Equation (16) states that the physical relation between the migration velocity caused
by the migration flow (i.e., Uc) and geometric parameters (Ld and Lc in Equation (16) are
related to a and b, as shown in Equation (13)).
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3.3. Solution of Aspect Ratio Based on Equalization between Induced Velocity and Migration Velocity

In Sections 3.2 and 3.3, the formulas are derived by calculating the induced velocity
and migration velocity. The kinematic condition for boundary vortex stability requires that
these two velocities are equal [31]; based on this equalization, the optimal AR is solved in
this section.

The circulation of the image vortex is opposite to that of the boundary vortex

Γiv = −Γbv (17)

The kinematic condition that maintains the stability of the boundary vortex is

|Um| = Uc (18)

Substituting Equations (8), (16), and (17) into Equation (18) yields the mathematical
relation between a and b. Then, it can be obtained that the optimal AR (ARopt) of the groove
that maintains the stability of the boundary vortex should satisfy.

ARopt =
s
h
=

4b
a

= 2.15 (19)

It is worth noting that considering the influence of external disturbances in practical
applications, the optimal AR may be a value close to this theoretical solution.

In order to further understand the influence of AR on the motion trajectory of the
boundary vortex, it is necessary to discuss the cases when ARmax > AR > ARopt and
ARmin < AR < ARopt from the perspective of vorticity kinematics. ARmax and ARmin
are two critical values corresponding to the maximum AR and minimum AR, respectively.
When AR exceeds these two values, the boundary vortex may not be formed inside the
groove [9,29]. When ARmin < AR < ARopt = 2.15, Equation (18) is transformed into

|Um| < Uc (20)

Then, the boundary vortex moves downstream initially. It is assumed that the core
of the boundary vortex moves over ∆x from point C to point C′, as shown in Figure 10.
Therefore, the centers of the image vortices move from point A and B to point A′ and B′,
respectively. The coordinates of these points are as follows:

A
( a

2 , 0i
)

A′
( a

2 + ∆x cos 2θ, ∆xi sin 2θ
)

B
(
− a

2 , 0i
)

B′
(
− a

2 + ∆x cos 2θ,−∆xi sin 2θ
)

C(0, bi) C′(∆x, bi)
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In the representations of coordinates, θ is the angle between the windward side of the
groove and the horizontal plane. Substituting the coordinates of point A′, B′, and C′ into
Equations (3)–(8) yields the complex potential function of the image vortex, which can be
described as

WA′B′ =
Γivi
2π

ln[(Z− ∆x cos 2θ)2 −
( a

2
+ i∆x sin 2θ

)2
] (21)

Here, a and b can be replaced by Equation (22).{
a = 2Lc sin 2θ
b = 2Lc cos2 θ

(22)

Then, the differentiation of Equation (21) with respect to Z in “Zc′ = ∆x + bi” yields
Equation (23)

−Um + Vmi =
dW
dZ

∣∣∣∣
Zc′

=
Γiv
[
−∆x(cos 2θ − 1)i + 2Lc cos2 θ

]
π
[
4∆x2 sin2 θ − 4Lc2 cos2 θ

] (23)

Therefore, Um and Vm can be expressed in Equation (24) Um = Γiv Lc cos2 θ

π[2∆x2 sin2 θ−2Lc2 cos2 θ]

Vm = − Γiv∆x(cos 2θ−1)
π[4∆x2 sin2 θ−4Lc2 cos2 θ]

(24)

Two equations derived above, i.e., Equations (16) and (24), illustrate that the motion of
the boundary vortex can be divided into three stages:

Stage I. Since ∆x sin θ � Lc cos θ and cos 2θ < 1, V < 0 in Equation (24) can be
inferred. This result shows that when the boundary vortex deviates from the center of the
groove and moves downstream, the vertical velocity induced by the image vortices makes
the boundary vortex move toward the negative direction of the Y-axis in Figure 10b. With
the boundary vortex moving to the bottom of the groove, Lc decreases and Ld increases
in Equation (16), so dramatic decreases in Uc can be inferred, which ultimately results in
|Um| > Uc. Therefore, the trajectory of the boundary vortex is shown as the St_1 line in
Figure 10b.

Stage II. When the boundary vortex moves through the centerline of the groove,
∆x in Equation (24) is less than 0, so V > 0 can be inferred. This result means that the
vertical velocity induced by the image vortices makes the boundary vortex move toward
the horizontal line. Therefore, the boundary vortex trajectory is shown as the St_2 line in
Figure 10b.

