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Abstract: This paper investigates the issue of balance control for reaction-wheeled inverted pendulum-
type Cubli Rovers on asteroids, and an adaptive control scheme is proposed via the prescribed
performance control technique. The main feature lies in the fact that the transient behavior is satisfied
which is required critically in the environment of asteroids. The attitude model of reaction-wheeled
inverted pendulum-type Cubli Rovers is first constructed by virtue of the momentum moment
theorem and Eulerian kinematics. Based on that, the gravitational field in the asteroid is described
and the avoiding jumping condition is analyzed. Then, an adaptive prescribed performance control
(APPC) method is proposed to obtain the fine tracking performance of the equilibrium error such that
the inverted pendulum-type Cubli Rovers achieve the self-balancing motion. The proposed method
is capable of ensuring the tracking errors inside the preset boundary functions, and the asymptotic
stability of all states in the closed-loop system is guaranteed via the Lyapunov stability theory. The
simulation and comparison results on the environment of asteroids verify the effectiveness and
superiority of the presented control law.

Keywords: cubli rovers; adaptive prescribed performance control; balancing motion; asteroid;
reaction wheel

1. Introduction

Scientific exploration of small-bodies has attracted much attention and interest during
recent decades and plays an important role in the exploration of the Solar System. The
successful exploration mission of asteroids 433 Eros and 25143 Itokawa, especially the
operation of the Hayabusa 2 spacecraft at asteroid 162173 Ryugu, showed the strong
feasibility of operating a spacecraft in close proximity to small-bodies. The causes of these
explorations are based on several reasons, such as the exploration of early formation stages
of the solar system and planetary defense.

The gravity of an asteroid is very weak, and the irregular gravitational field around an
asteroid also perturbs the state of a spacecraft [1]. Thus, the traditional roller rover cannot
move on the surface of small objects for inspection and detection. Reaction wheel-based
pendulum-type Cubli Rovers are suitable as asteroid surface rovers, which can generate
jumping behavior by their flywheels or perform a tumbling motion. The use of ballistic
jump landing and the tumbling of the detector attitude to achieve the movement of the
surface of the asteroid has gathered increased interest. The main advantage lies in the
long-range and large-area detection on the surface of small-bodies can be achieved by
jumping. Meanwhile, the attitude and position of the rover can be moved by internal angu-
lar momentum exchange, which is mechanically simple and easy to implement without
chemical propulsion and is not affected by a dusty environment. There are two kinds
of ideas for the tumbling and jumping patrol in literature. One is to drive an external
mechanical structure to contact the surface of the star to generate a rebound force [2]. On
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the other hand, the collision between the spacecraft and the surface of the small celestial
body produces a rebound force [3]. In [4–6], the satellite on-orbit attitude control process
around small celestial bodies and the gravity field of small celestial bodies are investigated.
The Philae lander of the ESA Rosetta mission and the MINERVA-II and MASCOT small
ballistic jump landers of the Japanese Hayabusa 2 mission have successfully conducted
small-body jump landing tests [7,8]. However, the Cubli Rovers are suitable as jump probes
on the surface of asteroids and no relevant studies have been found in the open literature.

In the current literature, there have been investigations on Cubli [9]. The Cubli is
similar to the 3-D inverted pendulum system, and a 3-D inverted pendulum system [10]
was gradually evolved. Different from the linear trolley control in the traditional inverted
pendulum, the 3-D inverted pendulum often used a three-axis flywheel and housing to
form a momentum exchange system. It was originally developed by ETH Zurich as a
15 cm × 15 cm × 15 cm robot that can stably stand upside down with one vertex of a cube
and can jump and roll. In terms of control, in [9], the vertical position control of the
Cubli one-dimensional prototype was first performed using the LQR method. In [11],
the dynamics of 3-D systems were modeled based on Kane’s equations, and a system
identification method was provided, using LQR for stable control of the linearized model.
Ref. [12] proposed an optimal-size cube robot based on parameter optimization, and
through feedforward control, it achieved self-balancing stability. A feedback controller was
proposed based on the backstepping method for balance control [13], and the feedback
linearization was used to design the controller to track the take-off trajectory segment.
Ref. [14] used the Lagrangian method and Kane method to establish an attitude control
model and verified the validity of the model through simulation. To maintain the balance on
the Cubli frame, an LQR controller based on a Lagrangian derivation of the dynamics was
designed, which utilized the state variables of the frame angle and its angular acceleration,
as well as the wheel angle and its angular acceleration [15]. A method for feedback control
using quaternions to describe attitude is proposed in the literature [16]. An adaptive robust
control is presented to balance the uncertain Cubli system on its corner in the literature [17].
However, in the existing kinds of literature, the special environment of the asteroid surface
and the angular velocity limitation have not been considered, and the dynamic performance
requirement has been not considered yet.

A so-called prescribed performance control (PPC) method to ensure the prescribed
performance output has been proposed in [18]. Two robust adaptive control schemes for
single-input single-output (SISO) strict feedback nonlinear systems possessing unknown
nonlinearities, capable of guaranteeing prescribed performance bounds are presented in
this paper [19]. In [20], a universal, approximation-free state feedback control scheme is de-
signed for unknown pure feedback systems, capable of guaranteeing, for any initial system
condition, output tracking with prescribed performance and bounded closed-loop signals.
This paper [21] investigates the issue of control design for a class of nonlinear systems with
guaranteed prescribed performance. In [22], the authors present a performance-guaranteed
adaptive asymptotic tracking control scheme for a class of nonlinear systems with an un-
known sign-switching control direction. The study [23] develops a novel robust distributed
estimation algorithm, capable of achieving practically zero average tracking error even
for fast time-varying reference signals. The PPC method is beginning to attract the atten-
tion of researchers in various fields and it is also widely used especially in the aerospace
field. The PPC has been applied in satellite attitude control [24] and flight vehicles [25].
In [26], based on the novel performance function and error transformation constraints, the
attitude tracking error is converted into a new error system that guarantees the desired
transient and steady-state responses for the tracking error. In this paper [27], a nonlinear
disturbance-observer-based fault-tolerant attitude control scheme is developed for the
combined spacecraft with prescribed performance. Performance in the light of conver-
gence time, stability and accuracy with inertia uncertainty, actuator saturation and external
disturbance can be prescribed.
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The PPC approach, as a control methodology to conduct the dynamic or transient
performance of the system, provides a new idea for the control system design of Cubli
Rovers. Thus, inspired by the PPC method, the paper presents an adaptive PPC for reaction
wheel-based Cubli Rovers to ensure the success of the balance control, and meanwhile, the
avoiding jumping condition is also considered. The main features of this paper are twofold:

(1) An adaptive prescribed performance control scheme is proposed for the attitude
system of reaction wheel-based inverted pendulum-type Cubli Rovers in the environment
of the asteroid to achieve fine transient performance in the balancing motion. Asymptotic
stability of the tracking errors is guaranteed even under uncertainties.

