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Abstract: This paper studies the trajectory tracking control of a space robot system (SRS) in the
presence of the lumped uncertainties with no prior knowledge of their upper bound. Although some
related control methods have been proposed, most of them have either not been applied to SRSs or
lack rigorous stability proof. Therefore, it is still a challenge to achieve high accuracy and rigorous
theoretical proof for tracking control of SRSs. This paper proposes a new integrated neural network-
based control scheme for the trajectory tracking of a SRS actuated by control moment gyros (CMGs).
A new adaptive non-singular terminal sliding mode (ANTSM) control method is developed based on
an improved radial basis function neural network (RBFNN). In the control method, a new weight
update law is proposed to learn the upper bound of the lumped uncertainties. With the advantages
of RBFNN and ANTSM, the controller has high control accuracy, fast learning speed and finite-time
convergence. Different from most on-ground robotic manipulator controllers, a kinematic controller
with position and attitude control laws is also designed for the satellite platform to remain stable.
The stability of the closed-loop system is proved by the Lyapunov method with a high mathematical
standard. Comparative simulation results demonstrate the effectiveness of the proposed control
scheme with preferable performance and robustness.

Keywords: space robot; neural networks; integrated control; nonsingular terminal sliding mode;
control moment gyros

1. Introduction

In recent decades, robotic systems have been playing an increasingly important role
in space missions [1] such as refueling [2,3], repairing and cleaning up space debris [4–6].
SRSs are robotic systems made of a satellite platform (which is actuated by reaction wheels
or thrusters) equipped with one or more robotic arms (which are generally actuated by
joint motors). The strong dynamical coupling between the satellite platform and robotic
arms as well as the strong uncertainty makes tracking control of SRSs extremely difficult [7].
Although a variety of control schemes have been well studied, it is still a challenge for
high-accuracy tracking control of SRSs and its rigorous theoretical proof.

To reduce the strong dynamical coupling of SRSs, the reactionless actuation concept has
achieved considerable applications, such as trajectory planning [8], momentum equalization
controlling [9], and reactionless maneuvering [10]. The reactionless joint actuation concept
was first proposed by Peck [11,12]. In the design concept, the manipulator links of robotic
arms are connected by free revolute joints, while a scissored pair of CMGs is mounted
on each link to actuate the system. Thus, the control torques are exerted directly on the
robotic links, and the joint action/reaction torques are eliminated. Studies have shown
that with the reactionless actuators, the peak attitude control torques can be reduced [13],
and system-level pointing performance can be improved by reducing the disturbances
created by robotic arms [14]. Therefore, to reduce the dynamical coupling of SRSs, CMGs
are employed as manipulator link actuators in this paper.
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Considering the strong lumped uncertainties including external disturbances and
parameter uncertainties of SRSs, sliding mode control schemes with strong robustness have
been studied widely [15,16]. However, the traditional sliding mode control of SRSs has
two significant drawbacks. One potential drawback is that various assumptions about
the upper bound of the lumped uncertainties have been made, which makes controllers
limited. For example, the lumped uncertainties of SRSs are assumed to be bounded by
a constant [17,18], a linear function of the state norm [19], or a polynomial function of
the state norm with arbitrary given order [20,21]. Although controllers based on these
assumptions are stable, these assumptions indeed limit the application of the controllers.
Another significant drawback is that traditional sliding mode control can only achieve
asymptotic convergence, which leads to infinite convergence time on the sliding mode,
such as adaptive sliding mode control [22].

To overcome the drawbacks mentioned above, an improved finite-time sliding mode
control method based on neural networks (NNs) was proposed. NNs are capable of estimat-
ing any nonlinear unknown functions with arbitrary accuracy without the prior knowledge
of the upper bounds of uncertainties [23–25], such as Chebyshev NN (CNN) [26], radial
basis function NN [27] and fuzzy NN [28]. Therefore, the aforementioned assumptions
about the upper bounds of uncertainties are not needed in the sliding mode control based
on NNs. On the other hand, compared with conventional sliding mode control, finite-time
sliding mode control has the superiority of finite-time convergence, such as terminal sliding
mode (TSM) control [29] and non-singular terminal sliding mode (NTSM) control [30,31].
In the finite-time tracking control method, a NTSM is normally proposed to steer configu-
ration variables of robotic manipulators to the reference trajectories within an adjustable
finite time [32,33]. Meanwhile, a combination of NNs and finite-time concepts is applied to
applications of SRSs. Motivated by [34,35], neural-network-based finite-time sliding mode
control is studied for a space robot in this paper.

Although some neural-network-based finite-time sliding mode control methods have
been proposed in the past, most of them are applied to on-ground nonlinear systems, such
as on-ground manipulator systems and general aircraft vehicles [36], and have not been
applied to space robots. Vijay [37] proposed a back-stepping TSM controller using RBFNN
for a three degrees of freedom (DOF) on-ground robotic manipulator. The TSM control
law with an NN-based adaptive observer was developed for the precise trajectory tracking
performance and enhanced disturbance rejection. However, the significant drawback was
that singularity was not taken into account. TSM was also combined with RBFNN and
fuzzy strategy for an on-ground robot manipulator system in [38] and [39] respectively. In
the proposed methods, singularity was avoided by switching from TSM to linear sliding
mode (LSM). Compared with NTSM control, this control scheme was more complicated.
Zhang [35] proposed a NN-based fault tolerant controller via NTSM for an n-link on-
ground robot manipulator with actuator failures. The method utilized Gaussian RBF to
compensate for actuator failures and external disturbances. Guo [34] proposed an adaptive
RBF-based NTSM controller for a joint-actuated space robot subject to unknown parameter
uncertainties and external disturbances. However, the study was oriented to free-floating
case ignoring the motion control of the platform. Xia [40] presented an ANTSM controller
based on NNs for a space manipulator actuated by CMGs. It is worth mentioning that
CMGs can only reduce but not completely eliminate the dynamic coupling between the
platform and the manipulator. Thus, it is still necessary to consider the influence of
the platform on the control accuracy of the manipulator. However, the motion of the
platform was also neglected in [40]. The dynamical coupling between the platform and the
manipulator was not discussed. The manipulator systems in the applications mentioned
above are all on-ground systems, and the control algorithms cannot be applied to SRSs
directly. Wang [41] investigated an adaptive learning control for SRSs using NNs. In the
control method, NTSM and fast NTSM were used to design the robust control to achieve the
fast realization of the desired trajectory. However, chattering problem was not considered in
the controller design. Yan [42] focused on the chattering problem in the sliding mode control
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and proposed low-chattering fixed-time NTSM controller for a free-floating space robot.
However, the internal and external uncertainty of system was assumed to be bounded by
a constant, which might limit the application of the controller. Therefore, an improved
NN-based finite-time control scheme is required for SRSs with strong dynamical coupling
and strong uncertainty to guarantee high accuracy, finite convergence and non-singularity.