Stage III. When the boundary vortex is close to the horizontal line, the effect of the
migration flow on the boundary vortex is more and more prominent, and eventually the
relationship between the induced velocity and the migration velocity returns to the original
relationship, i.e., |Um| < Uc. Therefore, the boundary vortex trajectory is shown as the St_3
line in Figure 10b.

Similarly, when ARmax > AR > ARopt = 2.15, Equation (18) is transformed into

|Um| > Uc (25)

Hence the boundary vortex will migrate upstream initially under the influence of the
image vortices. It is assumed that the core of the boundary vortex moves over ∆x from
point C to point C′. Then, the centers of the image vortices move from points A and B to
points A′ and B′, respectively, as shown in Figure 11. The coordinates of the centers of the
boundary vortex and the image vortices are as follows:

A
( a

2 , 0i
)

A′
( a

2 − ∆x cos 2θ,−∆xi sin 2θ
)

B
(
− a

2 , 0i
)

B′
(
− a

2 − ∆x cos 2θ, ∆xi sin 2θ
)

C(0, bi) C′(−∆x, bi)
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Figure 11. Kinematic analyses of boundary vortices when AR > 2.15. (a) Coordinates of boundary
vortex and image vortices; (b) moving path of boundary vortex.

Consistent with the theoretical derivation above, the velocity induced by the image
vortices to the boundary vortex can be expressed asUm = Γiv Lc cos2 θ

π[2∆x2 sin2 θ−2Lc2 cos2 θ]

Vm = Γiv∆x(cos 2θ−1)
π[4∆x2 sin2 θ−4Lc2 cos2 θ]

(26)

According to Equation (26), it is inferred that V < 0 when the boundary vortex
deviates from the center of the groove and moves upstream. Conversely, V > 0 when the
boundary vortex moves downstream. Therefore, the boundary vortex moves along lines
St_1, St_2, and St_3 in Figure 11b. When θ → 0 (which means that the boundary vortex is
difficult to form) or Γbv → 0 (i.e., the boundary vortex is constantly dissipating), it can be
inferred that Um → 0 and V → 0 , which explains why the boundary vortex initially moves
upstream along the windward direction but eventually disperses with the migration flow.

When the boundary vortex moves to the left and the right limit positions, the horizontal
induced velocity Um of the boundary vortex caused by the image vortices is equal to the
migration velocity Uc (V 6= 0 at this time). Then, Equation (27) is constructed from
Equations (16), (24), and (26).

−ΓivLc cos2 θ

π
[
2∆x2 sin2 θ − 2Lc2 cos2 θ

] = − Γbv
π[(Lc cos θ − ∆x sin θ)(cos θ + 2)]

(27)

When the boundary vortex fills the groove, (1 + cos θ)Lc∆AR = S can be deduced.
Then, ∆x/Lc and |∆x/S| can be expressed as

∆x
Lc

= cos2 θ(2+cos θ)−cos θ
√

cos4 θ+4 cos3 θ−4 cos2 θ−16 cos θ+16
4 sin θ∣∣∣∆x

s

∣∣∣ = ∣∣∣∣ cos2 θ(2+cos θ)−cos θ
√

cos4 θ+4 cos3 θ−4 cos2 θ−16 cos θ+16
4 sin θ(1+cos θ)∆AR

∣∣∣∣ (28)

Figure 12 shows that the maximum dimensionless horizontal moving distance |∆x|/s
varies with the AR. It is worth noting that |∆x|/s = 0 when the AR = 2.15, which means
that the boundary vortex is stable in this case, and further proves that the above theoretical
derivation is reasonable. As the AR increases from 0 to 2.15, |∆x|/s gradually decreases
to 0. When the AR increases from 2.15 to +∞, |∆x|/s gradually increases from 0 with a
decreasing growth rate. With the increase in |∆x|/s, the momentum and the scale of the
boundary vortex decrease. Therefore, it is reasonable to assume that it is difficult to maintain
the periodic sloshing when the scale of the boundary vortex is less than K1R + K2s sin θ,
as shown in Figures 10 and 11. K1 and K2 are two empirical parameters equal to 0.2 and
0.1, respectively. Then, Equation (28) is derived, describing the maximum offset distance to
maintain boundary vortex sloshing.
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|∆x|/s ≤ (1− K1) cos θ

sin θ(1 + cos θ)AR
− K2 (29)
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Combining Equations (28) and (29) yields ARmin = 0.75 and ARmax = 6.15, as shown
in Figure 12. Considering the complex flow patterns in engineering applications, it is worth
noting that the critical ARs may be the values close to theoretical solutions, as shown in the
parameter band in Figure 12, which is more significant in providing a theoretical basis for
groove design when considering processing errors.