(2) Based on the knowledge of attitude dynamics, the avoiding jumping condition
in the specific gravitational field in the asteroid is analyzed and the proposed control is
guaranteed not to leave the ground via the small angular velocity.

The rest of this paper is organized as follows. Section 2 formulates the attitude model
for the balancing control for Cubli Rovers and the gravitational field and avoiding jumping
condition are analyzed in detail in Section 3. The main theoretical results about the adaptive
prescribed performance control are given in Section 4. Section 5 provides simulation results
and Section 6 concludes the paper.

2. Problem Formulation
2.1. Attitude Model of Reaction Wheel-Based Inverted Pendulum-Type Cubli Rovers

The stable stationing of Cubli Rovers on the surface of an asteroid can be formulated
as a single-point self-balancing problem. In this part, the attitude model of reaction wheel-
based pendulum-type Cubli Rovers is presented for the balancing control. The three
momentum wheels of Cubli Rovers are equipped orthogonally on adjacent edges, and the
center of mass of the momentum wheels is located at the geometric center of the cube face,
as shown in Figure 1.

Figure 1. Schematic diagram of reaction wheel-based Cubli Rovers in the asteroid.

Without loss of generality, the model can be appropriately simplified, and it is con-
sidered to increase the load on the surface without the momentum wheel to ensure that
the cube center of mass coincides with the geometric center, and it can be considered as a
symmetrical geometry. Considering the three-degree-of-freedom problem of fixed-point
rotation of a rigid body, it is possible to establish the body fixed frame o-xyz with the origin
located at the center of mass and the three coordinate axes passing through the center of
the geometric surface, respectively.

The coordinate system is established as shown in Figure 2 and the body-fixed frame
is used as the inertial frame O-XYZ by selecting the equilibrium position. The Cardan
transformation sequence 1-2-3 is used for the transformation between the body-fixed frame
to the inertial frame, and the pitch, yaw and roll angles φ, θ, ψ are obtained as the attitude
angles to describe the attitude of Cubli Rovers. The transformation matrix from the inertial
frame to the fixed body frame can be expressed as follows
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A =

 cos θ cos ψ sin φ sin θ cos ψ + cos φ sin ψ − cos φ cos ψ sin θ + sin φ sin ψ

− cos θ sin ψ − sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ + sin φ cos ψ

sin θ − sin φ cos θ cos φ cos θ

 (1)

z-axis

x-axis

y-axis

Center of the Surface

Description

Pivot Point

Inertia lywheel

Figure 2. Principle axes of reaction wheel-based Cubli Rovers.

Furthermore, the dynamics of the attitude angles can be represented by the angular
velocity which is shown as follows φ̇

θ̇
ψ̇

 =

 cos ψ/ cos θ − sin ψ/ cos θ 0
sin ψ cos ψ 0

− cos ψ tan θ sin ψ tan θ 1

 ωx
ωy
ωz

 (2)

According to the Lagrangian mechanics method [13] and the moment of momentum
theorem, one has that

Ṗ = Mg + MT + Md (3)

where Ṗ is the total momentum of the system without the flywheel momentum, Mg
represents the moment generated by gravity on the rotation point of the system, and MT
represents the moment generated by the flywheel. The term Md represents the resultant
torque generated by external disturbances. Note that the possible relative sliding of the
ground pivot point is ignored in this paper. According to the moment of momentum
theorem, the rate of change of the momentum of the system is equal to the torque produced
by the external force acting on the system

Mg = r×mg =

 − l
2
− l

2
− l

2

× A

 −
√

3
3 m gI

−
√

3
3 m gI

−
√

3
3 m gI

 (4)

where r represents the vector radius from the position of the center of mass to the pivot
point, m represents the total mass of the Cubli Rovers, l represents the side length, and gI

represents the gravity vector at the current position.
Define ω̇ as the rate of change of the triaxial angular velocity of the shell, and then

one has that Ṗ = I0ω̇, where I0 denotes the moment of inertia of the shell. Since the axial
direction is defined as the geometric center passing through the side, the inertia products
of the inertia tensor matrix Ixy,Ixz,Iyz are ideally set as zero. Therefore, the system model of
the attitude rate can be expressed as:
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 ω̇x
ω̇y
ω̇z

 = I−1
0 · Ṗ = I−1

0 ·Mg + I−1
0 ·MT + d (5)

where d = I−1
0 ·Md represents the disturbances. The flywheel torque MT is used as the

input of the system, which has the dynamic characteristics of the flywheel, that is, the limit
and the saturation of the flywheel speed. Finally, the attitude model of reaction wheel-based
inverted pendulum-type Cubli Rovers is obtained by (2) and (5).

2.2. Balance Control Issue in Asteroid

Based on the above modeling procedure, the model of traction wheel-based inverted
pendulum-type Cubli Rovers is expressed as a multi-variable nonlinear second-order
system with disturbances. The task of the balance control is to ensure the stability of the
Cubli Rovers when they are set up. It is important for the mission of the rover on the
asteroid. However, the balancing control investigated in this paper is different from that on
Earth due to the following reasons:

(1) For the Cubli Rovers, the main concern is whether the attitude angle and angular
velocity achieve satisfactory dynamic performance. The introduction of a flywheel as
the actuator will cause some problems with speed saturation and instantaneous impulse
limitation. In addition, due to the three-axes coupling, it is necessary to ensure that the
overshoot of the angular velocity of each axis cannot be large to avoid affecting the effective
control of other axes, which puts forward performance requirements for the control method.

