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Abstract: The effects of elastic cavity walls on noise generation at transonic speed are investigated
for the generic M219 cavity. The flow is simulated with the Spalart–Allmaras (SA) improved delayed
detached-eddy simulation (IDDES) turbulence model in combination with a wall function. The
structural analysis software uses a modal formulation. The first 50 structural normal mode shapes are
included in the simulation, spanning frequencies of 468–2280 Hz. Results are compared with those
from a reference simulation with rigid cavity walls. A spectral analysis of pressure fluctuations from
a microphone array above the cavity evinces a distinct tone at 816 Hz, which is absent in the reference
simulation. Furthermore, the power of the 4th Rossiter mode at 852 Hz is depleted, implying a
significant energy transfer from the fluid to the structure. Spectral proper orthogonal decomposition
(SPOD) is employed for analyses of cavity wall pressure fluctuations and wall displacements. The
SPOD mode energy spectra show results consistent with the spectra of the microphone array with
respect to the tone at 816 Hz and the depletion of the energy at the 4th Rossiter mode. Furthermore,
the SPOD mode energy spectra show energy spikes at additional frequencies, which coincide with
structural eigenfrequencies.

Keywords: FSI; aeroelasticity; aeroacoustics; cavity flow; hybrid RANS-LES

1. Introduction

Cavity flows are present in several aerospace applications. For instance, weapon
bays, landing gear bays, and other openings in an airframe. Cavity flows are inherently
unsteady and characterised by energetic tonal and/or broadband pressure fluctuations.
Broadband noise predominates in shallow cavities, whereas tonal components predominate
in deep cavities [1]; the tonal components are referred to as Rossiter modes. The presence
of energetic pressure fluctuations has several potential implications; it may affect the
aerodynamics, structural integrity, interior noise level, and the surroundings in the form
of noise. Vibrations stimulated by dynamic loads may be detrimental to the structure and
provoke structural instabilities and failures. For instance, protracted vibrations may cause
acoustic fatigue. Furthermore, vibrations can propagate in the structure and apparatuses
may be exposed to vibration levels beyond their certified limit.

High Reynolds number cavity flows have been extensively investigated, both theoret-
ically and experimentally, and from a variety of perspectives. A multitude of numerical
studies on cavity flows using computational fluid dynamics (CFD) with a host of different
turbulence modelling techniques have been reported in the literature. The use of unsteady
Reynolds-averaged Navier–Stokes (RANS) for cavity flows is reportedly less accurate [2,3];
by its nature, unsteady RANS cannot predict the full spectrum of turbulent scales [3].
Large-eddy simulation (LES) provides excellent results [4], and many hybrid RANS-LES
methods show good agreement with experimental data [2,5,6]. However, cavity flows
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at high Reynolds numbers are challenging [3]; a variety in accuracy has been reported
regarding the prediction of Rossiter mode frequencies and magnitudes with the use of
hybrid RANS-LES techniques.

Many studies focusing on cavity flow noise generation have been reported in the
literature. Turbulence-resolving methods are integral to the prediction of noise stemming
from cavity flows [7]. Hybrid RANS-LES methods have successfully been used in many
studies. There are a mere few studies presented in the open literature on the conjunction of
aeroelasticity and aeroacoustics, notwithstanding the array of publications on cavity flow
noise generation. A recent study by Łojek et al. [8] investigated the effect of elastic cavity
walls on noise generation at a very low Reynolds number. They used the detached-eddy
simulation model for flow simulation and the Ffowcs Williams and Hawkings acoustic
analogy to predict far-field noise. They reported that the elastic cavity generates tonal noise
in the range of 1–10 kHz, at frequencies that coincide with structural eigenfrequencies.
Several of the tones have a sound pressure level (SPL) that is approximately 30 dB higher
than the broadband noise in the corresponding rigid cavity.