In conclusion, according to the above-derived vorticity kinematics theory, without
considering the adverse pressure gradient and external disturbance, the motion forms of the
boundary vortex inside the groove can be divided into three forms with the variation in the
AR. For AR = 2.15, i.e., region I in Figure 12, the boundary vortex is stable inside the groove.
When ARmax = 6.15 > AR > ARopt = 2.15 and ARmin = 0.75 < AR < ARopt = 2.15,
that is, region II in Figure 12, because the maximum horizontal moving distance is less
than the limit value (blue dotted line), the boundary vortex is sloshing in the groove.
When AR < ARmin = 0.75 and AR > ARmax = 6.15, i.e., region III in Figure 3, as the
maximum horizontal movement distance is greater than the limit value, the boundary
vortex is difficult to maintain with periodic sloshing inside the groove and may migrate
downstream with the mainstream.

4. Numerical Verification

The numerical method with large eddy simulation (LES) was tested in the plate flow
over transverse grooves in our previous studies [4]. In this section, more details and
verification of this numerical method are introduced.

4.1. Numerical Methodology

The large eddy simulation (LES) with a dynamic subgrid-scale (SGS) is used in the
commercial software FLUENT 18.0 to investigate the induced drag reduction and flow char-
acteristics [36]. Moreover, a central-differencing scheme is used for spatial discretization,
and a second order implicit time-stepping approach is used for temporal discretization.
The space and time resolution of the numerical method is of second-order accuracy. The
dimensionless physical timestep ∆tU/h ≈ 0.02 [4] and dimensionless statistical averaging
time TU/h ≈ 400 (greater than 1000 time steps [36]) are used, where U denotes the uniform
velocity at the inlet and h represents the depth of grooves.
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The overall dimensionless size of L+
x × L+

y × L+
z = 3112× 466× 311 is shown schemat-

ically in Figure 13 and Table 1, where x, y, and z axes denote the streamwise, wall-normal,
and spanwise directions, respectively. The size of the computational domain is larger
than the minimum flow unit suggested by Jiménez and Moin [37]. The smooth walls
with a dimensionless length of 2490 (160 mm) and 311 (20 mm) are located upstream and
downstream of the grooved wall to prevent the propagations of pressure perturbations
at the inlet and outlet, respectively. The simulated grooved wall is about 20 mm long,
consisting of different symmetric V-groove profiles whose depths are 0.2 mm (the groove
depths of 0.2 mm are chosen in order to ensure that the grooves have a high drag-reduction
rate at both Reynolds numbers of 5.44× 104 and 9.8× 104) and ARs are 0.5, 1, 2, 5, and 8,
where the ARs = 0.5 and 8 in region III shown in Figure 12 are selected to verify the motion
form of the boundary vortex moving downstream with the mainstream, the ARs = 1 and
5 belonging to region II are used to verify the motion form of vortex sloshing, and the
example of AR = 2 is used to verify the stability of the boundary vortex in region I.
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Figure 13. Computational domain and boundary conditions.

Table 1. Size of the computational domain and the corresponding number of grid nodes.

Dimensionless Parameters Nodes

L+
x 2490 + 311 + 311 300 + 1000 + 60

L+
y 466 80

L+
z 311 80

∆x+
Groove 0.3 1000
Other <10 300 + 60

∆y+ 0.02~10 80

∆z+ 3.9 80

The Reynolds numbers are 5.44× 104 are 9.80× 104, which are based on the length
of the flat wall placed upstream of a grooved wall (160 mm). The no-slip condition is
specified for all the solid walls, and the symmetry boundary conditions are applied to the
upper and lateral sides of the computational domain [38]. At the inlet of the computational
domain, an ideal gas flow with uniform velocity is set. The spectral synthesizer provides
an alternative method of generating fluctuating velocity components at the inlet. In this
method, fluctuating velocity components are computed by synthesizing a divergence-free
velocity-vector field from the summation of Fourier harmonics (In detail, the turbulence
intensity of 0.1% is set) [39,40]. Moreover, the outlet is given as the pressure outlet.
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Figure 14 shows the structured mesh around the transverse V-grooves that are gener-
ated by ICEM. The grid resolution and the number of grid nodes are shown in Table 1. The
grids are clustered near the wall surface and the normal distance from the wall surface to
the nearest grid points Y+ is 0.02. The maximum normal grid resolution ∆y+max is less than
10. The streamwise grid resolution ∆x+ is 0.3 within the grooves, and ∆x+max is less than 10
in other streamwise positions. The spanwise grid resolution ∆z+ is 3.9 [4,36].
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In order to verify that the grid resolution meets the requirements of the large eddy
simulation, two streamwise grid resolutions within the groove ∆x+ (0.3 and 1.2) and
two spanwise grid resolutions ∆z+ (3.9 and 5.2) are chosen to investigate the effect on
the outcomes. Table 2 shows the simulation results for the drag of the grooved plate
and the streamline inside the groove. The resistances of a grooved plate hardly change
when ∆x+ = 0.3 (groove) and ∆z+ = 3.9, which are selected for the derivation of all the
other results.