Motivated by this requirement, this paper proposes a new integrated NN based non-
singular finite time control scheme for a reactionless SRS actuated by CMGs. In the control
method, an ANTSM trajectory tracking control based on RBFNN for space manipulators
ensures finite time convergence and strong robustness with no prior knowledge of the
upper bound of the system uncertainties. Ignoring the prior knowledge upper bound,
the application range of the controller is expanded. Considering the dynamic coupling of
the SRS, a kinematic controller for the satellite platform is also designed for stabilization.
Finally, based on the ANTSM manipulator controller and the kinematic platform controller,
a dynamics-based controller for the whole system is constructed. The stability of the
system is proven using the Lyapunov method. The main contributions of this paper are
summarized as follows:

1. CMGs are employed as reactionless manipulator actuators of a SRS to reduce the
strong dynamic coupling between the platform and the manipulator.

2. A new integrated RBFNN-based non-singular finite control scheme is proposed for
the SRS with lumped uncertainties. In the control method, a new weight update law
applied to RBFNN is proposed. With the advantages of RBFNN and ANTSM, the
controller has high control accuracy, fast learning speed and finite-time convergence.
Compared with the traditional sliding mode control, the application range of the
controller is extended by ignoring the upper bound of the lumped uncertainties.

3. Different from [34] and [40], the control method is applied to the space robot consider-
ing the position and attitude control of the satellite platform.

4. Rigorous theoretical proof is achieved by the Lyapunov method with a high math-
ematical standard. In the proof, the symbolic function is replaced by the saturation
function to avoid the chattering problem for practical implementations.

This paper is organized as follows. Section 2 gives a description of the space robot
system with a satellite platform and n manipulator links which are actuated by CMGs.
Section 3 defines coordinate systems and formulates the SRS. In Section 4, an ANTSM
trajectory tracking controller using an RBFNN with a new weight update law is proposed.
Error convergence and robustness are discussed in detail. A kinematic controller for the
platform and an inverse dynamic controller for the whole SRS are also designed in order to
resist the remaining dynamic coupling and ensure preferable control accuracy. In Section 5,
the closed-loop system with the proposed controllers is simulated. Section 6 involves a
discussion of the conclusions.

2. System Description

Consider an SRS consisting of a satellite platform and a robotic manipulator, as shown
in Figure 1. The SRS is viewed as a typical rigid multibody system constituted by n + 1
rigid bodies. Manipulator links are connected to each other through n single-DOF revolute
joints, thus the SRS has 6 + n DOF.

For the sake of clarity, the SRS is denoted by one typical numbering method, in
which the platform is denoted as B0, and manipulator links are denoted as B1, B2, · · · , Bn
respectively. Link Bi connects with its inboard body Bc(i) by the joint i. Each joint is driven
by two identical single gimbal CMGs with the gimbal angles equal in magnitude but
opposite in direction [43].
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Figure 1. SRS with a satellite platform and a manipulator arm with CMG-actuation. 
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Figure 1. SRS with a satellite platform and a manipulator arm with CMG-actuation.

3. Equations of Motion

We formulate the equations of motion through an improved automatically generating
algorithm based on Kane’s method which is proposed in Ref. [44] in detail. Reference
frames are first introduced. The dynamic and kinematic equations are then derived for the
SRS which are used for computer simulation.

3.1. Reference Frames

The inertial frame is denoted by Fe. A reference frame F0 is attached to the platform
B0 as its body frame. F0 can move with 6 DOF in the inertial frame. A body fixed frame
Fi is attached to Bi and the origin of Fi is located at the center of the i-th joint. An inboard
body associated frame Fc(i)

i is attached to Bc(i). The origins of Fi and Fc(i)
i coincide

3.2. Dynamics Analysis

Consider a generalized displacement vector x ∈ R6+n and a generalized speed vector
u ∈ R6+n which are introduced as

x =
[
rT

b ΘT
b qT]T (1)

u =
[
vT

b ωT
b

.
qT
]T

(2)

where rb ∈ R3 is defined as the position vector from Fe to F0 expressed in Fe, Θb ∈ R3 is
the Euler angle vector of F0 relative to Fe, vb ∈ R3 and ωb ∈ R3 are the linear and angular
velocities of F0 with respect to Fe, respectively. q =

[
q1 q2 · · · qn

]T ∈ Rn is the vector
of joint angles, whose item qi(i = 1, 2, · · · , n) is the relative rotational angle between Bi
and Bc(i).

Based on the definition of the generalized displacement x and the generalized speed u,
the dynamics of a CMG-driven n-joint rigid space manipulator system can be described by
the following second-order nonlinear differential equation using Kane’s equations [45,46]

M(x)
.
u + FIt(x, u) = FA + Td (3)

where M(x) ∈ R(6+n)×(6+n) is the symmetric positive mass matrix, FIt(x, u) ∈ R6+n is the
system nonlinear generalized inertia forces, FA ∈ R6+n is the system generalized active
forces and Td ∈ R6+n is the external disturbance forces/torques. To simplify notation, M(x)
is simply written as M and FIt(x, u) is simply written as FIt in the following.

According to Kane’s method, M and FIt are contributed to by all the bodies in the
space manipulator system through the following superposition equations

M =
n

∑
i=0

Mi, FIt =
n

∑
i=0

FIt
i (4)
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where Mi and FIt
i are the contributions of Bi to M and FIt, respectively. Mi and FIt

i can be
calculated by the following two higher order nonlinear equations:

Mi =
pvT

i (mi
pvi − si

×pω i) +
pωT

i (si
×pvi + Ii

pω i)(i = 0, 1, · · · , n) (5)

FIt
i = pvT

i
[
mi

.
vit − si

× .
ωit + ωi

×ωi
×si)

]
+ pωT

i
[
si
× .

vit + Ii
.