We examine the effects of elastic cavity walls on the noise generation at transonic
speed. The M219 cavity is used, the cavity is simulated with both rigid and elastic cavity
walls. A flow solver validation is undertaken with the rigid cavity. Experimental data by
Henshaw [9] and LES data by Lerchevêque et al. [4] are used for reference. No experimental
reference data are available for the elastic cavity simulation, and the elastic structural model
is fictitious. A microphone array is situated above the rigid and the elastic cavity. The
effects of the elastic walls are evaluated by spectral analysis of the microphone signals.
Furthermore, spectral proper orthogonal decomposition (SPOD) is employed to analyse
wall pressure fluctuations for the rigid and the elastic cavity. Additionally, the SPOD of
the wall displacements are presented for the elastic cavity. The flow solver validation
is undertaken with the wind tunnel configuration used by Henshaw [9]. A simplified
geometrical setup is used to evaluate the effects of the elastic cavity walls. The effects of the
rigid simplified geometrical configuration in relation to the rigid wind tunnel configuration
are presented as well.

The accumulative experience of hybrid RANS-LES methods in combination with
wall functions is not vast. However, the practical interest is high, particularly for indus-
trial aeroelastic applications at high Reynolds numbers where resolved turbulence and
grid deformations are of importance. A few benchmark cases have been reported in the
literature [10,11], with propitious results. This paper does not provide an exhaustive exam-
ination of hybrid RANS-LES methods in combination with wall functions. The methods
employed are merely evaluated in terms of the SPL and the overall sound pressure level
(OASPL) derived from cavity wall pressures, and velocity and shear stress profiles are
compared with LES data [4].

The forthcoming section describes the numerical methods. The following section
introduces the two geometries and the corresponding computational grids as well as results
from simulations on the rigid cavity. The ensuing section introduces the finite element (FE)
model and its modal representation. Subsequently, the results from the fluid–structure
interaction (FSI) simulation are presented and compared to the reference simulation of the
rigid cavity in order to evaluate the effects on the noise generation due to the elastic walls.
The closing section summarises the paper and the most important findings.

2. Numerical Methods

The software M-Edge [12,13] is used for the flow simulations and the FSI simula-
tion. M-Edge incorporates a Navier–Stokes flow solver and a modal-based solver for
structural analysis.

2.1. Method for Flow Simulation

The compressible flow solver M-Edge uses an edge-based formulation and a node-
centred finite-volume method to discretise the governing equations. A second-order central
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difference scheme with a Jameson-type scalar artificial dissipation is employed for the
spatial discretisation of the momentum equation and for the turbulent transport equations.
The equations are integrated in time using an implicit second-order backward differencing
scheme together with a dual time-stepping methodology, which uses an explicit steady-
state time marching scheme [12,13]. Here, fifty sub-iterations are performed for each time
step for all simulations, which results in an average decrement of the order 101.5 of the
maximum error of the density residual. The aerodynamic coefficients and the maximum
temperature are converged within the 50 sub-iterations. The delayed detached-eddy
simulation (DDES) [14] based on the Spalart–Allmaras (SA) model [15] and SA-based
improved DDES (IDDES) [16] turbulence models are employed. The free-stream flow
properties correspond to the conditions used in the wind tunnel test [9]; the conditions are
presented in Table 1. A total physical time of 0.7 s is simulated for all cases. The first 0.1 s is
discarded to ensure that the flow field is established for the analysed signals; hence, the
latter 0.6 s is used for statistical analysis.

Rossiter mode powers and frequencies are generally not constant over time. The mode
power, in particular, could change substantially through so-called mode switching [17],
which means that the mode energy can switch from one mode to another over large time
scales [18]. This makes it more complicated to ascertain a statistically stationary flow field.
Here, mean values, root mean square values, and Rossiter frequencies based on cavity wall
pressure fluctuations are monitored to confirm that the flow field is established.

A time step of ∆t = 1.0 · 10−5 s is used, which is 0.6 percent of the cavity length
travel time. The CFL number, (U∆t)/∆l, where U is the velocity magnitude and ∆l is
the cell length in the direction of the velocity, is approximately unity or less inside the
cavity and at most locations outside the cavity. However, the use of a structured grid—see
Sections 3.1 and 3.2—entails that streaks of wall-resolved cells reach the free stream above
the cavity front and rear walls. The CFL number in the streaks above the boundary layer is
approximately 10. This is also the main incentive to employ a wall function in this study.
The wall function allows for a much larger first cell height, which in turn enables the use of
a larger time step.