(2) Due to the existence of a special gravitational field on asteroids, the effect of gravity
plays an important role in the balancing control for Cubli Rovers. Unlike the common
gravitational field on Earth, the non-uniform gravitational field affects the system balance if
the attitude inclination cannot meet the small steady-state error, so the performance require-
ment of steady-state error is proposed. On the other hand, in the asteroid environment,
the centripetal force provided by gravity is limited, so the angular velocity magnitude
should be limited at all times during the rotation to avoid the Cubli Rovers from leaving
the ground.

Consequently, the dynamic or transient performance of the balancing control for
Cubli Rovers, including the overshoot, steady-state error and setting time, is the main
focus that determines the mission on the asteroid. Dynamic performance requirements
depend on a pre-designed time-varying function with the ability to assign performance
limits throughout the procedure. Therefore, time-varying constrained performance func-
tions are applicable for the control design and thus can ensure that multiple performance
requirements are met. To sum up, the control goal of the paper is to steer the attitude
angles tracking the desired references with the tracking errors always into the preassigned
performance functions.

3. Asteroid Environment and Avoiding Jumping Conditions
3.1. Basic Description of Gravitational Field in Asteroid

Small-bodies such as asteroids and comets can be patrolled and probed to obtain more
information about material properties and topography and becomes a hot point in the field
of deep-space exploration. How to ensure that the small spacecraft can move reliably on
the surface of small objects is challenging for the current control community. Since the
gravitational field of small-bodies is very weak and irregular, the traditional roller rover
cannot be used for surface-moving inspection of asteroids. It is one of the important ways
of surface movement of small-bodies to adjust the position of the inspector by flywheel
control moment and make it roll or jump.

In this paper, let us take the Bennu asteroid as the research object, and the gravitational
constant G = 6.67× 10−11. The density of Bennu obtained by on-orbit optical measurement
analysis ρ = 2670 kg/ m3 [28], plus the Bennu in the NASA planetary database, and finally,
the distribution of the surface gravity value of the asteroid Bennu after triangulation can
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be calculated. The gravitational value indicates the magnitude of gravity per unit mass
of the object on the asteroid. The gravitational value of asteroid Bennu is the largest at
the two poles, located within 2 ∼ 2.6× 10−3 N [29]. Meanwhile, the closer to the equator,
the smaller the gravity value. This is because the shape of the Bennu asteroid is generally
oblate spheroid, the two-stage distance from the center of mass is smaller than that from
the equator, and the axis of rotation is generally located at the line connecting the two poles,
which makes the gravitational acceleration on the surface of Bennu vary with different
latitude. The gravitational field on the surface of the asteroid is quite weak according
to the size of the asteroid’s volume. The gravitational acceleration is in the range of
10−4 ∼ 10−3 m/ s2.

3.2. Avoiding Jumping Conditions

The motion of the Cubli Rovers is divided into two cases in the 2-D plane, one is stable
rotation around a fixed point, and the other is jumping off the ground. In this paper, we
consider the single-point self-balancing motion of Cubli Rovers. Therefore, the condition of
stable rotation around the fixed point is proposed first. Because the asteroids are not ideal
spheres but non-regular, the gravity of the Cubli Rovers in contact with the ground is not
perpendicular to the ground but at an angle to the ground normal. Force analysis is shown
in Figure 3.

Figure 3. Force analysis for avoiding jumping away from the asteroid.

The Hayabusa 2 team summarized a few real images from the mission to introduce
the asteroid surface [30]. The surface environment of the asteroid is relatively complex.
In [31,32], the researchers established a detailed surface environment of asteroid rocks and
detailed the dynamical relationships during the landing of the probe. In [33], the authors
describe the problem of predicting the reachable domain of the hopping rover with full
consideration of the asteroid rock surface as well as the gravitational environment, illustrat-
ing the influence of topographic conditions on the probe takeoff. As a result, a conclusion
can be drawn that Bennu surfaces are covered with boulders and rocks, which made the
sample mission decay. However, for the highest shape model 2019 from NASA, the mean
length of the triangular meshes is approximately 3.2 m. The self-equilibrium verification
is assumed to be a single-point position motion. This also means that Cubli Rovers will
not have a large lateral displacement in the control process. When we numerically put
the Cubli Rovers [15 cm × 15 cm × 15 cm] on the facets, it can be assumed as a flat surface
contact and gravity will not change in such a preliminary study.

The Cubli Rovers mechanically change very little in the vertical direction during the
self-balancing motion control, and the degree of influence on the surface is so weak that the
deformation of the surface can be neglected. Therefore, the nature of the asteroid surface is
simplified in this study, and the landing area of the Cubli Rovers is assumed to be a rigid
surface. For more geological types, readers may be referred to [34,35].
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From the projection of the external force in the direction perpendicular to the velocity,
the centripetal force expression can be derived by

F = FG cos(α) + Ft sin(β)− Fn cos(β) (6)

where FG = mg denotes the gravitational force, Ft denotes the tangential force generated by
the tendency of the shell to move backward at the point of contact with the ground, and Fn
denotes the upward support force of the ground on the shell. The centripetal force required
during the rotation of the shell around the fixed point.

Fr =

√
2m ω2 l

2
(7)

Therefore, to ensure the stable rotation of the shell does not leave the ground, the
condition Fr ≤ F should be satisfied, otherwise, the external force will not provide sufficient
force, resulting in centrifugal movement of the shell. In the critical state of leaving the
surface of the asteroid, the support force Fn tends to zero and the tangential force Ft = µ Fn
also tends to zero, so that the condition of the rotational speed is satisfied and reaches the
maximum, which can be reduced to the case where only the gravity constrains the system.
The relation can be obtained as follows

√
2m ω2 l

2
≤ mg cos(α) (8)

Then it follows that

ω ≤

√√
2g cos(α)

l
(9)

Extending to the 3-D case, the projection of gravity is orthogonal to the sagittal path
of the center of mass and the fixed point, and the angular velocities of the three axes are
orthogonal to each other to find the contrast centripetal force. Then, it can be compared
with the projection of gravity on the surface to determine whether the system satisfies the
condition of not leaving the ground and can reside stably on the asteroid’s surface.