ωit + ωi
×Iiωi

]
(i = 0, 1, · · · , n) (6)

Therein, the superscript “×” indicates the cross-product matrix of a 3× 1 column
matrix. mi, si, Ii and ωi are the mass, static moment, inertial dyadic and angular velocity
of Bi. pvi ∈ R3×(6+n) and pω i ∈ R3×(6+n) are the partial velocity matrix and the partial
angular velocity matrix of Bi, respectively. vit ∈ R3 and ωit ∈ R3 are the nonlinear parts of
the inertial velocity vi ∈ R3 and angular velocity ωi ∈ R3 of Bi. The relationship between
the inertial or angular velocity and the four kinematics quantities mentioned above can be
easily obtained according to Maggi-Kane’s method.

For a common space manipulator system, there are external forces fb ∈ R3 and torques
τb ∈ R3 applied to the platform and internal torques τm ∈ Rn on the revolute joints.
The generalized active forces of the system FA are the sum of contributions over all the
rigid bodies. It is worth mentioning that the internal torques generated by CMGs can be
calculated by the following equation

τm = −H− B
.
h (7)

where H ∈ Rn is the torque caused by changes of the direction of the angular momentum
of CMGs h =

[
h1 h2 · · · hn

]T ∈ Rn, B ∈ Rn×n is the control torque gain caused by
changes of the magnitude of h. H and B can be expressed by the following equations

H =
n

∑
i=1

(pωm
i )

Tωi
×Γihi (8)

B =
[
(pωm

1 )
T

Γ1 (pωm
2 )

T
Γ2 · · · (pωm

n )
T

Γn

]
(9)

where pωm
i ∈ R3×n is the last n columns of the partial angular velocity matrix pω i.

Γi(i = 1, 2, · · · , n) is the projection of the unit vector along the rotation axes and only
the component of the corresponding rotation axis of the i-th joint is 1.

In real cases, both the platform and manipulators could be affected by external pertur-
bations. However, in the present it is reasonable to assume that no external disturbance
forces/torques act on the platform, since the mass of the platform is great enough and
external forces/torques acting upon the platform are usually small and can be ignored. The
external disturbance torques of manipulator joints are defined as τd ∈ Rn, and then the
external disturbance forces/torques Td in Equation (3) can be described as follows

Td =
[
0T

3×1 0T
3×1 τT

d
]T (10)

Substituting Equations (2), (7) and (10) into Equation (3), the dynamic equations of the
space manipulator system can be rewritten as

M

 .
vb.
ωb..
q

+ FIt =

 fb
τb

−H− B
.
h

+

 0
0
τd

 (11)

3.3. Kinematics Analysis

It can be seen from Equations (5) and (6) that Mi and FIt
i can be calculated by five

kinematics quantities pvi, pω i, ωi, vit and ωit. The five kinematics quantities can be
obtained through a recursive procedure.
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Consider a generic manipulator link Bi(i = 1, 2, · · · , n) and its inboard body Bc(i)
connected by real joint i. The recursive relations about the inboard body Bc(i) are

pvc(i)
i = pvc(i) − l×c(i)

pωc(i)
pω

c(i)
i = pωc(i)

ω
c(i)
i = ωc(i)

.
vc(i)

it =
.
vc(i)t − l×c(i)

.
ωc(i)t + ω×c(i)ω

×
c(i)lc(i)

.
ω

c(i)
it =

.
ωc(i)t

(12)

where lc(i) is the vector from the origin of Fc(i)
i to the one of Fi. The superscript “c(i)” on

the right side of the equal sign in Equation (12) denotes that the corresponding quantity is
related to Fc(i)

i . The recursive relations about body Bi are

pvi = A(qi)
pvc(i)

i
pω i = A(qi)

pω
c(i)
i + Γi∆i

ωi = A(qi)ω
c(i)
i + Γi

.
qi

.
vit = A(qi)

.
vc(i)

it
.

ωit = A(qi)
.

ω
c(i)
it + ω×i Γi

.
qi

(13)

where ∆i =

[
0 · · · 0 1︸︷︷︸

i

0 · · · 0
]
∈ R1×(6+n). A(qi) is the transformation matrix

from frame Fc(i)
i to frame Fi. According to Equations (12) and (13), the kinematics recursions

between Bi(i = 1, 2, · · · , n) and Bc(i) excluding the platform B0 can be obtained.
Denote the inboard body of the platform as Bc(0). Suppose Bc(0) is fixed on the inertial

frame Fe, and B0 connects with Bc(0) by a virtual joint. Then the five kinematics quantities
of the platform B0 can be obtained according to the kinematics recursions between the
platform and its inboard body in the following form

pv0 =
[

I3 03×(3+n)
]

pω0 =
[

03×3 I3 03×n
]

ω0 = ω0.
v0t = ω×0 v0.
ω0t = ω×0 ω0

(14)

The attitude kinematic equation of the platform can be written as

ωb = G(Θb)
.

Θb (15)

where Θb =
[
φ θ ψ

]T ,G(Θb) =

cos θ 0 − cos φ sin θ
0 1 sin φ

sin θ 0 cos φ cos θ

.

4. Controller Design
4.1. Problem Statement

Denoting Vb =
[
vT

b ωT
b
]T , Fb =

[
fT
b τT

b

]T
, the dynamic equations in Equation (11)

can be rewritten as [
Mb Mbm

MT
bm Mm

][ .
Vb..
q

]
+

[
FIt

b
FIt

m

]
=

[
Fb

−H− B
.
h

]
+

[
0
τd

]
(16)
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where Mb ∈ R6×6, Mm ∈ Rn×n and Mbm ∈ R6×n are the decomposition terms of the mass
matrix M and their physical meanings are the inertia matrix of platform, the inertia matrix
of manipulators and the coupling inertia matrix between the platform and manipulators,
respectively. FIt

b ∈ R6 and FIt
m ∈ Rn are the decomposition terms of the nonlinear general-

ized inertia forces FIt. According to Equation (16), the dynamic equations of manipulators
can be obtained

(Mm −MT
bmM−1

b Mbm)
..
q + (FIt

m −MT
bmM−1

b FIt
b ) = −H− B

.
h−MT

bmM−1
b Fb + τd (17)

Let M∗ = Mm −MT
bmM−1

b Mbm, FIt∗ = FIt
m −MT

bmM−1
b FIt

b , then the equivalent dynamic
equations of manipulators can be redescribed as follows

M∗
..
q + FIt∗ = −H− B

.
h−MT

bmM−1
b Fb + τd (18)

It is assumed that the space manipulator system described by Equation (18) has
some known parts and some unknown parts considering parameter uncertainties and
disturbance inputs. Therefore, M∗ and FIt∗ can be described by

M∗ = M∗0 + ∆M∗ (19)

FIt∗ = FIt∗
0 + ∆FIt∗ (20)

where M∗0 and FIt∗
0 are the known parts called nominal terms with the nominal parameters,

∆M∗ and ∆FIt∗ are the unknown parts with the inertia parameter uncertainties (the differ-
ences between the true parameters and the nominal parameters). In this research, we make
the following assumption:

Assumption 1. M∗0 is invertible.