Table 1. Free-stream conditions.

Mach Number Speed, U∞ Static Pressure Static Temperature

0.85 278.16 m·s−1 62,100.00 Pa 266.53 K

2.2. Method for Structural Simulation

The modal-based FSI formulation in M-Edge is strongly coupled to the flow solver, in
the sense that the flow solver and the structural solver exchange information in each sub-
iteration. The method is based on the eigenvalue problem of the full structural FE model
and provides a set of linear equations describing structural deformations. A Newmark
time-integration scheme is used. Validations of the modal-based solver have previously
been undertaken for FSI problems [19,20]. The FE model and its modal representation are
introduced in Section 4.

3. Simulations with Rigid Cavity Models

This section introduces the cavity geometry, the two computational domains, and the
corresponding grids. The wind tunnel model that is used for the flow solver validation
is first presented, followed by the simplified geometry, which is used for the ensuing FSI
simulation. The wind tunnel model serves as a benchmark case for the choice of turbulence
model for the FSI simulation. Simulation results are compared with experimental data for
the wind tunnel model and with LES data. Furthermore, a comparison between the wind
tunnel configuration and the simplified configuration is presented.
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3.1. Wind Tunnel Model

The computational grid used for the validation of the flow solver corresponds to the
geometry of the wind tunnel experiment by Henshaw [9]. The dimensions of the wind
tunnel test rig are shown in Figure 1. The size of the computational domain corresponds to
the size of the wind tunnel test section, which is shown in Figure 2. The sting used to fasten
the rig in the wind tunnel is not included in the CFD model. The main reason for excluding
the sting is to facilitate the grid generation and to make the grid as simple as possible.
Potential influences on the flow in the cavity from the sting are considered negligible.

31
X

Z

30

X

Y

21 25 17

15

Rig centreline

Cavity centreline

1

5.75
k20 k29

Figure 1. Schematics of the M219 cavity used in the wind tunnel experiment. Length units in inches.
Positions for the Kulite transducers are indicated by red markers. L, W, and D are the cavity length,
width, and depth, respectively.

Figure 2. Computational domain for the wind tunnel model.

The positions of the Kulite transducers used for measurements in the wind tunnel test
are shown in Figure 1 and listed in Table 2. The positions of the transducers are defined in
the coordinate system according to Figure 1, with the origin in the cavity centre and on the
plane of the rig’s top surface. The original geometry was defined in imperial units; thus, it
is convenient to restate the dimensions and the positions of the Kulite transducers here in
imperial units. For clarity, all other dimensions and quantities are given in metric units.

Table 2. Location of the Kulite transducers.

Probe x (inch) y (inch) z (inch)

K20 −9.0 −1.0 −4.0
K21 −7.0 −1.0 −4.0
K22 −5.0 −1.0 −4.0
K23 −3.0 −1.0 −4.0
K24 −1.0 −1.0 −4.0
K25 1.0 −1.0 −4.0
K26 3.0 −1.0 −4.0
K27 5.0 −1.0 −4.0
K28 7.0 −1.0 −4.0
K29 9.0 −1.0 −4.0
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The grid is structured and contains approximately 71 million nodes. The maximum
edge length—in all directions—of the hexahedral elements inside the cavity is 2 mm.
Figure 3 shows the grid at the far-field boundaries and Figure 4 shows a cross-sectional
plane of the grid in the cavity region. A weak adiabatic no-slip boundary condition with
a wall function [21] is applied to the rig’s surfaces. The first cell height is 0.25 mm. The
time-averaged, dimensionless wall distance y+ is approximately 100 on the rig’s top surface,
upstream of the cavity and in the rear part of the cavity. A weak characteristic, far-field
boundary condition is used for the domain inlet and outlet, whereas a free-slip boundary
condition is applied to the boundaries parallel to the cavity test rig.

Figure 3. Computational grid at the far-field boundaries for the wind tunnel model.

Figure 4. Cross-section of the grid for the wind tunnel model in the xz-plane at y = 0.