4. Balance Control Based on Adaptive Prescribed Performance Control
4.1. APPC Design

At the expected target position, the inertial frame and the body fixed frame should
coincide, that is, the attitude angles φ, θ, ψ are zero. Then, the values of tracking target
signals are set as φre f = 0, θre f = 0, ψre f = 0. Then, the tracking errors of the attitude angles
are represented as

eφ = φ− φre f
eθ = θ − θre f
eψ = ψ− ψre f

(10)

For the attitude angle system, the angular velocity can be viewed as the input and a
virtual input Γa for the attitude angle is obtained by

Γa =
[

δ1 δ2 δ3
]T (11)

Define the angular rate tracking virtual input state errors as follows

eω x = ωx − δ1
eω y = ωy− δ2
eω z = ωz− δ3

(12)
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Taking the derivatives of the tracking errors yields that ėφ

ėθ

ėψ

 =

 φ̇− φ̇re f
θ̇ − θ̇re f
ψ̇− ψ̇re f

 =

 cos ψ/ cos θ − sin ψ/ cos θ 0
sin ψ cos ψ 0

− cos ψ tan θ sin ψ tan θ 1


 ωx

ωy

ωz

 = Ga

 ωx

ωy

ωz

 (13)

 ėωx
ėωy
ėωz

 =

 ω̇x
ω̇y
ω̇z

−
 δ̇1

δ̇2
δ̇3

+

 dx

dy

dz

 (14)

Design the following virtual control law for the subsystems (13)

Γa = −Ga
−1 λa εa−Ga

−1 sgn(εa) ka v̂a
˙̂va = ηa|εa|

(15)

where λa = diag(λa1, λa2, λa3), λai > 0, i = 1, 2, 3, εa =
[

εa1, εa2, εa3
]T ,

sgn(εa) = diag(sgn(εa1), sgn(εa2), sgn(εa3)), ka = diag(ka1, ka2, ka3), kai > 0,
ν̂a = [ν̂a1, ν̂a2, ν̂a3]

T , ηa = diag(ηa1, ηa2, ηa3), ηai > 0, i = 1, 2, 3, where εai = ξai
1−ξ2

ai
,

ξai =
eai
ρai

(i = 1, 2, 3). ξai represents the ratio of the state error to the performance function.
When |ξai| < 1, we can deduce that − ρai < eai < ρai. They need to be converted to
unconstrained variables by using non-linear transformation relations εai = ξai

1−ξ2
ai

. The

performance functions are chosen as ρai = (ρai0− ρai∞) elai t + ρai∞(i = 1, 2, 3), where the
constants ρai0 > ρai∞ > 0, lai < 0.

For the angular rate subsystem (14), the actual control law can be designed as

uv = − I0 λu εu− I0 sgn(εu) ku v̂u
˙̂vu = ηu|εu|

(16)

where λu = diag(λu1, λu2, λu3), λui > 0, i = 1, 2, 3, εu = [εu1, εu2, εu3]
T ,

sgn(εu) = diag(sgn(εu1), sgn(εu2), sgn(εu3)), ku = diag(ku1, ku2, ku3), kui > 0,
ν̂u = [ν̂u1, ν̂u2, ν̂u3]

T , ηu = diag(ηu1, ηu2, ηu3), ηui > 0, i = 1, 2, 3, where εui = ξui
1−ξ2

ui
,

ξui =
eui
ρui

(i = 1, 2, 3). ξai represents the ratio of the state error to the performance function.
When |ξui| < 1, we can deduce that − ρui < eui < ρui. They need to be converted to
unconstrained variables by using non-linear transformation relations εui =

ξui
1−ξ2

ui
. Similarly,

the performance boundary functions are set as ρui = (ρui0− ρui∞) elui + ρui∞t(i = 1, 2, 3)
where the constants ρui0 > ρui∞ > 0, lui < 0.

Schematic diagram of the proposed control method is shown in Figure 4.

Model Error calculation:
Performance boundary:

Error transformation:

Controller : 

Adaptive arithmetic : 

Cubli Rover Model Attitude System Prescribed Performance Balance Control Law

Figure 4. Schematic diagram of the proposed control method.
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Remark 1. The singular point of the matrix Ga is located at θ = π
2 + nπ. Considering the actual

situation of Cubli Rovers, even when the body is stationary on the ground, 0 < θ < π
2 will not

reach the singular point. Therefore, the matrix Ga is always invertible.

4.2. Stability Analysis

This part provides the stability analysis of the proposed APPC law. The necessary
theorem is given and explained as follows:

Theorem 1 ([36]). Let X = {x ∈ <n : |xi| < Ωi, i = 1, 2, . . . , n} be an open set with positive
constants Ωi. Consider the switched system:

ẋ = yq(t, x), x(0) ∈ X (17)

where yi : <+×x → <n is piecewise continuous and uniformly bounded in t and locally Lipschitz
on x; q is the switching signal, which takes its values in a finite set {1, . . . , m} and m > 1 is the
number of subsystems. Suppose that the state of the system Equations (13) and (14) does not jump
at the switching instants. Then there exists a unique and maximal solution x(t) ∈ X on the time
interval [0, T) where T ≤ +∞.

Theorem 1 shows that the state must remain in a domain if the initial value lies within a
finite time interval. the assumption in Lemma 1 about no jumps at the moment of switching
is to ensure the continuity of the state, which is necessary and quite important to guarantee
that the constrained performance function is not violated. Note that the switching action
takes place in the controller, as shown in the formulation of the control law. In other words,
the switching occurs on the right-hand side of the dynamic equation, and therefore, does
not cause a jumping action of the state. Therefore, the assumption is reasonable in this
paper. This theorem is important for performance-guaranteed control design. Of course,
we hope that T can be set as +∞, but it may be not satisfied for any case. In this paper, the
proposed control law can ensure T = +∞, which is proven by Theorem 1. Therefore, the
basic thought of the proof is described as follows. Firstly the existence and uniqueness of a
maximal solution σ(t) for a time interval [0, T) is ensured. Then, in the following theorem,
we prove that the proposed control scheme guarantees, for t ∈ [0, T): (i) the boundedness
of all signals in the closed-loop system; (ii) seek a contradiction to lead to T = +∞. Finally,
we prove that the proposed adaptive control law is analyzed in the following theorem.