Table 2. Verification of grid resolution (h = 0.2 mm, Re = 5.44× 104 ).

∆x+(Groove) ∆z+ Drag (N) Streamline

0.3
3.9 0.00314
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The results of the grid-independent validation at five different grid-refinement levels
based on the comparison of the drag-reduction rates are presented in Figure 15, with the
vertical coordinates indicating the relative error in the drag-reduction rate relative to the
total number of grids at 8.7 million. The results show that the relative error is only 0.087%
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when the number of grid cells exceeds 4.1 million. Moreover, Table 3 shows the grid
convergence studies with total resistance as a variable; the grid convergence indexes of
GCI12 and GCI23 are less than 0.1%. The results mean that both the medium and fine grids
meet the requirements of calculation accuracy. Given the complexity of the flow within
the groove, the case of 8.7 million grid cells is used as the grid resolution to derive all
other results.

Aerospace 2022, 10, x FOR PEER REVIEW 18 of 27 
 

 

when the number of grid cells exceeds 4.1 million. Moreover, Table 3 shows the grid con-

vergence studies with total resistance as a variable; the grid convergence indexes of �Z�� 

and �Z��� are less than 0.1%. The results mean that both the medium and fine grids meet 

the requirements of calculation accuracy. Given the complexity of the flow within the 

groove, the case of 8.7 million grid cells is used as the grid resolution to derive all other 

results. 

 

Figure 15. Verification of grid independence. 

Table 3. Calculation of the grid convergence index by Richardson extrapolation method. 

Variables Value � (coarse) 2,404,420 �� (medium) 4,123,710 �� (fine) 8,703,310 �� 1.19 ��� 1.28 

p ≈5.77 ��� 0.0860% ���� 0.0159% �Z�� 0.0795% �Z��� 0.026% 

Figure 16 compares the numerical calculation results with the experimental results 

in References [41,42]. The simulated velocity profiles over the grooved plates with a 

groove depth of 1.62 mm and a groove width of 3.57 mm are in good agreement with the 

experimental results obtained by Ahmadi-Baloutaki et al. [41] as shown in Figure 16a,b 

(turbulence intensity is 0.5% and 4.4%, respectively), with a maximum relative less than 

3%. Moreover, as shown in Figure 16c,d, the velocity vectors obtained numerically and 

experimentally [42] inside the groove are identical, indicating that the CFD method can 

accurately capture the flow details over the grooved plate. 

Figure 15. Verification of grid independence.

Table 3. Calculation of the grid convergence index by Richardson extrapolation method.

Variables Value

N1 (coarse) 2,404,420
N2 (medium) 4,123,710

N3 (fine) 8,703,310

r12 1.19
r23 1.28
p ≈5.77

g12
p 0.0860%

g23
p 0.0159%

GCI12 0.0795%
GCI23 0.026%

Figure 16 compares the numerical calculation results with the experimental results
in References [41,42]. The simulated velocity profiles over the grooved plates with a
groove depth of 1.62 mm and a groove width of 3.57 mm are in good agreement with the
experimental results obtained by Ahmadi-Baloutaki et al. [41] as shown in Figure 16a,b
(turbulence intensity is 0.5% and 4.4%, respectively), with a maximum relative less than
3%. Moreover, as shown in Figure 16c,d, the velocity vectors obtained numerically and
experimentally [42] inside the groove are identical, indicating that the CFD method can
accurately capture the flow details over the grooved plate.
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Figure 16. Comparison of simulated velocity profiles with the experimental results of Ahmadi-
Baloutaki et al. [41] when the turbulence intensity is (a) 0.5% and (b) 4.4%; the velocity vectors
obtained (c) experimentally [42] and (d) numerically inside the groove.

