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Abstract: Propellantless propulsive systems such as Electric Solar Wind Sails are capable of accel-
erating a deep-space probe, only requiring a small amount of propellant for attitude and spin-rate
control. However, the generated thrust magnitude is usually small when compared with the local
Sun’s gravitational attraction. Therefore, the total velocity change necessary for the mission is often
obtained at the expense of long flight times. A possible strategy to overcome this issue is offered by
an Earth gravity-assist maneuver, in which a spacecraft departs from the Earth’s sphere of influence,
moves in the interplanetary space, and then re-encounters the Earth with an increased hyperbolic
excess velocity with respect to the starting planet. An Electric Solar Wind Sail could effectively drive
the spacecraft in the interplanetary space to perform such a particular maneuver, taking advantage of
an augmented thrust magnitude in the vicinity of the Sun due to the increased solar wind ion density.
This work analyzes Earth gravity-assist maneuvers performed with an Electric Solar Wind Sail based
probe within an optimal framework, in which the final hyperbolic excess velocity with respect to
the Earth is maximized for a given interplanetary flight time. Numerical simulations highlight the
effectiveness of this maneuver in obtaining a final heliocentric orbit with high energy.

Keywords: Electric Solar Wind Sail; Earth gravity-assist maneuvers; trajectory optimization;
heliocentric mission design

1. Introduction

An Electric Solar Wind Sail (or E-sail) is a propellantless propulsion system, first
proposed by Dr. Pekka Janhunen [1] about twenty years ago, which generates thrust
by exploiting the electrostatic interaction between solar wind ions and a charged tether
grid [2]. Similarly to other propellantless propulsive systems, such as the more conventional
photonic solar sails [3–7] and magnetic sails [8–10], the E-sail is able to operate without re-
quiring any propellant stored onboard to propel the spacecraft in interplanetary space. This
feature makes an E-sail a very interesting option for missions requiring a continuous propul-
sive acceleration, including the generation of displaced non-Keplerian orbits [11,12] and
the maintenance of artificial equilibrium points in the Sun–Earth gravitational field [13,14].

Since the magnitude of the propulsive acceleration generated by an E-sail is typically
small [15] when compared with that generated by conventional (chemical) thrusters, long
flight times are usually necessary to meet the velocity changes required by the scientific
mission. Examples of long-lasting missions with E-sail-based thrusts are available in the
literature. For example, Quarta et al. [16] discussed the possibility of performing an E-sail-
propelled cometary rendezvous and Janhunen et al. [17] analyzed an advanced mission
towards Uranus, while other more exotic and fascinating scenarios are represented by in
situ studies of the outer regions of the Solar System [18–20]. These mission concepts require
the spacecraft to significantly increase its heliocentric velocity in order to reach the target
within a reasonable flight time. To that end, a possible option is given by the so-called
solar wind assist maneuver [21,22], in which the spacecraft first approaches the Sun with
the aim of increasing the E-sail thrust magnitude due to the higher density of solar wind
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ions, and then moves towards the outer Solar System regions with a very large inertial
velocity magnitude. This strategy is similar to the well-known solar photonic assist [23],
when a solar sail approaches the Sun to increase the solar radiation pressure acting on the
reflective membrane.

A different method for increasing the spacecraft heliocentric velocity (without using
any propellant) is offered by the so-called ∆V-Earth Gravity-Assist (∆V-EGA) maneu-
ver [24]. To perform such a maneuver, a spacecraft first escapes from the gravitational
field of the launch planet and, after a heliocentric phase, re-encounters the starting planet
with an increased hyperbolic excess velocity. This allows high-energy final heliocentric
orbits to be obtained without requiring an increase in the propellant consumption of the
launch vehicle. In its original concept, suitable impulsive maneuvers (provided by chemical
thrusters) and intermediate flybys were used for the spacecraft to obtain a desired increase
in excess velocity relative to the Earth. The application of ∆V-EGA maneuvers has also
been proposed for spacecrafts equipped with low-thrust propulsion systems [25–27], such
as electric thrusters [28], solar sails [29,30], or a combination of both [31]. After a ∆V-EGA
maneuver and the subsequent re-encounter with Earth, the spacecraft can move towards
other planets [32,33] and moons [34], or correct possible orbital injection errors [35]. A
further possible application of ∆V-EGA maneuvers consists in obtaining a final heliocen-
tric orbit with a very high orbital energy, which allows the outer Solar System region to
be reached in a reasonable time interval. This kind of mission is especially suited for a
propellantless propulsive system [36], since a ∆V-EGA maneuver with a Sun approach
would be able to combine its effect with the thrust increase induced by the solar wind assist
maneuver (or solar photonic assist maneuver in the case of a solar sail spacecraft).