Theorem 2. Consider the system model Equations (13) and (14) and the proposed adaptive pre-
scribed performance control Equations (15) and (16). Assuming that Assumptions 1 and 2 hold, the
following statements are satisfied:

(1) All signals of the closed-loop system are globally bounded;
(2) The relations |eai| < ρai, |eui| < ρui, i = (1, 2, 3) are satisfied;
(3) The error converges to zero asymptotically, that is eai → 0, eui → 0, i = (1, 2, 3) as t→ ∞.

Proof of Theorem 2. Invoking the novel adaptive prescribed performance control (15) and
(16), into the system (13) and (14) yields the closed-loop system as follows:

κ̇ = Y(t, κ) (18)

where κ = [κa1, κa2, κa3, κu1, κu2, κu3]
T and the function Y = [Ya1, Ya2, Ya3, Yu1, Yu2, Yu3]

T is
represented as
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Ya1 = 1
ρa1

[b1 Ga Γa − ρ̇a1 ξa1− φ̇re f ]

Ya2 = 1
ρa2

[b2 Ga Γa − ρ̇a2 ξa2− θ̇re f ]

Ya3 = 1
ρa3

[b3 Ga Γa − ρ̇a3 ξa3− ψ̇re f ]

Yu1 = 1
ρu1

[b1 I−1
0 Mg + b1 I−1

0 uv − ρ̇u1 ξu1− δ̇1 + dx]

Yu2 = 1
ρu2

[b2 I−1
0 Mg + b2 I−1

0 uv − ρ̇u2 ξu2− δ̇2 + dy]

Yu3 = 1
ρu3

[b3 I−1
0 Mg + b3 I−1

0 uv − ρ̇u3 ξu3− δ̇3 + dz]

(19)

Note that the trajectory of the system (19) is continuous at the switching instants,
and thus, the existence and uniqueness of a maximal solution κ is guaranteed on the time
interval [0, T) according to Theorem 1.

Select the Lyapunov function as:

Va1 =
1
2

ln

(
1

1− ξ2
a1

)
+

ka1 aa1

2 ηa1
ṽ2

a1 (20)

where ṽa1 = va1− v̂a1, aa1 is an unknown constant. Taking the derivative of Va1 yields that

V̇a1 =
1
2

(
1− ξa1

2
)((

1− ξ2
a1

)−1
)
′ +

ka1 aa1
ηa1

ṽa1 ˙̂va1

=
1
2

(
1− ξa1

2
)(
− 1

1− ξ2
a1

)2

(−2 ξa1) ξ̇a1 +
ka1 aa1

ηa1
ṽa1
(
v̇a1− ˙̂va1

)
=

ξa1

1− ξ2
a1

ξ̇a1−
ka1 aa1

ηa1
ṽa1 ˙̂va1

= εa1

(
ėφ

ρa1
−

ρ̇a1
ρa1

2 eφ

)
− ka1 aa1

ηa1
ṽa1 ˙̂va1

=
εa1
ρa1

(
ėφ−

ρ̇a1
ρa1

eφ

)
− ka1 aa1

ηa1
ṽa1 ˙̂va1

(21)

for the eφ component in the vector, define an extraction vector: b1 =
[

1 0 0
]
, used to

extract the quantity of eφ active channels in the system model. According to the expression
of (13) and (15) one has that

V̇a1 =
εa1
ρa1

(
ba1(Ga Γa)−

ρ̇a1
ρa1

eφ

)
− ka1 aa1

ηa1
ṽa1 ˙̂va1

=
εa1
ρa1

(
− λa1 εa1−sgn(εa1) ka1 v̂a1−

ρ̇a1
ρa1

eφ

)
− ka1 aa1

ηa1
ṽa1 ˙̂va1

≤ −λa1
ρa1

ε2
a1−

ka1
ρa1
|εa1| v̂a1 +

|εa1|
ρa1

∣∣∣∣ ρ̇a1
ρa1

eφ

∣∣∣∣− ka1 aa1
ηa1

ṽa1 ˙̂va1

≤ − λ1 pa1 ε2
a1− ka1 pa1|εa1| v̂a1 + Ra1|εa1| −

ka1 aa1
ηa1

ṽa1 ˙̂va1

(22)

where pa1 = 1
ρa1

, Ra1 = 1
ρa1

∣∣∣ ρ̇a1
ρa1

eφ

∣∣∣, because |ξa1| ≤ 1 and ρa1, ρ̇a1 are bounded variables
and the former is always greater than zero and the latter is always less than zero, then it
follows that

0 < pal1 ≤ pa1 ≤ pah1, 0 < Ral1 ≤ Ra1 ≤ Rah1 (23)

Therefore, the expression of V̇a1 is rewritten as

V̇a1 ≤ −λa1 pal1 ε2
a1 (24)
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where ṽa1 = Rah1
pal1 ka1

, aa1 = pal1. Integrating V̇a1 over the time range [0, t] one has that

Va1(t) +
∫ t

0 λa1 pal1 ε2
a1dτ ≤ Va1(0) that is, ∀t ∈ [0, T] it means:

1
2

log

(
1

1− ξ2
a1

)
≤ Va1 ≤ Va1(0) = σ̄a1 (25)

ka1 aa1

2 ηa1
ṽ2

a1 ≤ Va1 ≤ Va1(0) = σ̄a1 (26)

According to (25) and (26), we know that: |ξa1| <
√

1− eσ̄a1 < 1 and

|v̂a1| ≤
√

2 ηa1 σ̄a1
ka1 aa1

+ va1 are established for all t ∈ [0, T].
Next, for the θ, ψ component in the vector, the Lyapunov function is selected as

Vai =
1
2

log

(
1

1− ξ2
ai

)
+

kai aai
2 ηai

ṽ2
ai, i = 2, 3 (27)

where ṽai = vai − v̂ai, aai is an unknown constant, and the derivation process is similar
to (21).