3.2. Simplified Geometry

The simplified geometry is used to evaluate the effects of the elastic cavity walls on
the noise generation; the computational domain for the simplified geometry is shown
in Figure 5.

(a) (b)

Figure 5. (a) Computational domain for the simplified geometry. (b) Cavity and top surface. The co-
ordinate system is defined with the origin located in the cavity centre on the plane of the top surface.
Blue boundary: free-slip. Red and green boundaries: no-slip.
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The simplified geometry is employed in lieu of the wind tunnel model for several
reasons. Firstly, the computational domain is expanded in order to prevent any influence
on the flow field from the wind tunnel walls. Secondly, the geometry is simplified such that
only the rig’s top surface and the cavity are included. The reasons for the simplification
are twofold: to reduce the number of grid points and to avert turbulence around the rig
that would affect the acoustic field. The width of the top no-slip surface (red boundary
in Figure 5) and the distance between the leading edge and the cavity are the same as
those for the wind tunnel geometry. The top surface is symmetric about the yz-plane, the
distance between the cavity’s rear wall and the trailing edge of the top no-slip surface is
thus different from the wind tunnel geometry. The top no-slip surface is retained in the
simplified geometry such that a boundary layer develops upstream of the cavity.

A free-slip boundary condition is employed for the domain’s bottom boundary (blue
surface in Figure 5a), which is flush with the top no-slip surface. A weak adiabatic no-slip
boundary condition with a wall function [21] is applied to the top surface (red surface in
Figure 5) and to the cavity walls. A weak characteristic far-field boundary condition is used
for the outlying domain boundaries.

The simplified grid is similar to the wind tunnel grid in the cavity region. The
maximum cell edge length is 2.0 mm. The first cell height is 0.25 mm, which results in
y+ ≈ 100 on the top surface upstream of the cavity and in the rear part of the cavity.
Cross-sectional planes of the whole computational domain are shown in Figure 6a,b. A
grid-density box is added above the cavity; it is reaching 1.0414 m in the x-, y-, and z-
directions, measured from the origin. Figure 6c,d show a zoomed-in view of the density
box region. The maximum cell size within the density box is approximately 15 mm. In total,
the grid contains approximately 43 million nodes.

(a) xz-plane, y = 0. (b) yz-plane, x = 0.

(c) xz-plane, y = 0. (d) yz-plane, x = 0.

(e) xz-plane, y = 0. (f) yz-plane, x = 0.

Figure 6. Cross-sectional planes of the grid for the simplified geometry. (a,b) Whole computational
domain. (c,d) Density box region, marked with the red lines. (e,f) Cavity region.

Pressure fluctuations p′ at 21 microphones situated in the free-stream flow above
the cavity are examined for the simplified geometry. All microphones are situated at a
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radius of 1.016 m, measured from the origin. They are all situated within the grid-density
box, see Figure 6c,d. The microphones are positioned at angles θ = 0, 20, 40, 60, 80◦ and
ϕ = 0, 45, 90, 135, 180◦, according to Figure 7. Microphones in the negative y-direction are
not presented due to symmetry.

Figure 7. Microphone positions.

3.3. Results with Rigid Cavities

Two simulations are performed with the wind tunnel model: one with SA-DDES
and one with SA-IDDES. For the simplified geometry, one simulation is undertaken with
SA-IDDES. Figure 8 displays turbulent structures using iso-surfaces of the Q-criterion.

(a)

(b)

(c)

Figure 8. (a) Wind tunnel model, SA-DDES. The visibility of the rig’s top surface and left cavity wall
is turned off. (b) Wind tunnel model, SA-IDDES. (c) Simplified geometry, SA-IDDES. The visibility of
the left cavity wall is turned off, and the top surface is transparent.