The aim of this work is to analyze the performance a ∆V-EGA maneuver with a space-
craft propelled by an E-sail, in order to quantify its effectiveness in obtaining high-energy
heliocentric orbits. The problem is addressed within an optimal framework [37], where the
hyperbolic excess velocity relative to the Earth after a given flight time is maximized. The
optimal control problem is solved by means of an indirect multiple shooting technique [38],
which allows the time histories of the E-sail attitude and the grid voltage to be obtained. To
simplify the analysis, the Earth’s heliocentric orbit is assumed to be circular, the spacecraft
motion is two-dimensional, and the dimensions of Earth’s sphere of influence are neglected.

The remainder of the paper is structured as follows. Section 2 describes the mathe-
matical model and formulates the optimal control problem. Section 3 applies the optimal
steering law to some potential mission scenarios. Section 4 highlights the main outcomes
of the work and suggests possible future developments.

2. Mathematical Model

The analysis of an E-sail-based ∆V-EGA maneuver is made within a two-body helio-
centric framework, in which the Earth is assumed to describe a circular orbit around the
Sun with radius r⊕ , 1 au. The spacecraft leaves the Earth’s sphere of influence at t0 , 0
with a hyperbolic excess velocity V∞0 when the E-sail is deployed. The dimensions of the
Earth’s sphere of influence are neglected here, so that the initial Sun–spacecraft distance
is approximately equal to r⊕. Without loss of generality, the Sun–spacecraft line at the
initial time t0 is chosen as the reference (fixed) direction. The spacecraft motion for t ≥ t0
is described with the aid of a heliocentric polar reference frame T (O; r, θ), where O is the
Sun’s center of mass, r is the Sun–spacecraft distance, and θ is a polar angle measured
counterclockwise from the reference direction to the Sun–spacecraft line; see Figure 1. The
radial and circumferential unit vectors are denoted as îr and îθ , respectively.
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Figure 1. Reference frame and state variables in the proposed mission scenario.

To establish the system dynamics for t ≥ t0, a mathematical model that defines
the propulsive acceleration vector a generated by the E-sail is necessary. According to
Huo et al. [39], the magnitude of a is inversely proportional to r and depends on the E-sail
attitude, defined by the orientation of the unit vector n̂ normal to the E-sail nominal plane
in the direction opposite to the Sun; see Figure 1. In vectorial terms, the E-sail-induced
propulsive acceleration is modeled as

a = τ
ac

2

( r⊕
r

)[
îr + (îr · n̂)n̂

]
(1)

where τ ∈ {0, 1} is a dimensionless parameter that accounts for the possibility of switching
either on (τ = 1) or off (τ = 0) the electron gun that maintains the E-sail electric voltage,
and ac is the spacecraft characteristic acceleration, that is, the classical sail performance
parameter defined as the maximum propulsive acceleration at a Sun–spacecraft distance
equal to r⊕. The projection of the propulsive acceleration vector given by Equation (1)
along the radial and circumferential directions yields

ar , a · îr = τ
ac

4

( r⊕
r

)
[3 + cos(2αn)] (2)

aθ , a · îθ = τ
ac

4

( r⊕
r

)
[sin(2αn)] (3)

where αn ∈ [−π/2, π/2] rad is the E-sail pitch angle, that is, the angle between n̂ and îr,
as sketched in Figure 1. In this work, the switching parameter τ and the pitch angle αn,
which may be varied by the onboard control system [40], are the two control variables of
the control problem to be discussed in the next section. Here, we assume that the E-sail can
freely vary its attitude with continuity. A more detailed analysis of E-sail attitude dynamics
is beyond the scope of this paper, but the interested reader may refer to refs. [41–43].
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Using the expressions of {ar, aθ} given by Equations (2) and (3), the spacecraft dynam-
ics in T are written as

ṙ = u (4)

θ̇ = v/r (5)

u̇ = −µ�
r2 +

v2

r
+ τ

ac

4

( r⊕
r

)
[3 + cos(2αn)] (6)

v̇ = −u v
r

+ τ
ac

4

( r⊕
r

)
sin(2αn) (7)

where µ� is the Sun’s gravitational parameter, and u (or v) is the radial (or circumferential)
component of the spacecraft heliocentric velocity vector. The dynamical system expressed
by Equations (4)–(7) is completed by four initial conditions (subscript 0)

r(t0) , r0 = r⊕ (8)

θ(t0) , θ0 = 0 (9)

u(t0) , u0 = V∞0 cos φ0 (10)

v(t0) , v0 =

√
µ�
r⊕

+ V∞0 sin φ0 (11)

where the auxiliary angle φ0 ∈ (−π, π] rad is measured counterclockwise from the ra-
dial unit vector îr to the geocentric velocity vector V ∞0 at t0; see Figure 1. Note that
Equations (10) and (11) may be rewritten, in a compact form, as

u2
0 +

[
v0 −

√
µ�
r⊕

]2

= V2
∞0

(12)