V̇ai =
εai
ρai

(
ėq−

ρai
ρai

eq

)
− kai aai

ηai
ṽai ˙̂vai, i = 2, 3; q = θ, ψ (28)

For the eθ ,eψ component in the vector, define an extraction vector: bi, i = 2, 3, i means
that the element at position i in the vector b is equal to 1 and the elements at the remaining
positions are 0, used to extract the quantity of eθ ,eψ active channels in the system model.
According to (13) and (15) we have that

V̇ai =
εai
ρai

(
bai(Ga Γa)−

ρ̇ai
ρai

eq

)
− kai aai

ηai
ṽai ˙̂vai

=
εai
ρai

(
− λai εai −sgn(εai) kai v̂ai −

ρ̇ai
ρai

eq

)
− kai aai

ηai
ṽai ˙̂vai

≤ −λai
ρai

ε2
ai −

kai
ρai
|εai| v̂ai +

|εai|
ρi

∣∣∣∣ ρ̇ai
ρai

eq

∣∣∣∣− kai aai
ηai

ṽai ˙̂vai

≤ − λai pai ε2
ai − kai pai|εai| v̂ai + Rai|εai| −

kai aai
ηai

ṽai ˙̂vai

(29)

where pai =
1

ρai
, Rai =

1
ρai

∣∣∣ ρ̇ai
ρai

eφ

∣∣∣. Since |ξai| ≤ 1 and ρai, ρ̇ai are bounded variables and the
former is always greater than zero and the latter is always less than zero, which leads to:

0 < pali ≤ pai ≤ pahi, 0 < Rali ≤ Rai ≤ Rahi (30)

Therefore, the expression of V̇ai is:

V̇ai ≤ −λai pali ε2
ai (31)

where ṽai = Rahi
pali kai

, aai = pali, integrating V̇ai over the time range [0, t] one has:

Vai(t) +
∫ t

0 λai pali ε2
aidτ ≤ Vai(0) that is, ∀t ∈ [0, T] it means:

1
2

log

(
1

1− ξ2
ai

)
≤ Vai ≤ Vai(0) = σ̄ai (32)

kai aai
2 ηai

ṽ2
ai ≤ Vai ≤ Vai(0) = σ̄ai (33)
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According to Equations (32) and (33), we know that: |ξai| <
√

1− eσ̄ai < 1 and

|v̂ai| ≤
√

2 ηai σ̄ai
kai aai

+ vai are established for all t ∈ [0, T].
Finally, let us select the Lyapunov function as

Vui =
1
2

log

(
1

1− ξ2
ui

)
+

kui aui
2 ηui

ṽ2
ui, i = 1, 2, 3 (34)

where ṽui = vui − v̂ui, aui is an unknown constant, and the derivation process is similar
to (21). Then it follows that:

V̇ui =
εui
ρui

(
ėu−

ρui
ρui

eu

)
− kui aui

ηui
ṽui ˙̂vui, i = 1, 2, 3; u = ωx, ωy, ωz (35)

Define an extraction vector: bi, i = 1, 2, 3, i means that the element at position i in the
vector b is equal to 1 and the elements at the remaining positions are 0, used to extract the
quantity of eωx , eωy , eωz active channels in the system model. According to the expression
of (14) and (16) one has that

V̇ui =
εui
ρui

(
bi I−1

0 Mg + bi(I−1
0 uv)− δ̇i −

ρ̇ui
ρui

eu + di

)
− kui aui

ηui
ṽui ˙̂vui

=
εui
ρui

(
6

m l2 Mgi − λui εui −sgn(εui) kui v̂ui −
ρ̇ui
ρui

eu− δ̇i + di

)
− kui aui

ηui
ṽui ˙̂vui

≤ −λui
ρui

ε2
ui −

kui
ρui
|εui| v̂ui +

|εui|
ρui

∣∣∣∣ 6
m l2 Mg1−

ρ̇ui
ρui

eu− δ̇i + di

∣∣∣∣− kui aui
ηui

ṽui ˙̂vui

≤ − λui pui ε2
ui − kui pui|εui| v̂ui + Rui|εui| −

kui aui
ηui

ṽui ˙̂vui

(36)

where pui = 1
ρui

, Rui = 1
ρui

∣∣∣ 6
m l2 Mgi − δ̇i −

ρ̇ui
ρui

eu + di

∣∣∣ , because |ξui| ≤ 1 and ρui, ρ̇ui,
6

m l2 Mgi, δ̇i are bounded variables, which leads to:

0 < puli ≤ pui ≤ puhi, 0 < Ruli ≤ Rui ≤ Ruhi (37)

Therefore, the expression of V̇ui is:

V̇ui ≤ −λui puli ε2
ui (38)

where ṽui =
Ruhi

puli kui
, aui = puli , Integrating V̇ui over the time range [0, t] one has:

Vui(t) +
∫ t

0
λui puli ε2

uidτ ≤ Vui(0) (39)

that is, for ∀t ∈ [0, T] it means:

1
2

log

(
1

1− ξ2
ui

)
≤ Vui ≤ Vui(0) = σ̄ui (40)

kai aai
2 ηai

ṽ2
ui ≤ Vui ≤ Vui(0) = σ̄ui (41)

According to Equations (40) and (41), we know that: |ξui| <
√

1− eσ̄ui < 1 and

|v̂ui| ≤
√

2 ηui σ̄ui
kui aui

+ vui are established for all t ∈ [0, T]. It is deduced by contradiction that

T = +∞ , that is
∣∣∣ξ j

∣∣∣ < 1(j = a1, a2, a3, u1, u2, u3) for all t ∈ [0,+∞). Moreover, it is
deduced from (15) and Equation (16), v̂j is bounded.
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According to (31), (34) and (39) that ε j is bounded. By applying Barbalat’s lemma, it
is deduced that limt→∞ ε j = 0 that is limt→∞ ξ j = 0 and limt→∞ ej = 0. In summary, the
tracking errors converge to zero asymptotically and meets the preset dynamic performance
requirements, and the proof is completed.