4.2. Stability of Boundary Vortices and Drag-Reduction Rate of Transverse Grooves with
Different ARs

Figure 17 shows the coherent structures of the boundary vortices identified by λci
in three dimensions. It can be observed that despite the random perturbations given in
the computational domain (see Figure 17a), the boundary vortices can still be identified
in the grooves (see Figure 17b). Since the transverse groove is isotropic in the spanwise
direction, and the coherent structures of the boundary vortices have no obvious change in
the spanwise direction and the unsteady phenomenon within the groove mainly changes
in the streamwise direction, all the 3D simulation results are shown for the cross-sections
located at 50% of the spanwise of the domain, as shown in Figure 17b.

Figures 18–20 show the evolution of the instantaneous spanwise vorticity in the
grooves with different ARs at Re = 5.44E4, where the ARs = 0.5 and 8 (Figure 18) at region
III, the ARs = 1 and 5 (Figure 19) belonging to region II, and the AR = 2 (Figure 20) at region
I were predicted theoretically as shown in Figure 12.
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Figure 18. The vorticity contours of boundary vortices within grooves with (a) AR = 0.5, (b) AR = 8 at
Re = 5.44× 104.
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Figure 19. The vorticity contours of boundary vortices within grooves with (a) AR = 1, (b) AR = 5 at
Re = 5.44× 104.
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When the AR = 0.5, there are two vortices with different scales in the groove, as shown
in Figure 18a. The small-scale vortex is shed from the shear layer and moves along the
windward side to the bottom of the groove. The scale of the vortex becomes larger because
it is stretched during the clockwise shaking in the groove and eventually dissipates in the
groove. Similarly, such a vortex shedding phenomenon also occurs in the groove with
AR = 8, as shown in Figure 18b. After shedding from the shear layer at the leeward side, the
vortex gradually migrates downstream with the mainstream and then gradually dissipates
near the windward side. Since the flow phenomena in the grooves with AR = 0.5 and
AR = 8 are qualitatively consistent with the shedding of the vortex street, it is classified as
the “vortex shedding” phenomenon. Because this vortex shedding is unsteady, it is difficult
to completely describe using the theory of quasi-steady vorticity kinematics. However, this
phenomenon justifies the range of region III predicted by our theory. In this range, the
vortex periodically moves downstream due to an initial ∆x after the vortex shedding is
greater than the critical value and finally dissipates near the windward side.

Figure 19a,b show the periodic sloshing of the boundary vortex in the groove with
AR = 1 and AR = 5, respectively. This periodic development process can be divided into two
stages. In the first stage, the boundary vortex moves along the windward side to the groove
bottom, corresponding to t = 0.039 s to t = 0.043 s in Figure 19a and t = 0.035 to t = 0.037 in
Figure 19b. In the second stage, the boundary vortex moves clockwise along the leeward
side to near the horizontal line, corresponding to t = 0.044 s to t = 0.050 s in Figure 19a
and t = 0.040 to t = 0.045 in Figure 19b. The periodic motion of the boundary vortex in the
groove with AR = 1 and AR = 5 is classified as the “vortex sloshing” phenomenon.

In contrast, when the AR is 2, the boundary vortex stays stable in the groove, as shown
in Figure 20. In this case, the slip surface separating the boundary layer from the solid
wall is smooth, so the fluid flows smoothly through the groove, resulting in less viscous
loss caused by the friction between the fluid and the solid compared with the baseline
plate and less momentum loss caused by vortex shedding or sloshing compared with other
grooved plates.

In order to further distinguish the three motion forms of the boundary vortex, the time
histories of the dimensionless vertical velocities (V+

s ) at the intersection point of the groove
centerline and the horizontal line at Re = 5.44× 104 and Re = 9.8× 104 are compared in
Figure 21. It is observed that the dimensionless vertical velocities at this point fluctuate
periodically, which implies that the vortex motion is periodic and continuous. Moreover,
the variance in vertical velocity is compared in Figure 22 to explore the variation in the V+

s
fluctuation degree with Reynolds number. The results show that the variances of AR = 0.5
and AR = 8 are close, which means that the influence of boundary vortex shedding in these
ARs on velocity fluctuations near the slip surface is similar. Meanwhile, the variances in
dimensionless vertical velocities are close for AR = 1 and AR = 5, which further suggests
that the motion form of the boundary vortices at these ARs is similar. Furthermore, the
fluctuation degree of V+

s is always minimal at AR = 2, implying that the boundary vortices
stay stable in the grooves at Re = 5.44× 104 and Re = 9.8× 104.

