
Citation: Li, Z.; Zeng, X.; Wen, T.;

Zhang, Y. Numerical Comparison of

Contact Force Models in the Discrete

Element Method. Aerospace 2022, 9,

737. https://doi.org/10.3390/

aerospace9110737

Academic Editor: George Z. H. Zhu

Received: 31 October 2022

Accepted: 21 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Numerical Comparison of Contact Force Models in the Discrete
Element Method
Ziwen Li 1 , Xiangyuan Zeng 1,* , Tongge Wen 1 and Yonglong Zhang 2

1 School of Automation, Beijing Institute of Technology, Beijing 100081, China
2 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
* Correspondence: zeng@bit.edu.cn

Abstract: The discrete element method (DEM) is usually applied in analyzing the scientifical ori-
gin/evolution of the asteroids and the landing/sampling of the regolith. In order to manage the
contact between the non-spherical granules, the Polygonal Contact Model (PCM) has been introduced
into the DEM method. This paper applies four different contact force models in the newly-proposed
DEM algorithm to analyze their difference and implication. The four contact force models include
one linear model and three nonlinear models derived from the complete Mindlin–Deresiewicz equa-
tions. By considering the macroscopical results and calculation efficiency, the single-collision and
multiple-collision cases are analyzed by comparing the four contact models. Specifically, the resti-
tution coefficient, the angular velocity, the rebound angle, and the kinetic energy are applied as
indicators for the single collision. The multiple-collision case is studied under the Brazil nut effect
with ellipsoidal granules. Additionally, the softening feasibility is also discussed by decreasing the
Young’s modulus of the material, mainly analyzing the outgoing results and the calculation efficiency.

Keywords: discrete element method; polygonal contact model; contact force model; Brazil nut effect

1. Introduction

With the development of computing technologies, the discrete element method (DEM)
has become one of the most popular approaches to studying the granular system [1]. In
asteroid explorations, the DEM method is widely exploited in simulating the origin and
evolution of the asteroids [2] and the interaction of the probe with the asteroid regoliths [3].
In this research, the soft-sphere model [4] describing the overlap and force change during
the contact is usually applied, which is suitable for analyzing the regoliths composed of
fine-grained particles. However, the regolith areas usually make up less than half of the
asteroid surfaces, and the rubble-pile asteroids have pebbles/rocks/boulders with diverse
sizes, geologic composition, and morphology [5–7]. In terms of these various structures, the
soft-sphere model has disadvantages in reflecting their irregular characteristics. In order to
efficiently manage the non-spherical granules, the Polygonal Contact Model (PCM) has
been embedded into the DEM algorithm, which is applicable for the arbitrarily-shaped
granules by applying the polyhedral models with triangular meshes [8].

In terms of the spherical/non-spherical DEM model, the essential mechanism is
solving the contact force between these granules and applying Newton’s second law
to update the states [9]. For calculating the contact force between two objects, Cundall
and Strack proposed the linear spring–dashpot model in 1979, where the contact force
depends on the normal/tangential displacement and the relative velocity [1]. Many works
have tried to modify the model of Cundall and Strack by changing the equations of the
spring/damping coefficients and the normal/tangential spring length, such as the works
of Brendel and Dippel [10], Garc’ıa-Rojo et al. [11], and Brilliantov et al. [12]. These models
usually introduce extra variables and are not very common in the practice of DEM. Based
on the research of Cundall and Strack, Tsuji [13,14] introduced the nonlinear Hertzian
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contact model to calculate the normal force. The tangential spring stiffness is derived
from the simplified non-slip Mindlin–Deresiewicz model [15]. The complete Mindlin–
Deresiewicz model (referred to as the MD model, hereafter) was presented in 1952, which
calculates the tangential force based on the loading/unloading/reloading histories with
different expressions of the incremental stiffness [16]. In addition to applying a non-slip
case like Tsuji, some subsequent studies have tried to refine or simplify this complete
MD model. Maw et al. [17,18] presented the more complicated MBF model based on the
complete MD model in 1976, which discretizes the time and space domain when handling
the oblique impact between a sphere and a plane. The MBF model is time-consuming
for the large-scale DEM simulations. Walton and Braun presented a revised tangential
model based on the complete MD model with the constant normal force in 1981 [19]. They
also presented the normal hysteresis model for the plastic deformation, which divided
the processes into loading and unloading parts with different spring stiffness. For brevity,
more details about the summarization of force models are neglected, which can be found
in Kruggel-Emden et al. [20] and Zhang et al. [21].

Among the plenty of contact force models, the linear spring–dashpot model and Tsuji’s
nonlinear model are commonly applied in the DEM software, such as the pkdgrav [22], the
DEMbody [23], and the MatDEM [24]. Although many wonderful works have applied these
DEM software programs [25–27], they usually focused on analyzing and explaining the sim-
ulation results instead of comparing the effects of the contact force models. However, the
contact force determines the accelerations of the granules, playing an essential role in the
DEM model. This paper aims to analyze the feasibility of the newly-proposed DEM+PCM
method and investigate the influence of the different contact force models on this new DEM
algorithm. The critical innovation is verifying the collision results of the DEM+PCM model
by comparing them with the classical experiment values. Different contact force models are
compared by the various collision indicators and the CPU calculation efficiency. Addition-
ally, an approach to accelerate the computation is tested, i.e., the softening operation of the
material. After the simulations and comparisons, this paper intends to select the contact
force model with higher calculation efficiency and the reasonable softening interval for the
DEM+PCM model when the simulation results remain similar.