4.3. Parameters Tuning

The control law represented by (15), (16) consists of the conversion error εi, (i = a, u),
the estimate of the adaptive parameter ν̂i, and the control parameters λi, ki, ηi. In this
section, the role and effects of the various parameters involved in the control law are
explained. The positive constant λi is the gain coefficient of εi, which responds to the
response of the input signal to the previous state error or the tracking error. If the value of
λi is increased, the feedback of the control input to the error becomes larger accordingly. λi
is worth a reasonable increase to accelerate the convergence of the error, but if the value of
λi is too large, it will lead to an increase in the amount of overshoot and even lead to error
overshoot causing system instability. If the λi value is too small, it may cause insufficient
control input leading to system instability. Then the positive constant ki and ηi are the
gain coefficient of the adaptive parameter ν̂i and its derivative ˙̂vi. The value of ki reflects
the effect of the adaptive parameter on the control input, and ηi determines the rate of
change of the adaptive parameter. The main role of the adaptive parameter is to regulate
the steady-state error of the system and to make the system asymptotically stable. The
values of ki and ηi reflect the effect of the adaptive parameter on the error for compensation.
Therefore, improving the steady-state performance of the system, i.e., accelerating the
convergence of the steady-state error within a certain time, is the main function of the
adaptive parameters.

As mentioned above, the three parameters λi, ki, ηi play the role of regulating the speed
of error convergence, the steady-state error, and the variation of the adaptive parameters.
In the boundary function, the three values ρi0, li, ρi∞ are the initial value of the boundary
function, the convergence rate of the function, and the final convergence boundary that is
the final value. The design of the three parameters constrains the trend and the range of the
state error, and the existence of the boundary function is the main reason for the selection
of APPC in this paper, and the angular velocity constraint in the special environment of the
asteroid is achieved by designing the boundary function.

5. Simulation Results

The simulations are divided into four parts. The first subsection shows the simulation
results for the Cubli Rovers on Earth and the second part demonstrates the effectiveness of
the proposed control method for the environment on the asteroid. The third section shows
the effect of changes in each parameter of the APPC controller on the control performance.
In the last part, the method in this paper compares the Backstepping method [37] and the
PD control method and provides the comparison results and discussion to show that the
APPC method can make the system reach the steady state well, and shows good control
performance in the control process, which can be well adapted to the requirements of the
asteroid microgravity environment. Thus, it is demonstrated that the proposed method in
this paper is superior to the Backstepping method and PD control method.

5.1. Simulation Results and Discussion on Earth

The target attitude angle is all φ = θ = ψ = 0, The initial angular velocity of Cubli
Rovers is ωx = ωy = ωz = 0. The initial attitude angle is set to φ = −0.3 rad, θ = 0.3 rad,
ψ = 0.3 rad. Gravitational acceleration g = 9.8 m/ s2, total mass is 2 kg, cube side length is
l = 0.2 m. The values of performance boundary functions and control parameters in the
simulation are shown in the following Table 1.



Aerospace 2022, 9, 728 14 of 31

Table 1. Simulation Parameter Settings.

λi
λa1 = 0.55, λa2 = 0.55, λa3 = 0.55
λu1 = 0.55, λu2 = 0.55, λu3 = 0.55

ki
ka1 = 0.01, ka2 = 0.01, ka3 = 0.01
ku1 = 0.01, ku2 = 0.01, ku3 = 0.01

ηi
ηa1 = 0.0053, ηa2 = 0.0053, ηa3 = 0.0053
ηu1 = 0.0053, ηu2 = 0.0053, ηu3 = 0.0053

ρi0
ρa10 = 0.5, ρa20 = 0.5, ρa30 = 0.5
ρu10 = 0.9, ρu20 = 0.9, ρu30 = 0.9

ρi∞
ρa1∞ = 0.008, ρa2∞ = 0.008, ρa3∞ = 0.008
ρu1∞ = 0.08, ρu2∞ = 0.08, ρu3∞ = 0.08

li
la1 = −2, la2 = −2, la3 = −2
lu1 = −2, lu2 = −2, lu3 = −2

Figures 5–7 show that the dynamic change curve of the attitude angle in the process,
which is also the dynamic performance of the attitude angle error. It can be seen that
the attitude angle tracking error has always been within the prescribed performance
range of the boundary function. When t→ +∞, eφ, eθ , eψ, successfully converged to zero,
ensuring that the key indicators of steady-state error and convergence rate in the prescribed
performance function. As seen in Figures 8–10, it can also be seen that the three-axis angular
velocity variation curves during the control process. As seen in Figures 11–13, it can be seen
that the tracking error is always within the prescribed performance range of the boundary
function, which meets the requirements of the control rate. As seen in Figures 14–16, it
reflects the input value of the entire system, that is, the input torque generated by the
flywheel. It can be seen from its peak value and time that it meets the actual flywheel
operating conditions.
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Figure 5. Curve of roll angle φ.
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Figure 6. Curve of yaw angle θ.
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Figure 7. Curve of pitch angle ψ.
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Figure 8. Curve of roll rate ωx.
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Figure 9. Curve of yaw rate ωy.
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Figure 11. Curve of error eωx.
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Figure 12. Curve of error eωy.
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Figure 13. Curve of error eωz.
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Figure 14. Curve of control input ux.
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Figure 15. Curve of control input uy.

Time[s]

0 2 4 6 8 10

In
p

u
t 

u
z

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 16. Curve of control input uz.

5.2. Simulation Results and Discussion in Asteroid Environment

The target attitude angle is all φ = θ = ψ = 0, The initial angular velocity of Cubli
Rovers is ωx = ωy = ωz = 0. The initial attitude angle is set to φ = −0.3 rad, θ = 0.3 rad,
ψ = 0.3 rad. Gravitational acceleration g = 0.002 m/ s2, total mass is 2 kg, cube side length
is l = 0.2 m, The values of performance boundary functions and control parameters in the
simulation are shown in the following Table 2.