Let qd ∈ Rn represent the desired tracking trajectory that manipulators must follow
and then the output tracking error can be defined as e = q− qd. Thus the system error
dynamic equations of manipulators can be described by in the following form

..
e = uc − (M∗0)

−1(H + FIt∗
0 )− ..

qd + fd (21)

where uc ∈ Rn is the generalized control torque which is expressed as

uc = −(M∗0)
−1(B

.
h + MT

bmM−1
b Fb) (22)

fd ∈ Rn is the combination of system parameter uncertainties and external distur-
bances of the space robot, which is defined as the lumped uncertainty, and it is expressed as

fd = (M∗0)
−1(τd − ∆M∗

..
q− ∆FIt∗) (23)

According to Equation (23), the lumped uncertainty is both internal and external,
as well as parametric and characteristic. According to Equation (23), the lumped uncer-
tainty includes both internal modelling error and external interference error. Therefore,
the lumped uncertainty is related on both time and system states, and its structure and
parameters are normally unknown in practical engineering, which makes it a challenge for
controller design of the space robot.

In the current methods, the unknown nonlinear equation fd is usually assumed to be
bounded with a prior knowledge [47]. A considerable drawback is that the requirement
of prior knowledge of bounds of uncertainties is not viable in practice [30]. Therefore, a
relatively complex control strategy is required for manipulators without a prior knowledge
of the lumped uncertainty. Meanwhile, the dynamical coupling between the platform and
manipulators still exists and the coupling effect of the platform on manipulators may affect
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the control accuracy of the manipulator controller. Therefore, another control strategy is
required for the platform to remain stationary.

By now the control objective in the present work becomes clear: design a trajectory
tracking controller for manipulators with no prior knowledge of the lumped uncertainty
and another pose controller for the platform to remain stationary relative to the inertial
frame Fe. We propose to design an ANTSM trajectory tracking controller using RBFNN
for manipulators first, then design a kinematic controller for the platform and finally
accomplish the controller design for the whole system based on the inverse dynamics
method. The block diagram of the whole closed-loop control system is depicted in Figure 2.
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4.2. ANTSM Controller for Manipulators

In this section, we first use the RBFNN to approximate the nonlinear equation fd
so as to realize the compensation of the uncertainty in the control law. We then define
a nonsingular terminal sliding surface and finally design the adaptive control law to
accomplish the controller design for manipulators. The structure of the ANTSM control
using RBFNN is shown in Figure 3.
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4.2.1. RBF Neural Network

An RBF network is a kind of local approximation neural network. A new RBFNN is
proposed to adaptively approximate the lumped uncertainty fd, as shown in Figure 4. The
estimate of the lumped uncertainty using the proposed RBFNN is defined as f̂d, and it can
be designed as follows:

f̂d = ŴT
Φ(x) (24)
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where x =
[
qT .

qT
]T
∈ R2n is the input state vector, m is the number of neurons, and

Ŵ ∈ Rm×n is the estimate of the ideal approximation weight which is described by

Ŵ =


ŵ11 ŵ12 · · · ŵ1n
ŵ21 ŵ22 · · · ŵ2n

...
... · · ·

...
ŵm1 ŵm2 · · · ŵmn

 (25)
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Φ(x) =
[
Φ1(x) Φ2(x) · · · Φm(x)

]T ∈ Rm is the vector of Gaussian type of func-
tions whose elements are defined as

Φi(x) = exp(−‖x− ci‖2

σ2
i

) (i = 1, 2, · · · , m) (26)

where the vector ci ∈ R2n(i = 1, 2, · · · , m) is the center of the i-th Gaussian function,
σi ∈ R is a width parameter around the center point. For further analysis, we make the
following assumption:

Assumption 2. Let ε represent the approximation error of the RBFNN defined as ε = fd − f̂d.
Given an arbitrary small positive constant εN > 0, the norm of the approximation error and the
constant satisfy the following relationship:

‖ε‖ ≤ εN (27)

4.2.2. Sliding Surface

A nonsingular terminal sliding surface is a nonlinear function of the tracking error
defined in Ref. [48]:

S = e +
1
β

.
ep/q (28)

where β is a positive parameter to be designed, p and q are positive odd numbers with
1 < p/q < 2. When the sliding mode of the system reaches the sliding surface with
si = ei +

1
β

.
ei

p/q = 0 where variables si and ei are elements of the sliding surface vector S
and the tracking error vector e, it is obvious that the trajectory tracking error can approach
zero in finite time t f which is derived as:

t f =
e1−q/p

i0
(1− q/p)β−q/p (29)

where ei0 is the initial value of the tracking error element ei.
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4.2.3. Control Law Design

After constructing the nonsingular terminal sliding surface S, the next phase for the
controller is to design the adaptive control law so that the reaching condition STS < 0
is satisfied. Based on the equivalent control concept, the adaptive nonsingular terminal
sliding mode control based on RBFNN can be implemented:

uc = −
βq
p

diag(
.
e3−p/q

)KS− f̂d + ueq + uN (30)

where K ∈ Rn×n is a positive definite symmetric matrix and ueq is the equivalent control
for the system dynamic Equation (21), determined by

ueq = (M∗0)
−1(H + FIt∗

0 ) +
..
qd −

βq
p

.
e2−p/q (31)

The term uN is designed to overcome influence of system instability caused by the
approximation error of the RBFNN ε, given by

uN = −sign(diag
.
ep/q−1S)εN (32)

where “sign(·)” indicates the symbolic function, defined as

sign(a) =


1 a > 0
0 a = 0
−1 a < 0

(33)

The term f̂d derived as Equation (24) is the estimate vector of the lumped uncertainty.
To make f̂d approximate the lumped uncertainty fd adaptively, a new weight update law
is proposed

.
Ŵ = αΦ(x)(

p
βq

diag(
.
ep/q−1

)S)
T

(34)

where α is a positive parameter to be designed. The exponents of
.
e in Equations (30)–(34)

are all greater than 0 due to 1 < p/q < 2, therefore the proposed adaptive control law
based on RBFNN in Equation (30) is nonsingular.