Assuming that the contact surfaces are continuous and the penetration is far smaller
than the dimensions of the contact particles, four force models are analyzed, including the
linear spring–dashpot model, the nonlinear Hertzian contact with the tangential non-slip
MD model, the revised MD model by Di Renzo and Di Maio, and the complete MD model.
These models are selected because of their acceptable computation efficiency [28]. Section 2
discusses the four contact force models’ principles, equations, and parameters in detail.
Section 3.1 reproduces the classical single-collision experiment of Kharaz et al. [29] to study
the performance of the new DEM algorithm. Four contact force models are compared
by applying the single-collision case. The softening operations of the Young’s modulus
with the original and decreased integral step size are discussed, respectively. Section 3.2
studies the differences between the non-slip MD model and the complete MD model in the
multiple collisions by applying the Brazil nut effect. The conclusions are summarized in
Section 4.

2. Materials and Methods

The Polygonal Contact Model is a contact calculation model for complexly-shaped
bodies applying the polyhedral model with triangular facets [8]. Zhang et al. [30] first
introduced the PCM method in the simulations of the surface locomotion of the small
body probe Dynamics of the lander MASCOT have been studied by applying the PCM
model. Based on the PCM model, a series of studies have been implemented on the
landing dynamics of asteroid landers [31–33]. These papers reflect the feasibility and
efficiency of the PCM model. A detailed introduction to the PCM method is in [34]. The
specific integration of the PCM algorithm into the DEM frame has been summarized
by Zeng et al. [35,36], which is not the focus of this paper. This study compares four



Aerospace 2022, 9, 737 3 of 20

classical models for calculating the contact force by applying the DEM+PCM algorithm.
The principles and equations of these models are analyzed respectively, hereafter.

2.1. Linear Spring–Dashpot Model

The linear spring–dashpot model proposed by Cundall and Strack et al. is similar to
the Kelvin–Voigt model in rheology [37]. When two bodies i and j collide, the contact force
Fc acting on the body i is solved in Equation (1):

vrij = vi − vj, vnij =
(
vrij · n̂

)
n̂

vtij = vrij − vnij + li(ωi × n̂) + lj
(
ωj × n̂

)
fn = −Knδnijn̂− ηnvnij

ft =

{ −Ktδtij − ηtvtij, Ktδtij < µ fn

−µ fn
δtij

|δtij| , Ktδtij ≥ µ fn

Fc = fn + ft

, (1)

where vrij is the relative velocity of the centroid before contact, and vtij and vnij are the
tangential and normal components of vrij, respectively. The parameters ω and l represent
the angular velocity and the arm of force, respectively. The contact force Fc is constituted by
the normal force fn and the tangential friction ft. As for ft, the spring-damping tangential
force is calculated until the dynamic friction condition is satisfied, i.e., the gross slip/slide
occurs. The normal and tangential relative displacements are represented by δnij and δtij,

respectively. The normal vector
^
n points from the centroid of i to j. The parameters Kn/Kt

are the spring stiffnesses, ηn/ηt are the damping coefficients, and µ is the friction coefficient.
The parameters Kn/Kt are constant in the linear model, depending on the applied materials.
The damping coefficients ηn/ηt are usually set as the critical damping coefficients based on
Kn/Kt [1].

2.2. Mindlin–Deresiewicz Model (MD Model)

The complete tangential Mindlin–Deresiewicz model is complex, including the loading,
unloading, and reloading phases when calculating the static friction. During the static
friction phase, the contact area may be simultaneously constituted by the slip and non-
slip regions, i.e., the micro-slip state exists. The MD model emphasizes that the system’s
response to the current tangential change depends upon the previous loading history. The
tangential force is calculated in an incremental approach, as shown in Equation (2). The
damping part in Equation (1) is not considered in the original MD model:

ft,MD = ft,MD
′ − Kt,MD4 δtij, (2)

where ft,MD
′ and ft,MD are the tangential force of body i in the last step and the current step,

respectively. The symbol ft,MD is applied to distinguish from the tangential force ft with the
damping part in Equation (1). The parameter4δtij is the tangential displacement increment.
The determination of the critical incremental stiffness Kt,MD depends on the contact scenario,
classified by the change tendencies of the normal/tangential displacements. Taking the
case when the normal and tangential displacements both increase as an example, the MD
model is discussed in Equation (3):

4δtij = δtij − δtij
′,4δ̂tij =

4δtij

|4δtij| ,4fn = fn − fn
′

G = E
2(1+υ)

, κ =
(1−υi)/Gi+(1−υj)/Gj

(1−0.5υi)/Gi+(1−0.5υj)/Gj

Kt ,MD = Kt0

(
1− κ

µ

δtij
δnij

)1/2
= Kt0

(
1− | ft,MD

′−µ4 fn4δ̂tij|
µ fn

)1/3

ft,MD =

 ft,MD
′ − Kt04 δtij,4δtij <

µ4 fn
Kt0

ft,MD
′ −
[
µ4 fn + Kt ,MD

(
4δtij −

µ4 fn
Kt0

)]
4 δ̂tij,4δtij ≥

µ4 fn
Kt0

, (3)