The external disturbance values are as follows:

d =

 dx

dy

dz

 =

 0.02 sin(ωt)
0.02 sin(ωt)
0.02 sin(ωt)

 (42)

As seen in Figures 17–28, it has been verified by simulation results that it is possible
to ensure self-equilibrium stability without leaving the surface of the asteroid through
the prescribed performance design. Meanwhile, it can be seen from the figures that in
the presence of external disturbances, the control method designed in this paper can well
resist external disturbances and ensure that the attitude angle is stable near the steady
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state. Periodic chattering exists in the input to ensure anti-interference and make the
system robust.

Table 2. Simulation Parameter Settings.

λi
λa1 = 0.041, λa2 = 0.041, λa3 = 0.041
λu1 = 0.041, λu2 = 0.041, λu3 = 0.041

ki
ka1 = 0.01, ka2 = 0.01, ka3 = 0.01
ku1 = 0.01, ku2 = 0.01, ku3 = 0.01

ηi
ηa1 = 0.0053, ηa2 = 0.0053, ηa3 = 0.0053
ηu1 = 0.005, ηu2 = 0.005, ηu3 = 0.005

ρi0
ρa10 = 0.4, ρa20 = 0.4, ρa30 = 0.4
ρu10 = 0.1, ρu20 = 0.1, ρu30 = 0.1

ρi∞
ρa1∞ = 0.008, ρa2∞ = 0.008, ρa3∞ = 0.008
ρu1∞ = 0.005, ρu2∞ = 0.005, ρu3∞ = 0.005

li
la1 = −0.29, la2 = −0.29, la3 = −0.29
lu1 = −0.25, lu2 = −0.25, lu3 = −0.25
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Figure 17. Curve of roll angle φ.
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Figure 18. Curve of yaw angle θ.
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Figure 19. Curve of pitch angle ψ.
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Figure 22. Curve of pitch rate ωz.
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Figure 23. Curve of error eωx.
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Figure 24. Curve of error eωy.
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Figure 25. Curve of error eωz.
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Figure 26. Curve of control input ux.
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5.3. Performance Comparison Results for Different Control Parameters

(1) Figures 29–32 show that the influence of controller parameters λi, ki, ηi. No change
in performance boundary function. Three groups of parameters are selected:

Case1: λi = diag(0.041, 0.041, 0.041), ki = diag(0.01, 0.01, 0.01),
ηa = diag(0.0053, 0.0053, 0.0053), ηu = diag(0.005, 0.005, 0.005).

Case2: λi = diag(0.029, 0.029, 0.029), ki = diag(0.01, 0.01, 0.01),
ηi = diag(0.0035, 0.0035, 0.0035).

Case3: λi = diag(0.046, 0.046, 0.046), ki = diag(0.01, 0.01, 0.01),
ηi = diag(0.006, 0.006, 0.006).
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Figure 29. Curve of roll angle φ under different control parameters.
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Figure 32. Curve of control input ux under different control parameters.

(2) Figures 33–36 show that the influence of boundary performance function:
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Case1: ρai0 = 0.4, ρai∞ = 0.008, lai = −0.29, ρui0 = 0.1, ρui∞ = 0.005, lui = −0.25
Case2: ρai0 = 0.5, ρai∞ = 0.01, lai = −0.29, ρui0 = 0.2, ρui∞ = 0.01, lui = −0.25
Case3: ρai0 = 0.4, ρai∞ = 0.008, lai = −0.35, ρui0 = 0.1, ρui∞ = 0.005, lui = −0.35
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Figure 33. Curve of roll angle φ under different boundary performance function.
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Figure 34. Curve of roll rate ωx under different boundary performance function.
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Figure 36. Curve of control input ux under different boundary performance function.

5.4. Comparison Results and Discussion

The method APPC proposed in this paper is compared with the classical PD control
and the Backstepping method, and the results are shown in the following Figures 37–43.
Furthermore, to assess the Control Effort required by different control methods throughout
the process, the following indicator is introduced

E =
∫ t

0
u2dt (43)
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Figure 37. Curve of roll angle φ under different control methods.
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Figure 38. Curve of roll rate ωx under different control methods.
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Figure 43. Control effort comparisons under different methods.

The following Figures 44–46 shows the feasibility validation of the three control
methods in the case of an asteroid surface:
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Figure 44. APPC Feasibility Analysis.
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It can be seen in Figures 37–42 that the APPC control method and the Backstepping
method [37] can drive the system to a steady state and have a certain anti-disturbance
ability. The system under PD control is greatly affected by disturbance so the state quantity
changes periodically around the steady state. As seen in Figure 43, APPC can well limit the
overshoot, and the energy consumed is the smallest in the whole process.

However, it can be seen from Figures 44–46 that the speed generated by the Backstep-
ping method and the PD method in the control process has exceeded the tolerance, which
makes the Cubli Rovers leave the ground and cannot produce self-balancing stabilization
behavior. The APPC method proposed in this paper can ensure the normal movement of
the system during the control process by designing the boundary function and limiting
convergence rate and overshoot. This is also the advantage of the APPC control method
for asteroid surfaces proposed in this paper. The value of angular velocity in the control
process of the Backstepping method is too large to satisfy the constraint by verification.
Because the control effect of the Backstepping method is better in the need for greater
angular velocity input which in turn makes the adjustment time shorter and convergence
faster. Of course, control effort is also an important part of the reason. In the asteroidal
environment, the Cubli Rovers have no energy source, so energy is limited. Control effort
is a concern in order to achieve a larger detection area and a longer operating time.
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6. Conclusions

The balancing problem of a reaction-wheeled inverted pendulum Cubli Rovers is
investigated with consideration of the asteroid weak gravity and avoiding jumping con-
dition. By the presented adaptive prescribed performance control, the tracking errors of
the attitude angles and the angle velocity are constrained in the boundary function, and it
is proved that asymptotic convergence can be achieved globally. The simulation results
demonstrates the effectiveness of the proposed control method. Future work will consider
the control of the jump phase of Cubli Rovers, and the control method in terms of jitter
vibration in steady state. There is also a further optimization of the performance boundary
function to prepare for future balance control problems on uneven ground (more complex
ground conditions).
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