4.3. Kinematic Controller for Platform

In this section, we design a kinematic controller for the platform to keep the position
and attitude of the platform relative to the inertial frame Fe unchanged, thereby reducing
the impact of the platform coupling on the control accuracy of manipulators.

4.3.1. Attitude Control

Differentiating Equation (15) with respect to time, we have

.
ωb = G

..
Θb +

.
G

.
Θb (35)

Since G is always reversible, we can get
.

Θb = G−1ωb according to Equation (15) Then,
substituting

.
Θb = G−1ωb into Equation (35) the attitude kinematic relation for the platform

in Equation (35) can be rewritten as

.
ωb = G

..
Θb +

.
GG−1ωb (36)

Finally, we design an attitude control law based on PD control strategy as follows

.̄
ωb = G(−Kd1G−1ωb −Kp1Θb) +

.
GG−1ωb (37)
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where
.̄

ωb ∈ R3×1 is the command angular acceleration for the platform, and Kd1 ∈ R3×3

and Kp1 ∈ R3×3 are the control parameter matrices of the PD attitude control law.

4.3.2. Position Control

It is easy to obtain the relationship of the position rb and the linear velocity vb of the
platform according to their definitions

vb = A(Θb)
T .

rb (38)

Differentiating Equation (38) with respect to time, we have

.
vb = A(Θb)

T ..
rb −ω×b vb (39)

Then we can design a position control law based on the same control strategy with the
previous section

.̄
vb = A(Θb)

T(−Kd2
.
rb −Kp2rb)−ω×b vb (40)

where
.̄
vb ∈ R3×1 is the command linear acceleration for the platform, Kd2 ∈ R3×3 and

Kp2 ∈ R3×3 are the control parameter matrices of the PD position control law.

4.4. Inverse Dynamics Controller for System

In this section, we accomplish the controller design for the whole system based on
the inverse dynamics method. The equivalent dynamic equations of manipulators in
Equation (21) can be rewritten as

..
q = uc − (M∗0)

−1(H + FIt∗
0 ) + fd (41)

Substituting the generalized control torque uc designed in Equation (30) and the
estimate of the lumped uncertainty f̂d designed in Equation (24) into Equation (41), we can

obtain the command joint accelerations
.̄.
q as follows

.̄.
q = uc − (M∗0)

−1(H + FIt∗
0 ) + f̂d (42)

According to the dynamic equations in Equation (16), we can obtain the following equation

Mb

[
.
vT

b
.

ω
T
b

]T
+ Mbm

..
q + FIt

b = Fb (43)

Substituting the command accelerations
.̄
vb in Equation (40),

.̄
ωb in Equation (37) and

.̄.
q

in Equation (42), then the active control forces and torques for the platform in the designed
inverse dynamics controller can be obtained as

Fb = Mb

[
.̄
v

T

b
.̄

ω

T

b

]T
+ Mbm

.̄.
q + FIt

b (44)

Substituting the generalized control torque uc designed in Equation (30) and the active
control forces and torques for the platform Fb in Equation (44) into Equation (22), then the
time derivative of angular momentum of CMGs can be calculated by

.
h = −B−1(M∗0uc + MT

bmM−1
b Fb) (45)
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4.5. Stability Analysis

In this section, we analyze the stability of the designed controllers. Since the PD
control strategy and inverse dynamics method have been quite mature, their stability is
easy to prove. Therefore, we only analyze the stability of the ANTSM controller using
RBFNN for manipulators.

Firstly, we substitute the proposed controller in Equation (30) into Equation (21), and
we can get the closed-loop error equation as follows

..
e = − βq

p
.
e2−p/q − βq

p
diag(

.
e3−p/q

)KS− f̂ + fd − sign(diag
.
ep/q−1S)εN (46)

Let W̃ represent the estimate error of the weight matrix for neural network defined as

W̃ = W− Ŵ ∈ Rm×n (47)

Differentiating the sliding surface S with respect to time and using Equation (24) and
Equation (46), we can obtain that

.
S =

.
e + p

βq diag(
.
ep/q−1

)(− βq
p

.
e2−p/q − βq

p diag(
.
e3−p/q

)KS− f̂ + fd − sign(diag
.
ep/q−1S)εN)

= p
βq diag(

.
ep/q−1

)(− βq
p diag(

.
e3−p/q

)KS− f̂ + fd − sign(diag
.
ep/q−1S)εN)

= −diag(
.
e2
)KS + p

βq diag(
.
ep/q−1

)(−f̂ + fd − sign(diag
.
ep/q−1S)εN)

= −diag(
.
e2
)KS + p

βq diag(
.
ep/q−1

)(−ŴT
Φ(x) + WTΦ(x) + ε− sign(diag

.
ep/q−1S)εN)

= −diag(
.
e2
)KS + p

βq diag(
.
ep/q−1

)(W̃
T

Φ(x) + ε− sign(diag
.
ep/q−1S)εN)

(48)

The performance of the control law can be stated by the following theorem.

Theorem 1. Given the error dynamics in Equation (21) for manipulators with Assumptions 1 and 2,
if the nonsingular terminal sliding manifold is chosen as Equation (28) the controller is chosen
as Equation (30) with ueq given by Equation (31), uN given by Equation (32) and f̂d given by
Equation (24) with the weight update law given by Equation (34), then the closed-loop system of
manipulators is asymptotically stable.

Proof of Theorem 1. Select the following Lyapunov function. �

V =
1
2

STS +
1
2

tr(α−1W̃
T

W̃) (49)

where tr(·) represents the trace operator and
.

W̃ = −
.