Aerospace 2022, 9, 737 4 of 20

Here, δtij
′ and fn

′ donate the tangential displacement and the normal force of the last
step. The parameters E, υ, and G represent the Young’s modulus, the Poisson’s ratio, and the
shear modulus, respectively. The symbol ‘∆’ represents the increment of the corresponding
parameter, and the superscript ‘ˆ’ represents the normalized vector. The initial stiffness Kt0
defined in Equation (4) represents the non-slip contact case G = E

2(1+υ)
, Re f f =

Ri Rj
Ri+Rj

Kt0 = 8
GiGj
√

Re f f δnij
Gj(2−υi)+Gi(2−υj)

, (4)

Here, the parameter Reff is the effective radius of the two interacted bodies.
Figure 1 intuitively illustrates the above process in Equation (3) when the normal and

tangential displacements both increase. The black and red curves (color online) are the
tangential loading curves ft−δtij before and after the normal force increase (from fn

′ to fn).
The tangential loading process with the same normal force is defined as the simple loading
curve. The segments of curves marked with arrows represent the change of the static
friction from the initial step (marked as 0©) to the next step. The tangential displacement
of the initial step is represented as δtij

′. When the tangential displacement increment is

less than µ4 fn
Kt0

(between δtij
′ and δtij1), the non-slip state is applied. The tangential force

increases with the slope Kt0. If δtij is larger than δtij1, i.e., δtij2, the tangential force is
constituted by two parts: ft1 and the tangential force increment calculated by the residual
tangential displacement (δtij2-δtij1) along the simple loading curve of fn. In this case, the
micro-slip appears, and the stiffness Kt,MD is applied during the simple loading phase. The
detailed explanation of other displacement change scenarios is neglected for brevity, which
can be found in [38]. The central principle is the incremental mechanism, distinguishing
the non-slip and micro-slip states according to the tangential displacement in each step.
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Figure 1. Process of the complete MD model when the displacements increase.

2.3. Hertzian Contact with the Non-Slip MD Model

In this model, the nonlinear Hertzian contact model is applied to calculate the normal
contact force. The simplified non-slip MD model [13] with the damping influence is utilized
for calculating the tangential force. This Hertzian and non-slip MD model is listed in



Aerospace 2022, 9, 737 5 of 20

Equation (5), which is similar to the Hunt and Crossley model [39] in the rheology with the
nonlinear spring and damping elements:

fn = −Knδnij
3/2n̂− ηnvnij

ft =

{ −Kt0δtij − ηtvtij, Kt0δtij < µ fn

−µ fn
δtij

|δtij| , Kt0δtij ≥ µ fn

, (5)

The applied parameters are defined as follows:

me f f =
mimj

mi+mj

Kn = 4
3

EiEj
√

Re f f

Ei(1−υi
2)+Ej(1−υj

2)

ηn = − lnen√
ln2en+π2

√
5Knme f f δnij

1/4

ηt = −2
√

5
6

lnet√
ln2et+π2

√
Kt0me f f

, (6)

Here, when a granule contacts the plane, Reff and meff equal the granule’s radius
and mass, respectively. The restitution coefficients en and et are selected based on the
experimental value of the applied material. The nonlinear damping coefficients ηn/ηt are
related to the restitution coefficients [40,41]. The calculation of ηn/ηt is analyzed from
Equation (7) to Equation (12). According to Tsuji et al., the nonlinear damping coefficient
ηn is assumed to be α(en)

√
mKnδnij

1/4 for the normal 1-D damped Hertzian oscillator with
mass m. The dynamic equation is

..
δnij +

√
Kn

m
α(en)δnij

1/4
.
δnij +

Kn

m
δnij

3/2 = 0, (7)

where α(en) is a parameter determined by en. Considering the relationship between the
position and velocity, Equation (7) is rewritten as vn =

dδnij
dt

vn
dvn
dδnij

+
√

Kn
m α(en)δnij

1/4vn +
Kn
m δnij

3/2 = 0
, (8)

Supposing that δnij(t) =
( 5

4
)2/5y(t)4/5, Equation (8) is converted into Equation (9) [42]:

vn
dvn

dy
+

2√
5

√
Kn

m
α(en)vn +

Kn

m
y = 0, (9)

Analogous with the linear spring–dashpot model (the damping coefficient in the linear
model is introduced in Appendix A), the relationship between α and en is derived, and the
nonlinear ηn is obtained in Equation (10) α(en) =

−
√

5lnen√
ln2en+π2

ηn = α(en)
√

mKnδnij
1/4 = − lnen√

ln2en+π2

√
5Knmδnij

1/4 , (10)

In terms of the tangential force, Tsuji et al. set ηt identical to ηn. In this study, ηt is
solved from the equivalent stiffness Ke, which is defined below FHertz = Knδnij

3/2

Ke =
dFHertz

dδnij
= 2

EiEj
√

Rij

Ei(1−υi
2)+Ej(1−υj

2)
δnij

1/2 , (11)
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Substituting Ke into Equation (10), ηn could be rewritten as

ηn = −2

√
5
6

lnen√
ln2en + π2

√
Kem, (12)

When calculating ηt, the relationship between the damping coefficient η, the restitution
coefficient e, and the equivalent stiffness Ke in Equation (12) remains the same. Based
on Equation (5), Ke is supposed to be Kt0, and ηt is solved by applying et, as shown in
Equation (6) [43].