Figure 23a illustrates the variation in the total drag-reduction rate with the AR at
different Reynolds numbers. The total drag-reduction rate is defined as

η =
FG − FR

FR
(30)

in which FG and FR represent the resistance of the grooved plate and the baseline plate,
respectively. The results show that the drag-reduction rate induced by the grooved plate first
increases and then decreases with the increase in AR at Re = 5.44× 104 and Re = 9.8× 104.
The maximum drag-reduction rate of 11.59% appears at AR = 2, and the minimum drag-
reduction rate appears at AR = 0.5 and 8. In particular, the drag-reduction rate approaches
0 at AR = 8. This further suggests that the AR directly affects the stability of the boundary
vortex, which in turn drives the variation in the groove drag-reduction rate. As mentioned
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in Section 3.3, the optimum value of the AR may vary slightly given the complex flow
phenomena in engineering applications, but it is a value close to 2.15.
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The total drag of the grooved plate consists of viscous drag (FGV) and pressure drag
(FGP), which are expressed by Equations (31) and (32), respectively. FGV and FGP are
determined by calculating the corresponding local stress, namely, shear (τ) and pressure (P)
at the wall, and integrating the projected stress in the drag direction (n, that is X direction)
along the wetted wall (ls).

FGV =
∫ ls

0
[n·τ]s·xdx (31)

FGP =
∫ ls

0
[n·P]s·xdx (32)
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Therefore, the total drag-reduction rate is transformed into Equation (33)

η =
FGV − FR

FR
+

FGP
FR

= ην + ηp (33)

Here, “ην = (FGV − FR)/FR” denotes the reduction rate of viscous drag, and “ηp =
FGP/FR” denotes the increased rate of pressure drag. Figure 23b,c show the variation in ην

and ηp with the AR, respectively. The results show that the absolute value of ην increases
first and then decreases, and ηp is minimal at AR = 2, which means that the increase in
additional pressure drag is minimal when the boundary vortex is stable. These results are
consistent with the analysis in Section 2.
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5. Conclusions

The relationship between the AR of the transverse groove and the motion of boundary
vortices is established based on vortex kinematics, and the analytical solution of the optimal
AR for maintaining the stability of the boundary vortices is solved. Moreover, the optimal
AR is validated by large eddy simulations (LES), and the motion of the boundary vortex
for other ARs is analyzed. The main conclusions are as follows.

(1) The velocity potential of the groove sidewalls to the boundary vortex is described by
an image vortex model, thus establishing the relationship between the AR and the
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induced velocity. Secondly, the velocity profile of the migration flow is obtained by
decomposing the total velocity inside the groove, by which the relationship between
the AR and the migration velocity is established. Finally, the analytical solution of
the optimal AR (ARopt = 2.15) is obtained based on the kinetic conditions (i.e., the
induced velocity is equal to the migration velocity) of the boundary vortex stability
and the value of the critical ARs (ARmin = 0.75 and ARmax = 6.15) for which the
boundary vortex can slosh inside the groove is obtained. Without considering the
adverse pressure gradient and external disturbance, the motion forms of the boundary
vortex inside the groove can be divided into three forms with the variation in the AR.

(2) The theoretical model for solving the optimal AR (ARopt) and critical ARs (ARmin and
ARmax) is validated by investigating the motion of the boundary vortices and the drag-
reduction rate of the groove for ARs of 0.5, 1, 2, 5, and 8 with large eddy simulations.
For AR = 2, the boundary vortex is stable inside the groove, corresponding to the
maximum drag-reduction rate. When the AR is closer to 2, i.e., AR = 1 and AR = 5
(corresponds to the interval ARmin < AR < ARopt and AR < ARopt < ARmax), the
boundary vortices slosh periodically inside the groove and the magnitude of the
vertical velocity fluctuations is similar in both cases. This periodic motion of the
boundary vortex in the groove is classified as the “vortex sloshing” phenomenon.
When the AR is far from 2, i.e., AR = 0.5 and AR = 8 (corresponds to the interval
AR < ARmin and AR > ARmax), the boundary vortices are shed from the shear
layer at the leeward side and migrate downstream with the mainstream, which is
classified as the “vortex shedding” phenomenon and corresponds to the minimum
drag-reduction rate.

It is worth emphasizing that, given the complex flow phenomena in engineering
applications, there may be a slight uncertainty in the actual critical and optimal AR, but
both should be close to the theoretical solution. Therefore, the following experimental work
will focus further on this possible difference.
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