Ŵ.
Differentiating V with respect to time and using Equation (34) and Equation (48), we

can obtain that

.
V = ST

.
S + tr(α−1W̃

T
.

W̃)

= −STdiag(
.
e2
)KS + ST p

βq diag(
.
ep/q−1

)(W̃
T

Φ(x) + ε− sign(diag
.
ep/q−1S)εN)

−tr(W̃
T

Φ(x)( p
βq diag(

.
ep/q−1

)S)T)

= −STKeS + ST p
βq diag(

.
ep/q−1

)ε− ST p
βq diag(

.
ep/q−1

)sign(diag
.
ep/q−1S)εN

+ST p
βq diag(

.
ep/q−1

)W̃
T

Φ(x)− tr(W̃
T

Φ(x)( p
βq diag(

.
ep/q−1

)S)T)

(50)
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Then using Equation (27), we can obtain that

.
V ≤ −STKeS + p

βq‖S
Tdiag(

.
ep/q−1

)‖(‖ε‖ − εN)

+ ST p
βq diag(

.
ep/q−1

)W̃
T

Φ(x)− tr(W̃
T

Φ(x)( p
βq diag(

.
ep/q−1

)S)T)

≤ −STKeS + ST p
βq diag(

.
ep/q−1

)W̃
T

Φ(x)− ( p
βq diag(

.
ep/q−1

)S)TW̃
T

Φ(x)

≤ −STKeS + ST p
βq diag(

.
ep/q−1

)W̃
T

Φ(x)− ST p
βq diag(

.
ep/q−1

)W̃
T

Φ(x)
≤ −STKeS

(51)

where Ke = diag(
.
e2
)K is a positive definite symmetric matrix, then

.
V ≤ −STKeS ≤ 0 is

satisfied, consequently the tracking error can asymptotically converge to zero as requested
by the Lyapunov method.

For practical implementations, the proposed controller should be smoothed to avoid
chattering problems. To address the problem, a smoothed control uN in Equation (32) is
redesigned as follows

uN = −sat(diag
.
ep/q−1S)εN (52)

where sat(·) represents the saturation function, defined as

sat(diag
.
ep/q−1S) =

sign(diag
.
ep/q−1S) ‖diag

.
ep/q−1S‖ > δ

diag
.
ep/q−1S

δ ‖diag
.
ep/q−1S‖ ≤ δ

(53)

where δ is a positive parameter to be designed.

Theorem 2. Given the error dynamics in Equation (21) for manipulators with Assumptions 1
and 2, if the nonsingular terminal sliding manifold is chosen as Equation (28), the controller is
chosen as Equation (30) with ueq given by Equation (31), uN given by Equation (52) and f̂d given
by Equation (24), with the weight update law given by Equation (34), then the closed-loop system of
manipulators is uniformly ultimately bounded.

Proof of Theorem 2. Substituting the proposed controller in Equation (52) into Equation (21),
we can get the closed-loop error equation as follows. �

..
e = − βq

p
.
e2−p/q − βq

p
diag(

.
e3−p/q

)KS− f̂ + fd − sat(diag
.
ep/q−1S)εN (54)

Then the derivative of the sliding manifold becomes

.
S = −diag(

.
e2
)KS +

p
βq

diag(
.
ep/q−1

)(W̃
T

Φ(x) + ε− sat(diag
.
ep/q−1S)εN) (55)

Select the Lyapunov function as Equation (49). Differentiating V with respect to time,
the time derivative of V can be rewritten as

.
V = −STKeS + ST p

βq diag(
.
ep/q−1

)ε− ST p
βq diag(

.
ep/q−1

)sat(diag
.
ep/q−1S)εN

+ST p
βq diag(

.
ep/q−1

)W̃
T

Φ(x)− tr(W̃
T

Φ(x)( p
βq diag(

.
ep/q−1

)S)T)

≤ −STKeS + p
βq‖S

Tdiag(
.
ep/q−1

)‖‖ε‖ − p
βq STdiag(

.
ep/q−1

)sat(diag
.
ep/q−1S)εN

+ST p
βq diag(

.
ep/q−1

)W̃
T

Φ(x)− ( p
βq diag(

.
ep/q−1

)S)TW̃
T

Φ(x)

≤ −STKeS + p
βq‖S

Tdiag(
.
ep/q−1

)‖‖ε‖ − p
βq STdiag(

.
ep/q−1

)sat(diag
.
ep/q−1S)εN

(56)

If ‖diag
.
ep/q−1S‖ > δ, then sat(diag

.
ep/q−1S) = sign(diag

.
ep/q−1S) and it can be

proved that
.

V ≤ −STKeS ≤ 0 (57)



Aerospace 2022, 9, 730 14 of 23

If ‖diag
.
ep/q−1S‖ ≤ δ, then sat(diag

.
ep/q−1S) = diag

.
ep/q−1S

δ and it can be proved that

.
V ≤ −STKeS + p

βq‖S
Tdiag(

.
ep/q−1

)‖‖ε‖ − p
βq STdiag(

.
ep/q−1

)sat(diag
.
ep/q−1S)εN

≤ −STKeS + p
βq‖S

Tdiag(
.
ep/q−1

)‖εN − p
βq STdiag(

.
ep/q−1

)sat(diag
.
ep/q−1S)εN

≤ −STKeS + p
βq (‖S

Tdiag(
.
ep/q−1

)‖ − STdiag(
.
ep/q−1

)sat(diag
.
ep/q−1S))εN

≤ −STKeS + p
βq‖S

Tdiag(
.
ep/q−1

)‖εN

≤ −STKeS + p
βq δεN

(58)

where p
βq δεN is a positive constant. With Equations (57) and (58), the closed-loop system of

manipulators is uniformly ultimately bounded [49].

5. Numerical Simulation
5.1. Simulation Parameters

To demonstrate the effectiveness of the proposed controllers, the closed-loop SRS with
a platform and three single-degree-of-freedom manipulator arms is simulated in this section.
The simulation task is to enable the robotic manipulators to track the specified trajectory
accurately in joint space and keep the platform stationary relative to the inertial frame.

The inertia parameters of the system are listed in Table 1 and the Denavit-Hartenberg
parameters of the manipulator are shown in Table 2.

The desired trajectories of the joints are given by

qd =

 π/2
0.1e−t − 0.025e−4t − 0.075
−0.14e−t + 0.035e−4t + 0.305

(rad) (59)

Table 1. System inertia and installation parameters.