2.4. Hertzian Contact with the Revised MD Model

Prior works have intended to revise the non-slip MD model. In this study, the model
revised by Di Renzo and Di Maio is applied [44,45], which alters the stiffness Kt0. For
distinction with Kt0, this new tangential stiffness is represented by KtA in Equation (13)

KtA =
16
3

GiGj

√
Re f f δnij

Gj(2− υi) + Gi(2− υj)
=

2
3

Kt0, (13)

To derive the modification of Equation (13), Di Renzo and Di Maio firstly focused on
the simple loading case with the fixed normal force. The tangential elastic force ft0 and
ft,MD calculated by the non-slip MD model and the complete MD model are compared in
Equation (14)  ft0 = Kt0δtij

ft,MD =
∫ δtij

0 Kt,MDdδ =µ fn

[
1−

(
1− κ

µ

δtij
δnij

)3/2
]

, (14)

where ft,MD is derived by integrating Kt,MD and the tangential displacement. When ft0
and ft,MD both reach the Coulomb limit µfn, the two tangential displacements satisfy the
following condition:

δt0 =
2
3

δt,MD, (15)

Here, δt0 and δt,MD represent the tangential displacements of the non-slip and complete
simple loading MD model, respectively. From Equation (15), Di Renzo and Di Maio deduced
that the applied Kt0 in the non-slip MD model should be multiplied by 2

3 .
According to Figure 1, when the normal force changes, the hypothesis of the simple

loading history does not apply if4δtij <
µ4 fn

Kt0
. In this case, the ft–δtij curve experiences

the constant slope Kt0. Di Renzo and Di Maio have also revised this process. Assuming
that the normal and tangential velocities have no changes in these steps with Kt0, the new
tangential force ft,MD equals 2

3 ft0 as calculated in Equation (16):

ft,MD =
∫ τ

0 Kt0vtijdt

=
8GiGj
√

Rij
Gj(2−υi)+Gi(2−υj)

vtij
∫ τ

0

√
δnijdt

=
8GiGjvtij

√
Rij

Gj(2−υi)+Gi(2−υj)
√vnij

∫ τ
0

√
tdt,

= 2
3 Kt0δtij

= 2
3 ft0

(16)

Combining Equations (15) and (16), the tangential spring stiffness applied in the
revised MD model is altered to be KtA. The algebraic expression of KtA is as simple as
Kt0, where only the current displacement is needed. Although the revised MD model
has tried to consider the incremental steps in the complete MD model by integration, the
accuracy of this revision remains to be confirmed when the PCM model is applied. Because
the ideal simple loading phase barely exists, it is not precise to modify ft,MD only from
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the tangential displacement relationship in Equation (15). Additionally, the normal and
tangential velocity in Equation (16) virtually cannot remain identical even at the beginning
steps with Kt0.

2.5. Difference of the Contact Force Models

The Hertzian contact with the non-slip MD model, the linear model, the Hertzian
contact with the revised MD model, and the Hertzian contact with the complete MD model
are named M1, M2, M3, and M4 in the following parts, respectively. The linear model M2
differs from the other three nonlinear models in terms of the normal force and the tangential
spring/damping coefficients. The essential difference between the three nonlinear models
M1/M3/M4 is mainly discussed below.

When calculating the elastic spring part of the tangential force, the non-slip model
and the revised MD model depend on the current tangential displacement. In contrast, the
complete MD model applies the tangential displacement increment. This is illustrated in
Figure 2 by applying a loading case where the tangential and normal displacements both
increase. Each time the normal force changes, the tangential displacement increment is
assumed to be the same and not exceed µ4 fn

Kt0
. With the normal force increase, the tangential

spring stiffness becomes larger. Therefore, in the complete MD model M4, four different
tangential spring stiffnesses are applied based on the previous tangential force. However,
in the model M1/M3, the total normal displacements after the fourth increase are applied to
calculate the tangential spring stiffness, leading to the larger tangential force. Theoretically,
the tangential force of M1/M3 will turn into dynamic friction earlier than M4.
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Additionally, this study considers the damping influence in the four contact force models.
The above expressions of M1 and M2 have already included the damping part. The applied
tangential forces in M3 and M4 are rewritten in Equation (17) and Equation (18), respectively:

ft =

{ −KtAδtij − ηtvtij, KtAδtij < µ fn

−µ fn
δtij

|δtij| , KtAδtij ≥ µ fn
, (17)

ft =

 ft,MD − ηtvtij, ft,MD < µ fn

−µ fn
δtij

|δtij| , ft,MD ≥ µ fn
, (18)
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3. Numerical Simulations

By applying the PCM+DEM method, the contact result will be influenced by the
contact force, the integral step size, the body shape, the polyhedral model accuracy, etc. In
the previous model comparison works, the single-collision case has been focused on widely,
while the comparison of the multiple-collision is insufficient [20,46,47]. In order to verify
the accuracy of the DEM+PCM algorithm and compare these contact force models, the
classic experiment of Kharaz et al. [29,48] is reproduced to implement the single collision.
Afterward, the multiple collisions are simulated by the Brazil nut effect, intending to find
whether the contact force difference will accumulate in this case.