Spacecraft Trajectory Optimization

The objective of a ∆V-EGA maneuver is to increase the Earth-relative hyperbolic excess
velocity (with respect to its value at the launch phase) when the spacecraft re-encounters the
Earth at a given time instant t = t f . The optimal control problem is therefore formulated
by maximizing the cost function

J ,

√
u2

f +

[
v f −

√
µ�
r⊕

]2

(13)

where the subscript f denotes the values at t f , that is, u f , u(t f ) and v f , v(t f ). Note
that the cost function J represents the hyperbolic excess speed relative to the Earth at the
end of the ∆V-EGA maneuver, that is, when the spacecraft re-enters the Earth’s sphere of
influence. The constraints on the spacecraft state variables at time t f are therefore

r(t f ) , r f = r⊕ (14)

θ(t f ) , θ f = θ0 +

√√√√µ�
r3
⊕

t f ≡
√

µ�
r3
⊕

t f (15)
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The optimal control problem aimed at maximizing the value of J in Equation (13) is
solved by means of an indirect method [37]. To this end, first introduce a set of costate
variables {λr, λθ , λu, λv} associated with the physical state variables {r, θ, u, v}, the dy-
namics of which are given by Equations (4)–(7). Then, define the control Hamiltonian
functionH as [44]

H = λr u +
λθ v

r
+ λu

(
v2

r
− µ�

r2

)
− λv u v

r
+ λu ar + λv aθ (16)

where {ar, aθ} are given by Equations (2) and (3). The time variation of the costates is
described by the Euler–Lagrange equations, viz.

λ̇r = −
∂H
∂r

=
v λθ

r2 − λu

(
2 µ�

r3 −
v2

r2 −
ar

r

)
− λv

(u v
r2 −

aθ

r

)
(17)

λ̇θ = −∂H
∂θ

= 0 (18)

λ̇u = −∂H
∂u

=
v λv

r
− λr (19)

λ̇v = −∂H
∂v

=
u λv − 2 v λu − λθ

r
(20)

In particular, Equation (18) states that λθ is a constant of motion.
The trajectory that maximizes J may be found by enforcing the optimal steering law

{αn = α?n(t), τ = τ?(t)}, which defines the optimal time variations of the two control
parameters. According to Pontryagin’s maximum principle, the optimal steering law
maximizes, at any time, the Hamiltonian function given by Equation (16). Starting from
the results of ref. [39], the optimal steering law may be written as

αn ≡ α?n =
αp

2
(21)

τ ≡ τ? =
1 + sign

(
1 + 3 cos αp

)
2

(22)

where sign(2) denotes the signum function, and the auxiliary angle αp ∈ [−π/2, π/2] rad
is defined as

αp , arctan
(

λv

λu

)
(23)

Having defined the optimal steering law through Equations (21) and (22), the space-
craft trajectory that maximizes the cost function J is obtained by solving the associated
two-point boundary value problem (TPBVP). To this end, the dynamical Equations (4)–(7)
and the Euler–Lagrange Equations (17)–(20) are numerically integrated in double preci-
sion using a variable-order Adams–Bashforth–Moulton solver scheme [45,46], with initial
conditions given by Equations (8), (9) and (12), and terminal conditions expressed by
Equations (14) and (15).

The set of boundary conditions is completed by the transversality condition [44], to be
enforced both at t = t0 and t = t f , that is

λu0 = λv0 cot φ0 (24)

λu f =
u f

J
(25)
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λv f =
v f −

√
µ�/r⊕

J
(26)

where λu0 , λu(t0), λv0 , λv(t0), λu f , λu(t f ), and λv f , λv(t f ), while J is given by
Equation (13). Note that, according to Equation (24), the initial values of λu and λv are not
independent but are related through the auxiliary angle φ0.

Equations (24)–(26) complete the set of eight boundary conditions necessary to fully
define the TPBVP. A multiple shooting procedure is applied to obtain the values of the
set {φ0, λr0 , λθ0 , λv0}. Note that Equation (24) assumes that φ0 /∈ {0, π} rad, that is, the
spacecraft velocity relative to the Earth at t0 is not aligned with the Sun–spacecraft line; see
Figure 1. In the special case when φ0 ∈ {0, π} rad, the condition that relates λu0 and λv0 is
no longer valid, and the multiple shooting procedure gives the set of initial values of the
costates {λr0 , λθ0 , λu0 , λv0} as outputs.

3. Case Study

The previously described methodology to find the optimal ∆V-EGA trajectory is now
simulated in some potential mission applications. In the following analysis, in analogy
with previous works [29–31,36], it is assumed that the spacecraft leaves the Earth’s sphere
of influence with hyperbolic excess velocity in the set V∞0 = {0.5, 1, 1.5, 2, 2.5, 3} km/s.
At t0, the spacecraft deploys an E-sail with a characteristic acceleration in the set
ac ∈ {0.1, 0.2, 0.5, 1}mm/s2. These values of ac are compatible with a near- and mid-
term technology level [15,47].