Body Number
Mass (kg) First

Moment (kg·m)

Inertia Matrix (kg·m2)

True Nominal True Nominal

B0 1600
[
0 0 0

]T diag(2000, 2000, 900)
B1 1.37 1.2

[
0 0 0.0685

]T diag(5.1, 5.1, 1.1)× 10−3 diag(4.7, 4.7, 1.1)× 10−3

B2 24.72 22
[
19.1 0 4

]T
 0.69 0 −3.25

0 23.03 0
−3.25 0 22.37

  0.62 0 −2.91
0 21.33 0
−2.91 0 20.75


B3 24.86 22

[
19.1 0 −4.7

]T
0.93 0 3.78

0 23.28 0
3.78 0 22.36

 0.83 0 3.37
0 21.49 0

3.37 0 20.67



Table 2. Denavit-Hartenberg parameters of the manipulator.

Body Number ai (m) αi (rad) di (m) θi (rad)

B1 0 0.5π 0.1 q1
B2 1.825 0 0.54 q2
B3 1.8825 0 0 q3

External interference is unknown in the real environment. However, the disturbance
joint torques in the simulation are chosen as

τd =

−tanh(50
.
q1)− 1.5

.
q1 + 2

−tanh(50
.
q2)−

.
q2 + 2

−tanh(50
.
q3)− 0.5

.
q3 + 2

(N ·m) (60)
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where “tanh(·)” indicates the hyperbolic tangent function. Select simulation initial values
are listed in Table 3, and the initial and desired configurations of the system are shown
in Figure 5.

Table 3. Simulation initial values.

Parameter Value

Initial positions of the platform (m) [0 0 0]T

Initial rotation angles of the platform (rad) [0 0 0]T

Initial linear velocities of the platform (m/s) [0 0 0]T

Initial angular velocities of the platform
(rad/s) [0 0 0]T

Initial joint angles (rad) [π/12 π/6 π/2]T

Initial joint speeds (rad/s) [0 0 0]T

Initial angular momentums (Nms) [0 0 0]T
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The joint angle q  and the angle tracking error d= −e q q  are shown in Figure 6, and 
the joint angular velocity q  and the velocity tracking error d= −  e q q  are illustrated in 
Figure 7. Figures 6 and 7 indicate that the robot manipulator system can track the desired 
trajectory accurately even though the upper bounds of the system uncertainties are un-
known, which can also be shown by Figure 8, where the terminal sliding variable S  is 
presented. 

Figure 5. System initial and desired configurations.

The controller parameters are listed in Table 4.

Table 4. Controller parameters of the system.

Parameter Value

The proportional gain Kp1 diag
[
4.5 4.5 4.5

]
The derivative gain Kd1 diag

[
5 5 5

]
The proportional gain Kp2 diag

[
3 3 3

]
The derivative gain Kd2 diag

[
3.5 3.5 3.5

]
The constant β 0.05

The odd number p 5
The odd number q 3

The constant δ 0.1
Upper bound of the estimate error εN 0.1

The constant α 0.4
Number of neurons m 10

Initial of weight matrix W0 zeros(10, 3)
The gain matrix K diag

[
0.3 0.25 0.1

]
5.2. Simulation Results
5.2.1. Demonstration of Algorithm Effectiveness

The joint angle q and the angle tracking error e = q− qd are shown in Figure 6, and the
joint angular velocity

.
q and the velocity tracking error

.
e =

.
q− .

qd are illustrated in Figure 7.
Figures 6 and 7 indicate that the robot manipulator system can track the desired trajectory
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accurately even though the upper bounds of the system uncertainties are unknown, which
can also be shown by Figure 8, where the terminal sliding variable S is presented.
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Observing Figure 9, we can see that the approximate errors ε = fd − f̂d using RBFNN
converge to zero rapidly. It can also present that the output vector of the proposed network
can adaptively approximate the lumped uncertainty fd consisting of system parameter
uncertainties and external disturbances. Comparing Figures 8 and 9, the initial fluctuation
of the estimation error is roughly the same as that of the sliding surface, which is caused
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by the compensation of the controller of the neural network estimation. The fluctuation
frequency is within the tolerable fluctuation range of the space robot.
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To verify the estimation performance of the RBFNN, a cost function is chosen as

J =
1
n
‖ε‖ = 1

n
‖fd − f̂d‖ =

1
n

√
n

∑
i=1

ε2
i

As shown in Figure 10, the cost function can converge to zero in a short time, which can
also present that the proposed RBFNN can adaptively approximate the lumped uncertainty.
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Figure 10. The cost function.

To investigate whether the platform is stationary during the control, the position and
attitude of the platform are presented in Figure 11. Observing Figure 11 we can see the
platform remains stationary relative to the inertial frame precisely with the position control
accuracy reaching 0.5× 10−3 m and the attitude pointing accuracy reaching 0.01◦. Figure 12
shows the linear and angular velocities of the platform, respectively, with the attitude
stability reaching 5× 10−3 ◦/s.
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Figure 13 presents the control torque mτ  acting on the manipulator and the time 
derivatives of the angular momentums, i.e., h , of the CMGs, which are all in the reason-
able range of values. Since the manipulators can track the desired trajectory in a short time 
with a fast estimation speed and a fast convergence speed, the angular momentum satu-
ration of the CMGs would not occur basically, as long as the initial angular momentum is 
not too large. 

The control force bf  and control torque bτ  acting on the platform are shown in Fig-
ure 14. The reason for the large magnitudes of the control torque in the initial stage of 
simulation is the large initial joint errors of the manipulators. The inverse dynamics con-
trol law (44) produces larger control torques to suppress the initial errors, resulting in 
preferable control accuracy. 
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Figure 12. (a) Linear velocities of the platform; (b) angular velocities of the platform.