3.1. Single Collision Analyses

The representative experiment of Kharaz et al. describes an aluminum oxide sphere
impacting a thick oblique soda-lime glass anvil. It has been widely used as the nominal
experiment in many force comparison works [20]. In order to repeat the experiment, a
regular sphere is analyzed, constituted by the polyhedral model. The contact detection
is handled by the PCM model, with the calculation process consistent with that of the
non-spherical body. The properties of the applied polyhedral models are listed in Table 1.
The sphere’s diameter is 5 mm, and the density is 4000 kg·m−3. The mass and the moment
of inertia of the sphere are 2.29 × 10−4 kg and 5.73 × 10−10 kg·m2, respectively. The
experiment intends to alter the oblique angle of the ingoing velocity of the sphere, like
the operation in Figure 3a. However, it is not convenient for the equipment to change the
velocity angle precisely. A substitute device was proposed in Figure 3b, applying a rotary
table to alter the angle θ of the anvil plane. Initially, the sphere is held above the anvil by a
small-diameter vacuum nozzle. The sphere is released vertically without spin and impacts
the anvil at 4 m/s under 1 g.

Table 1. Characteristics of the material.

Material Young’s
Modulus (Gpa)

Poisson
Ratio

Shear Modulus
(Gpa) Vertices Facets

Aluminum
oxide sphere 380 0.23 154 2562 5160

Soda-lime glass
anvil 70 0.25 28 1906 3638
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Here, m is the sphere’s mass, x and ω represent the position and angular velocity of 
the sphere, respectively, and q is the quaternion describing the attitude. The parameter I 
is the moment of inertia of the sphere. The external force (such as gravity) and correspond-
ing torque are denoted by Fext and Lext, respectively. The contact force and torque are Fc 
and Lc, respectively. 

Figure 3. Illustration of the single-collision experiment. (a) oblique ingoing velocity; (b) rotation of
the plane.

In the experiment, the angle θ of the oblique plane increases from 10◦ to 50◦ with an
interval of 10◦. The dynamic equations of the sphere are given in Equation (19), according
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to Newton’s second law. The second-order leapfrog integrator [4] is applied to update the
state of the sphere with the integral step size equal to 10−8 s:

m d2x
dt2 = Fc + Fext

I dω
dt + ω× (Iω) = Lc + Lext

dq
dt = 1

2


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

[ 0
ω

] , (19)

Here, m is the sphere’s mass, x and ω represent the position and angular velocity of
the sphere, respectively, and q is the quaternion describing the attitude. The parameter I is
the moment of inertia of the sphere. The external force (such as gravity) and corresponding
torque are denoted by Fext and Lext, respectively. The contact force and torque are Fc and
Lc, respectively.

The outgoing velocity, the angular velocity, the restitution coefficients, the rebound
angle, the non-dimensional angle ψ proposed in the MBF model, and the energies are
measured as the macroscopical indicators of the experiment.

(1) Restitution coefficients;

The normal and tangential restitution coefficients en and et are defined in Equation (20) as
t̂ = Vin−(Vin·n̂)n̂

|Vin−(Vin·n̂)n̂|
en =

∣∣∣Vout·n̂
Vin·n̂

∣∣∣
et =

∣∣∣Vout·t̂
Vin·t̂

∣∣∣ , (20)

where Vin and Vout are the ingoing and outgoing velocities of the sphere’s centroid, respec-
tively. The parameter n̂ is the normal vector of the oblique plane, t̂ represents the tangential
direction of the ingoing velocity.

(2) Rebound angle;


VCout = Vout + ωout × rs

αv = arctan
(

Vout·t̂
Vout·n̂

)
αc = arctan

(
VCout·t̂
VCout·n̂

) , (21)

Here, VCout is the outgoing velocity of the contact patch considering the outgoing
angular velocity ωout, rs is the vector pointing from the sphere centroid to the contact
patch. The angles αv and αc are defined as the outgoing velocity angle and the outgoing
angle, respectively.

(3) Angle ψ in the MBF model;
κ =

(1−υi)Gi+(1−υj)Gj
(1−0.5υi)Gi+(1−0.5υj)Gj

ψ1 = κ
µ

Vin·t̂
|Vin·n̂|

ψ2 = κ
µ

VCout·t̂
|Vin·n̂|

, (22)

Here, ψ1 and ψ2 are the non-dimensional angles of incidence and reflection of the
contact patch [22]. The subscript i and j refer to the sphere and the anvil plane, respectively.

(4) Energies;



Aerospace 2022, 9, 737 10 of 20

The outgoing translational kinetic energy Eout and the rotational kinetic energy Wout
are defined in Equation (23) {

Eout =
1
2 m|VCout|2

Wout =
1
2 ωout

TIωout
, (23)

Here, m and I are the mass and the moment of inertia of the sphere, respectively.