A richer content of resolved turbulence is apparent in the SA-IDDES simulation
compared with the SA-DDES simulation with the wind tunnel model. It is well-known
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that the DDES model suffers from a slow transition from modelled turbulent stresses in the
RANS mode to resolved turbulent stresses in the LES mode, the so-called grey area [22,23].
Moreover, the wedge-shaped geometry used in the wind tunnel model induces a local
angle-of-attack over the leading edge, which causes a small separation bubble to form. The
separation bubble is modelled in the RANS mode with SA-DDES, but it is partly resolved
in the LES mode with SA-IDDES. The resolved turbulent fluctuations obtained with SA-
IDDES are convected downstream to the cavity’s leading edge and spur the development
of resolved turbulence in the free shear layer of the cavity. With SA-DDES, the near-wall
flow upstream of the cavity is modelled in the RANS mode; as a result, there is no resolved
turbulence present at the cavity’s leading edge. This further delays the development of
resolved turbulence in the free shear layer, which in turn affects the flow inside the cavity.
A richer content of resolved turbulence is observed with the simplified geometry using SA-
IDDES compared to SA-DDES with the wind tunnel model. Figure 9 shows velocity profiles
from the three simulations with the rigid cavity. The LES data by Larchêque et al. [4] are
included for reference. The geometric configuration for the LES simulation was akin to the
simplified geometry used here; however, only the cavity and a no-slip top surface were
included. Inlet velocity profiles were used to mimic the conditions in the wind tunnel.
The profiles were obtained from a boundary layer simulation since no experimental data
of the velocity field were available [4]. The streamwise and vertical velocity profiles for
SA-IDDES, for the wind tunnel model, and for the simplified geometry overall align with
the LES profiles; the exception is the vertical velocity in the lower part of the cavity at
x/D ≈ 2.5 (1.5 mm from the rear cavity wall), see Figure 9b. The SA-DDES simulation
with the wind tunnel model gives a substantially different streamwise velocity profile at
x/D = −2.5. The SA-DDES profiles have a larger deviation than the SA-IDDES simulations
at most positions in the cavity. The deviation of the vertical velocity at x/D ≈ 2.5 is even
larger with SA-DDES. The more negative vertical velocities close to the rear wall are related
to the slightly higher velocities predicted further upstream of the rear wall at 1 ≤ x/D ≤ 2
compared to the LES reference profiles.

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

1

(a)

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

1

(b)

Figure 9. Time-averaged velocity profiles. WT and SG denote the wind tunnel model and the
simplified geometry, respectively. (a) Streamwise velocity < u >. (b) Vertical velocity < w >.

Figure 10 shows the resolved shear stress profiles. The profile at x/D = −2 for the
SA-IDDES simulation with the wind tunnel model aligns with the LES profile, whereas the
other two simulations deviate. This reflects the higher turbulent content in the boundary
layer for the wind tunnel model using SA-IDDES. The shear stress profiles for the wind
tunnel model using SA-IDDES align reasonably well with the LES profiles at all positions.
The SA-DDES simulation gives a much greater deviation from the LES profiles due to
the small amount of turbulent content in the boundary layer upstream of the cavity, and
also due to the grey area effect. The profiles from the simulation with the simplified
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geometry with SA-IDDES align better with the LES data in the rear part of the cavity than
the simulations with the wind tunnel model.

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

1

Figure 10. Time-averaged resolved shear stress < u′w′ >. WT and SM denote the wind tunnel model
and simplified geometry, respectively.

The pressure is sampled at the same positions as the locations of the Kulite transducers,
see Table 2. The sound pressure level (SPL) and overall sound pressure level (OASPL) are
computed at the probes. The SPL is defined as:

SPL = 10 log10

(
PSD
p2

re f

)
. (1)

The reference sound pressure is pre f = 2.0 · 10−5 Pa. The power spectral density PSD
is computed using Welch’s method [24], the MATLAB function pwelch [25] is employed.
A Hanning window is used, and the signals from the CFD simulations are divided into
16 segments. The experimental data signal is much longer—approximately 3.4 s—and it
is divided into 96 segments. The window size in terms of physical time is approximately
70 ms for both the experimental and the CFD signals. A window overlap of 50 percent
is used.