Figure 13 presents the control torque τm acting on the manipulator and the time
derivatives of the angular momentums, i.e.,

.
h, of the CMGs, which are all in the reasonable

range of values. Since the manipulators can track the desired trajectory in a short time with
a fast estimation speed and a fast convergence speed, the angular momentum saturation
of the CMGs would not occur basically, as long as the initial angular momentum is not
too large.
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The control force fb and control torque τb acting on the platform are shown in Figure 14.
The reason for the large magnitudes of the control torque in the initial stage of simulation
is the large initial joint errors of the manipulators. The inverse dynamics control law
(44) produces larger control torques to suppress the initial errors, resulting in preferable
control accuracy.
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5.2.2. Comparison with Different Control Laws

In order to demonstrate the effectiveness of the RBFNN, we adopt the same ANTSM
control law (30) without the estimate of the lumped uncertainty for comparison, that is
f̂d = 03×1. Comparisons of angle tracking errors and sliding manifolds under the ANTSM
control law (30) with or without RBFNN are illustrated in Figures 15 and 16, respectively.
It is obvious that both the angle errors and the sliding manifolds without NN are much
larger than those with NN, which implies the significant role of NN in improving system
control accuracy.
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Although studies have shown that the use of CMGs as reactionless actuators can
reduce the dynamic coupling between the platform and manipulators, the dynamic cou-
pling cannot be eliminated completely because of the existence of inertial forces. The
disturbing torque τdisturb ∈ R3 of manipulators to the platform can be calculated by the
following function

τdisturb = −(s×0 )
T .

vb − I0
.

ωb − s×0 ω×b vb −ω×b I0ωb −
¯
M
[

.
vT

b
.

ω
T
b

]T
−

¯
F

It

(61)

where
¯
M ∈ R3×6 and

¯
F

It

∈ R3 are part of the mass matrix M and the nonlinear generalized

inertia forces FIt in Equation (3), respectively. Their relationships are
¯
M = M(4 : 6) and

¯
F

It

= FIt(4 : 6). We then propose another integrated control scheme with the same ANTSM
controller and inverse dynamic controller but without a controller for the platform, i.e.,
fb = τb = 03×1. Figure 17 shows that the disturbing torque τdisturb always exists if the
platform is not controlled. A comparison of the angle tracking errors under the same
control law with or without platform control is illustrated in Figure 18. It is obvious that
stabilization control of the platform contributes to improving the tracking accuracy of
the manipulator.

Aerospace 2022, 9, 730 22 of 25 
 

 

Figure 15. Comparison of angle tracking errors under control laws with or without NN. (a) The first 
value of the angle tracking errors; (b) The second value of the angle tracking errors; (c) The third 
value of the angle tracking errors. 

 
(a) (b) (c) 

Figure 16. Comparison of sliding manifolds under control laws with or without NN. (a) The first 
value of the sliding manifold; (b) The second value of the sliding manifold; (c) The third value of 
the sliding manifold. 

Although studies have shown that the use of CMGs as reactionless actuators can re-
duce the dynamic coupling between the platform and manipulators, the dynamic cou-
pling cannot be eliminated completely because of the existence of inertial forces. The dis-
turbing torque 3

disturb ∈τ R  of manipulators to the platform can be calculated by the fol-
lowing function 

0 0 0 0( )
TT T T It

disturb b b b b b b b b
× × × ×  = − − − − − −    τ s v I ω s ω v ω I ω M v ω F  (61)

where 3 6×∈M R  and 3It ∈F R  are part of the mass matrix M  and the nonlinear gener-
alized inertia forces ItF  in Equation (3), respectively. Their relationships are 

(4 : 6,:)=M M  and (4 : 6)It It=F F . We then propose another integrated control scheme 
with the same ANTSM controller and inverse dynamic controller but without a controller 
for the platform, i.e., 3 1b b ×= =f τ 0 . Figure 17 shows that the disturbing torque disturbτ  al-
ways exists if the platform is not controlled. A comparison of the angle tracking errors 
under the same control law with or without platform control is illustrated in Figure 18. It 
is obvious that stabilization control of the platform contributes to improving the tracking 
accuracy of the manipulator. 

 
Figure 17. Disturbing torque of manipulators to the platform. Figure 17. Disturbing torque of manipulators to the platform.



Aerospace 2022, 9, 730 21 of 23Aerospace 2022, 9, 730 23 of 25 
 

 

 
(a) (b) (c) 

Figure 18. Comparison of angle tracking errors with and without platform control. (a) The first value 
of the angle tracking error; (b) The second value of the angle tracking error; (c) The third value of 
the angle tracking error. 

6. Conclusions 
In this paper, a new integrated control scheme of both the satellite platform stabili-

zation control and the manipulator tracking control is proposed for a reactionless SRS 
actuated by CMGs. In the tracking control of the manipulator, an ANTSM controller using 
RBFNN with a new weight adaptive law guarantees finite time convergence of the track-
ing errors and does not require any prior knowledge of the upper bound of system uncer-
tainties. Both the asymptotic convergence of the ANTSM controller and the uniformly ul-
timately boundedness of the improved ANTSM controller for practical implementation is 
strictly proved with a high mathematical standard by the Lyapunov method. Numerical 
simulation results demonstrate the effectiveness of the proposed controls, indicating that 
the neural network plays a significant role in increasing control accuracy. Comparative 
simulations show that the improved ANTSM controller using RBFNN has better perfor-
mance and robustness, while the platform controller benefits the tracking control of the 
manipulator in spite of the CMG-actuation. The study provides a new tracking control 
method for a single-arm or multi-arm space robot, which is suitable for practical imple-
mentation. The proposed controller can also be applied to space debris capturing and re-
moval missions. 
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6. Conclusions

In this paper, a new integrated control scheme of both the satellite platform stabiliza-
tion control and the manipulator tracking control is proposed for a reactionless SRS actuated
by CMGs. In the tracking control of the manipulator, an ANTSM controller using RBFNN
with a new weight adaptive law guarantees finite time convergence of the tracking errors
and does not require any prior knowledge of the upper bound of system uncertainties.
Both the asymptotic convergence of the ANTSM controller and the uniformly ultimately
boundedness of the improved ANTSM controller for practical implementation is strictly
proved with a high mathematical standard by the Lyapunov method. Numerical simulation
results demonstrate the effectiveness of the proposed controls, indicating that the neural
network plays a significant role in increasing control accuracy. Comparative simulations
show that the improved ANTSM controller using RBFNN has better performance and
robustness, while the platform controller benefits the tracking control of the manipulator
in spite of the CMG-actuation. The study provides a new tracking control method for a
single-arm or multi-arm space robot, which is suitable for practical implementation. The
proposed controller can also be applied to space debris capturing and removal missions.
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