3.1.1. Performance of the Hertzian Contact with the Non-Slip MD Model (M1)

The most commonly used Hertzian contact with the non-slip MD model (M1) is
applied to verify the feasibility of the new DEM+PCM algorithm. Figure 4 illustrates the
change tendencies of the indicators by applying M1. In the legend, the prefix n- (such as
nen, net, nωout, etc) represents the results of the experiment.
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In Figure 4, the results of reproducing the single-collision experiment validate the
feasibility of this newly-presented DEM+PCM algorithm. The change tendencies of these
indicators are similar to those of the experiment. Significantly, the restitution coefficients
en in Figure 4a and the energies in Figure 4e have almost identical curves to those of the
experiment values. The outgoing kinetic energies (the sum of Eout and Wout) are smaller
than the ingoing kinetic energies (around 1.8 mJ), indicating that the energy decays when
the potential energy almost remains identical. In terms of the outgoing angular velocity
ωout, when the impact angle θ is smaller than 50◦, ωout is smaller than the experiment
results. When θ exceeds 30◦, the deviations of ωout are less than 70 rad/s. When θ is 10◦

and 20◦, the deviations of ωout are relatively larger, especially with 20◦ angle θ. The errors of
ωout lead to the differences in αc, ψ2, and Wout, i.e., the indicators calculated by the angular
velocity. The influence of the facet number of the applied polyhedral model is not discussed
temporarily. The specific values of these indicators in Figure 4 may fluctuate slightly when
the facet number of the model in Table 1 is different. Discussions of the model’s facet
number will be focused on in the future, which is not the main issue of this paper.

3.1.2. Comparison of the Four Contact Force Models

Deviations of the four contact force models in this single collision are analyzed and
compared in Figure 5. The simulation value minus the experimental value derives the
deviation. According to Di Renzo and Di Maio, the spring stiffness Kn and Kt in the linear
model M2 are selected as 1.72 × 107 N/m and 1.48 × 107 N/m, respectively. They are ob-
tained from the derivative of the force with respect to the corresponding displacement [45].
Based on Kn and Kt, the constant critical damping coefficients ηn/ηt in the linear model are
solved as 2

√
mKn/2

√
mKt, respectively.
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(b) static tangential force. 

The collision phase lasts about 0.02 ms, from 0.617 ms to 0.635 ms. In Figure 6a, the 
tangential force curve of M4 shows a different change tendency compared with the mod-
els M1 and M3. The tangential force curve of M4 reaches the maximum value faster and 
experiences more waves when returning from the maximum value to zero. Figure 6b il-
lustrates the static friction before the dynamic friction condition is satisfied. Influenced by 
different Kt, the force curve of M3 is below that of M1 proportionally. The slight difference 
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The linear model M2 shows a significant difference from the nonlinear models: the
deviations of en in Figure 5a and Eout with θ smaller than 30◦ in Figure 5f become larger.
Among the three nonlinear models, the models M1 and M3 have nearly coincident result
curves, indicating that the revision of the tangential spring stiffness in M3 has little influence.
When θ is 10◦, compared with the model M1/M3, the incremental model M4 reduces the
deviations of en and Eout, while the errors of et and ωout increase. If θ exceeds 20◦, the
results of the three nonlinear models are nearly the same. This phenomenon reflects that, in
a single collision, the influence of the contact force model on the macroscopical indicators
is evident when the oblique angle is less than 20◦. The macroscopical difference in the
contact force model can be neglected with the increase of the oblique angle. Afterward,
the tangential forces of the three nonlinear models when the impact angle θ is 10◦ are
illustrated and compared in Figure 6.
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The collision phase lasts about 0.02 ms, from 0.617 ms to 0.635 ms. In Figure 6a,
the tangential force curve of M4 shows a different change tendency compared with the
models M1 and M3. The tangential force curve of M4 reaches the maximum value faster
and experiences more waves when returning from the maximum value to zero. Figure 6b
illustrates the static friction before the dynamic friction condition is satisfied. Influenced by
different Kt, the force curve of M3 is below that of M1 proportionally. The slight difference
between M4 and M1 increases gradually with time, similar to the analysis in Figure 2.
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Although the tangential forces of M1, M3, and M4 change differently, their values are all
less than 11 N. The contact force difference during the short contact time does not lead to
the variation of the macroscopical results after the collision.

The above discussions show that the three nonlinear contact force models result in
different forces in this single collision. However, the short contact lasting time is not enough
for the accumulation of the force difference to change the macroscopical indicators. For
analyzing whether the contact force model will influence the CPU calculation efficiency, the
CPU calculation times of the non-slip MD model (M1) and the complete MD model (M4) are
illustrated and compared in Figure 7, respectively. The revised MD model M3 is not further
discussed because its macroscopical indicators and force curves are all similar to M1.
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In Figure 7, ten simulations under the same conditions are repeatedly implemented in
each box. An Intel(R) Xeon(R) Silver 4216 CPU @ 2.10 GHz is utilized to implement the
simulations. The CPU calculation times under M1 and M4 increase gradually with the
impact angle, from 570 s to 610 s and from 590 s to 625 s, respectively. When the impact
angle increases from 10◦ to 50◦, the average CPU calculation times of M4 are 17 s, 3 s,
2 s, 12 s, and 12 s longer than M1. When comparing two calculation times, the increased
calculation efficiency is defined as the time difference divided by the larger time. In Figure 7,
by applying the average value of the box, the CPU calculation efficiency of the non-slip
model M1 is increased by 3%, 0.5%, 0.3%, 2%, and 2%, respectively.