The OASPL is computed as:

OASPL = 20 log10

(
p′rms
pre f

)
. (2)

Here, the subscript rms denotes the root mean square value of the pressure fluctuations
p′, which is defined as the difference between the local instantaneous pressure and the
local time-averaged pressure. The Rossiter mode frequencies are identified from the peak
value positions in the power spectra. The frequencies can differ by a few Hertz between
the probe positions. The frequencies are computed as the mean frequency obtained at the
probes; the frequencies are given in Table 3. The SPL and OASPL at probes k20–k29 are
given in Figure 11 for the three simulations and for the experimental data.

Table 3. Rossiter mode frequencies. WT and SG denote the wind tunnel model and simplified
geometry, respectively.

Mode Experimental (Hz) SA-DDES, WT
(Hz)

SA-IDDES, WT
(Hz)

SA-IDDES, SG
(Hz)

1 140 - 138 130
2 352 365 370 381
3 592 592 611 614
4 812 822 854 852
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Figure 11. (a–j) SPL at probes k20–k29. (k) OASPL at probes k20–k29. Here, WT and SG denote the
wind tunnel model and simplified geometry, respectively.

As seen in Figure 11, the first Rossiter mode is poorly resolved in the SA-DDES
simulation. An increase in SPL can be seen at several probes, but the peak values are
obscured. Rossiter modes 2–4 are better predicted in terms of frequency with the use of
SA-DDES compared with SA-IDDES. However, SA-DDES overpredicts the magnitude
of the Rossiter modes at most probes. An example is seen for the 3rd Rossiter mode at
probe k24, Figure 11e; SA-DDES gives a significant power peak, whereas the power of this
mode is small with SA-IDDES, which aligns with the experimental data. The 3rd Rossiter
frequency is apparent with SA-IDDES for the simplified geometry at probe k24 as well. As
seen in Figure 11, the simplified geometry gives generally higher mode powers—especially
for the 3rd and 4th Rossiter modes—and broadband noise than the wind tunnel model. It
should be mentioned that the magnitudes in the SPL spectra should not be considered as
exact; the reasons are both numerical and physical. Welch’s method provides an estimation
of the PSD. The confidence levels can easily be computed but are not shown in Figure 11.
The 99 percent confidence bounds are approximately ±1.15 dB for the experimental SPL
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and ±2.85 dB for the CFD-based spectra. Increasing the confidence level results in a lower
frequency resolution, which is not desirable here. An analysis with a higher confidence
level (not shown here) shows that the obtained differences in Figure 11 are significant. The
physical aspect, as previously mentioned, is that neither the Rossiter mode amplitudes nor
the frequencies are constant over time.

The OASPL for the simplified geometry using SA-IDDES, as seen in Figure 11k,
consistently shows higher levels than simulations with the wind tunnel model. This can be
attributed to the lower level of resolved turbulence in the boundary layer upstream of the
cavity. The OASPL for the wind tunnel model with SA-IDDES aligns reasonably with the
experimental data. In the front part of the cavity, the OASPL agrees with the experiment,
whereas the OASPL is approximately 1 dB lower in the rear-most part of the cavity. The
OASPL using SA-DDES and the wind tunnel model gives a higher deviation in comparison
with the experimental data.

In summation, the grey area effect is less apparent with SA-IDDES, which provides a
better prediction of the power levels. On the other hand, SA-DDES predicts the Rossiter
mode frequencies better—first mode excluded—compared to the experimental data. Fur-
thermore, the velocity and shear stress profiles using SA-IDDES align better than SA-DDES
with the LES data. For the ensuing FSI simulation, SA-IDDES is employed. It is evident
that the flow simulation methods can be improved to better predict the Rossiter modes.
An accurate prediction of the Rossiter modes is especially important for an elastic cavity
because of the interaction with structural eigenmodes. However, in this numerical study,
the exact prediction of the Rossiter modes is not paramount since no empirical data regard-
ing structural deformations are available. The simulation with the simplified geometry
presented in this section is used as the reference case for the FSI simulation.

4. Finite Element Model and the Modal Representation

The structural finite element (FE) model of the cavity is introduced, followed by a
description of the modal representation.