A ∆V-EGA maneuver is then started, with the aim of maximizing the hyperbolic
excess speed relative to the Earth at its re-encounter, after a flight time t f = 1 year. The
performance parameter P, defined as

P ,
J −V∞0

V∞0

, (27)

is used to quantify the relative increase in hyperbolic excess velocity obtained from the
∆V-EGA maneuver. In particular, note that P = 0 corresponds to when the ∆V-EGA
maneuver gives no increase in the hyperbolic excess velocity, while P = 1 indicates that the
final excess velocity is twice its initial value.

Figure 2 shows the values of P obtained after a flight time of 1 year as functions of
the initial hyperbolic excess velocity V∞0 and the E-sail characteristic acceleration ac. It is
evident that, regardless of the E-sail performance level, the ∆V-EGA maneuver is more
effective in increasing the hyperbolic excess velocity when its initial value is small. In those
cases, indeed, the final values are several times larger than the initial values. However, the
∆V-EGA contribution is remarkable (on the order of some kilometers per second), even for
large values of V∞0 .

Figures 3–6 show some examples of the optimal ∆V-EGA maneuvers with t f = 1 year,
V∞0 = 1 km/s, and different ac and show the spacecraft trajectory and the corresponding
optimal steering law of the pitch angle. The steering law of the switching parameter is not
shown because τ? ≡ 1 for the whole flight in all of the considered scenarios. This is not
surprising, because the aim of the ∆V-EGA maneuver is to obtain a large value of J, which
requires the E-sail to be always switched on during the approach phase towards the Sun.
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Figure 2. ∆V-EGA performance parameters P as functions of V∞0 and ac for a flight time of 1 year.
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Figure 3. ∆V-EGA maneuver trajectory and corresponding optimal steering law αn = α?n(t) for
ac = 0.1 mm/s2, V∞0 = 1 km/s, and t f = 1 year.
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Figure 4. ∆V-EGA maneuver trajectory and corresponding optimal steering law αn = α?n(t) for
ac = 0.2 mm/s2, V∞0 = 1 km/s, and t f = 1 year.
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Figure 5. ∆V-EGA maneuver trajectory and corresponding optimal steering law αn = α?n(t) for
ac = 0.5 mm/s2, V∞0 = 1 km/s, and t f = 1 year.
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Figure 6. ∆V-EGA maneuver trajectory and corresponding optimal steering law αn = α?n(t) for
ac = 1 mm/s2, V∞0 = 1 km/s, and t f = 1 year.
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4. Conclusions

This paper analyzed the performance of an Earth gravity-assist maneuver for a space-
craft propelled by an Electric Solar Wind Sail. To this end, an optimal control problem
was formulated with the aim of finding the steering law that maximizes the spacecraft
hyperbolic excess velocity when it re-encounters the Earth. The results, obtained with an
indirect multiple shooting technique, highlight that an Earth gravity-assist maneuver is able
to provide a significant increment in the hyperbolic excess velocity relative to the Earth, and
the relative increase is larger when the initial excess velocity is smaller. Accordingly, this
strategy could allow high-energy heliocentric orbits to be obtained, even when the initial
excess velocity provided by the launcher is small, thus opening the possibility of reaching
large heliocentric distances in reasonable flight times. Future work will concentrate on
a refinement of the model discussed here by accounting for the Earth’s gravity and the
eccentricity and mutual inclination of the planetary heliocentric orbits.
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Notation
a propulsive acceleration vector [mm/s2]
ac characteristic acceleration [mm/s2]
ar radial component of a [mm/s2]
aθ circumferential component of a [mm/s2]
H Hamiltonian function
J cost function; see Equation (13) [km/s]
îr radial unit vector
îθ circumferential unit vector
P dimensionless performance parameter, see Equation (27)
r Sun–spacecraft distance [au]
r⊕ Sun–Earth distance [au]
t time [days]
T polar reference frame
u radial component of the spacecraft velocity [km/s]
V∞ spacecraft velocity vector relative to the Earth [km/s] (with V∞ = ‖V∞‖)
v circumferential component of the spacecraft velocity [km/s]
αn E-sail pitch angle [rad]
αp auxiliary angle; see Equation (23) [rad]
θ polar angle [rad]
λr dimensionless costate variable adjoint to r
λu dimensionless costate variable adjoint to u
λv dimensionless costate variable adjoint to v
λθ dimensionless costate variable adjoint to θ

µ� Sun’s gravitational parameter [km3/s2]
τ dimensionless switching parameter
Subscripts
0 initial value
f final value
Superscripts
? optimal value
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