Based on the above discussions about the outgoing results and the calculation effi-
ciency, the newly-presented DEM algorithm can capture the experiment’s characteristics
in the single-collision case. By applying this DEM algorithm, the linear model shows the
difference from the nonlinear models, mainly in the restitution coefficient en and the energy
Eout. In this case, the stiffnesses Kn and Kt of the linear model are carefully determined
by the nonlinear relationships between the force and the displacement [45]. However, the
specific nonlinear relationships are usually unknown when directly applying the linear
model instead of comparative analysis. The precise selection of Kn and Kt is difficult in
the linear model, usually approximated as the Young’s modulus for the spherical particles
with identical material. This simplification produces a difference compared to the actual
contact dynamics, although some experimental stiffness ratio has been proposed for modi-
fication [49]. Therefore, the linear model is rarely applied in the current DEM simulations.
In terms of the three nonlinear models, the Hertzian contact is implemented with different
forms of the tangential Mindlin–Deresiewicz model. Based on Figure 5, the macroscopic
indicators of the three nonlinear models are almost identical, except for the results when θ
is smaller than 20◦. This result indicates that the contact force models have macroscopic
differences when the collision is approximately vertical in the single-collision case. Com-
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pared with the complete MD model M4, the calculation efficiency is increased by 0.3% to
3% in Figure 7 when applying the non-slip MD model M1. This comparison indicates that
the non-slip MD model could improve the algorithm’s calculation efficiency as well as
maintain the similar macroscopical results to the complete MD model. Therefore, applying
the non-slip MD model in the new DEM algorithm is preferable in the single collision.

3.1.3. Softening of the Material

In the previous DEM algorithms, the surface stiffness is usually softened to accelerate
the computation [4]. If the actual stiffness is applied, the needed integral step size will
become tiny, making the calculation time unacceptable. The spurious energy increase
will appear if the unsuitable larger step size is applied. Usually, the Young’s modulus is
decreased to implement the cost-effective material softening for increasing the calculation
efficiency. In this paper, the sphere and the anvil plane materials are softened for discussion
by applying the new DEM algorithm. The material softening results of M1 for reproducing
the single-collision experiment are analyzed in Figure 8, in which the legend ‘nor’ donates
the experimental value. The Young’s moduli of the sphere and the anvil are multiplied by
the coefficient c, respectively. The values of c are 1, 10−1, 10−2, 10−3, and 10−4, indicating the
gradually increased softening degree. These soft coefficients ensure that the normal contact
deformation does not exceed 1% of the sphere’s radius, satisfying the soft threshold [50].
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In Figure 8, although the softening operation moves the indicators away from the
experimental values, the indicators are not altered significantly. When c is 10−4 in Figure 8b,
the value of et with 20◦ angle θ becomes larger than that with 10◦ θ. This relationship
differs from the experiment value’s change tendency, denoting that unlimited softening is
unacceptable. Afterward, the integral step size is enlarged in these softening simulations. In
the case of the 1D perfectly elastic collision of two spherical particles, the contact duration
time is solved based on the Hertzian theory [51]. One contact process should include at least
20 steps in the simulation [52], and the integral step size ∆t should satisfy Equation (24): ∆t ≤ 2.94

20

( 15me f f
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1
Ee f f

= 1−υi
Ei

+
1−υj

Ej

, (24)

The enlarged integral step size is selected based on the relationship between Eeff and
∆t in Equation (24). When the softening coefficient c is 10−1, 10−2, and 10−3, respectively,
the corresponding step size is set to be 2.5, 6.3, and 15.9 times the original step size (10−8 s).
The case when c is 10−4 is not considered for the abnormal changing trend of et. With the
enlarged step size, the softening results of M1 are barely altered compared with Figure 8,
which are neglected for brevity. However, the CPU calculation times are significantly
saved. Before enlarging the step size, the average CPU calculation times of different
impact angles are 391.4 s, 418.7 s, and 468.5 s, when c is 10−1, 10−2, and 10−3, respectively.
After increasing the step size, the corresponding average calculation times are reduced to
200.6 s, 65.3 s, and 31.7 s, i.e., the CPU calculation efficiency is increased by 49%, 84%, and
93%, respectively. The similar macroscopical results and the significantly increased CPU
computation efficiency together indicate the feasibility of the softening operation.

3.2. Extended Analyses Regarding the Multiple Collisions

The Brazil nut effect is applied to compare the influence of the contact force models on
the multiple granular system. The Brazil nut effect describes the rise of a granule buried in
an oscillating system of particles in a confined environment [53]. This study applies the
ellipsoidal particles under 1 g within a cuboid box. The box rotates along the y-axis with
the shacking period equaling 3 s, and the maximum rotation angle is 15◦. The integral step
size of the simulations is 10−5 s, satisfying Equation (24). The box’s length, width, and
height are 55 mm, 40 mm, and 200 mm, respectively. In this box, 150 small ellipsoids and
one larger ellipsoid are included. Their masses, sizes, and polyhedral models are listed in
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Table 2, respectively. For distinction, the smaller ellipsoids are named peanut, and the larger
ellipsoid is Brazil nut. The mechanical properties of the peanuts, the Brazil nut, and the
box are identical, where the Young’s modulus, the Poisson ratio, and the friction coefficient
are 50 Mpa, 0.2, and 0.8, respectively. The normal/tangential restitution coefficients are set
identically as 0.5. Based on the above discussion in Section 3.1.2, the non-slip MD model
M1 and the complete MD model M4 are applied and compared without changing the
properties of the Brazil nut effect.

Table 2. Parameters in the Brazil nut effect simulation.

Particle Mass Size Vertices Facets

Peanut 0.0019 kg 6 × 5 × 5 mm 810 1616
Brazil nut 0.012 kg 12 × 9 × 9 mm 2864 5724

Figure 9 illustrates the states of these granules within four cycles (the corresponding
real-time is 12 s). Figure 9a is the initial release state of the system. The blue and red
ellipsoids represent the Brazil nut and peanuts, respectively (color online). Motivated by
the oscillating box, the Brazil nut rises from the bottom of the box and migrates to the top
gradually. Figure 9b,c are the final states after the four cycles under M1 and M4, respectively.
The granules of M1 in Figure 9b are more active, with some peanuts temporarily separating
from the whole particle system. The CPU calculation times of M1 and M4 are 53 h and
73 h, respectively, by applying an Intel(R) Xeon(R) Silver 4216 CPU @ 2.10 GHz. Similar to
the single collision, the non-slip MD model M1 consumes a shorter CPU calculation time.
In this multiple-collision case, 20 h are saved by M1, and the corresponding calculation
efficiency is improved by about 27.4%. With the increase of the granule number, the
computational efficiency change is more pronounced.
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under M4.

Figure 10 illustrates the height and velocity evolutions of the Brazil nut. The height of
the Brazil nut refers to the z-axis of its position. The velocity of the Brazil nut in Figure 10a
is smaller when the model M4 is applied, which is less than 0.12 m/s. However, the
velocity of M1 has a maximum value exceeding 2 m/s, and the average value is around
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0.19 m/s. Influenced by the larger increasing velocity of M1, the Brazil nut has arrived at
the top position within 6 s in Figure 10b, which is about 4 s faster than that of M4. The
average values of these granules’ total energy are illustrated in Figure 10c. The total energy
refers to the sum of the kinetic and potential energy. After the initial free-falling of the
granules, the external energy input of the vibrating box makes the total energies of M1 and
M4 increase gradually with fluctuations. Similar to the rising velocity, the energies of M1
exceed those of M4. Additionally, when applying the model M1, the velocity, height, and
energy change curves tend to have more fluctuations. This difference shows that more
energies are dissipated by the damping and friction parts of M4, leading to the less intense
convection phenomenon of these peanuts than M1.
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Compared with the single collision, the difference between M1 and M4 becomes
more significant in terms of the Brazil nut’s rising velocity, the system energy, and the
CPU calculation efficiency due to the accumulation of collisions. Although the specific
differences vary with the properties of the Brazil nuts, the step size, the facet number of
the polyhedral model, etc., the qualitative comparison between M1 and M4 can be made.
The non-slip model M1 tends to result in less energy loss in the system and significantly
saves on the CPU calculation time. The calculation efficiency will be promoted by M1
more significantly with the increase of the granule number. Based on this study, more
discussions about the contact force models’ differences in the non-spherical granular
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system are possible. For example, different Brazil nut simulations could be implemented
by changing the number/size/shape of the applied granules.

4. Conclusions

This study compares the performances of four contact force models by exploiting
a newly-presented discrete element method (DEM) with the Polygonal Contact Model
(PCM). The four contact force models include one linear spring–dashpot model and three
nonlinear models, i.e., the normal Hertzian contact with the non-slip/revised/complete
forms of the tangential Mindlin–Deresiewicz model. Differences among these contact
force models are presented based on the numerical simulations of the single-collision and
multiple-collision scenarios.

In terms of the existing single-collision experiment, the three nonlinear contact force
models have similar results in the new DEM+PCM algorithm. Compared with the complete
form, the non-slip Mindlin–Deresiewicz model increases the calculation efficiency by 0.5%
to 3%. Additionally, the CPU calculation efficiency is significantly increased by 93% when
the softening coefficient decreases from 1 to 10−3. Unlimited softening turns out to be unre-
alistic. As for the multiple-collision case in the Brazil nut effect, the differences between the
non-slip and complete Mindlin–Deresiewicz model become more striking than in the single-
collision case due to numerical accumulations. The non-slip Mindlin–Deresiewicz model
results in less energy dissipation and increases the computation efficiency by 27.4% in four
oscillating cycles of the Brazil nut effect. Based on the above studies, the Hertzian contact
with the non-slip Mindlin–Deresiewicz model is recommended in the new DEM+PCM
algorithm. In future studies, the influence of the facet number of the macroscopical poly-
hedron on the outgoing results can be analyzed. New type(s) of contact forces among the
mesoscopic elements in the DEM can be investigated as well.
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Appendix A

The motion of a linear spring–dashpot model with mass m could be expressed as

m
..
δ + η

.
δ + Kδ = 0, (A1)

Here, η is the linear damping coefficient, and K is the linear elastic parameter. Under
the initial condition δ(0) = 0 and

.
δ(0) = v0, the displacement and the velocity are solved as

ω0 =
√

K
m

ω1 = ω0

√
1− η2

4mK
δ(t) = v0

ω1
exp(− η

2m t) sin(ω1t)
.
δ(t) = v0

ω1
exp(− η

2m t)
[
ω1 cos(ω1t)− η

2m sin(ω1t)
] , (A2)
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The restitution coefficient e is defined as

e = −
.
δ(tout)

.
δ(0)

, (A3)

where tout equals π
ω1

, representing the end time of the collision. The relationship between e
and η is written as {

e = exp( ηπ
2mω1

)

η = − 2lne√
ln2e+π2

√
mK , (A4)
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