4.1. Finite Element Model

The aeroelasticity of the M219 cavity has not been tested in a wind tunnel. A rigid
cavity was considered in the test by Henshaw [9], and no structural model associated with
the test is available. For this numerical study, it is desired that the structure is stimulated
such that significant structural vibrations are obtained; however, the magnitude of the
vibrations should be realistic. A real cavity structure—for example, a weapon bay—is
often complex, and it is not obvious what could be considered as a realistic vibration
level. Moreover, the vibration level may differ substantially between different weapon bay
designs. Here, the structure is made as simple as possible, representing a cavity made of
aluminium sheets with uniform properties. A material thickness of 1.5 mm is used. This
resulted in a maximum displacement of approximately 1.2 mm for the floor and the side
walls during the FSI simulation presented in Section 5. The maximum displacement is
0.24 percent of the cavity length, which falls within the range considered to be reasonable
for this study. Furthermore, in this study, it is undesirable for any structural eigenfrequency
to coincide with a Rossiter mode frequency. Therefore, in choosing the thickness—which
affects the eigenfrequencies—it is ascertained that the structural eigenfrequencies are
separated from the Rossiter frequencies.

The FE analysis software MSC Nastran [26] is employed to formulate and solve the
structural eigenvalue problem. The FE model consists of 6800 quadrilateral first-order shell
elements (called CQUAD4 in MSC Nastran). All elements are squares, with edge lengths of
∆s = 5.08 mm. The FE model is shown in Figure 12.

Young’s modulus is set to 70 · 109 kg ·m−1s−2, Poisson’s ratio is 0.33, and the material
density is 2700 kg ·m−3. The structural damping is set to zero; hence, only aerodynamic
damping acts on the system.
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The maximum resolved frequency is calculated as fmax = c0/(n∆s), where n is the
number of elements per wavelength, and c0 ≈ 327 m · s−1 is the speed of sound in the fluid.
At least four elements are required to capture a wave; however, adding a few elements
significantly increases the resolution. For example, setting n = 8 gives fmax ≈ 8046 Hz,
which is well beyond the highest considered frequency. The FE grid resolution together
with the element type are important for the accuracy and resolution of the normal mode
shapes. The grid points have six degrees of freedom. All six degrees of freedom are
constrained at the grid points that are connected to the top surface at z = 0.

Figure 12. Finite element model.

4.2. Modal Representation of the Structural Model

The eigenvalue problem of the FE model is solved using the real eigenvalue analysis
solver in MSC Nastran [26] (called SOL 103 in Nastran). The natural frequencies, gener-
alised masses, and the normal mode shapes are then used by the modal-based solver. In
M-Edge, each normal mode shape is stored in a so-called perturbation grid. A perturbation
grid is the CFD grid deformed according to a normal mode shape. The normal mode shapes
are mapped onto the CFD grid using the shell projection tool in the software Scope [27].
The first 50 normal mode shapes are included in the modal representation of the cavity,
spanning frequencies of 468–2280 Hz. The frequencies for all modes are given in Table 4.
Normal mode shapes 1 and 50 are shown in Figure 13.

(a) (b)

Figure 13. Illustration of the lowest and highest normal mode shapes included in the modal
representation. (a) Mode 1. (b) Mode 50.

Table 4. Structural eigenfrequencies.

Mode f (Hz) Mode f (Hz) Mode f (Hz) Mode f (Hz)

1 468 14 949 27 1546 40 2026
2 509 15 956 28 1587 41 2082
3 577 16 992 29 1642 42 2087
4 646 17 1042 30 1664 43 2087
5 675 18 1087 31 1665 44 2120
6 702 19 1107 32 1732 45 2163
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Table 4. Cont.

Mode f (Hz) Mode f (Hz) Mode f (Hz) Mode f (Hz)

7 759 20 1139 33 1762 46 2177
8 801 21 1214 34 1823 47 2214
9 812 22 1242 35 1849 48 2255

10 836 23 1278 36 1893 49 2265
11 841 24 1350 37 1942 50 2280
12 877 25 1363 38 1992
13 933 26 1446 39 2005

5. Results with the Elastic Cavity
5.1. Analysis of Noise in the Free-Stream Flow

Figures 14 and 15 show the SPL and the OASPL at the microphones, see Figure 7. The
same methods as those previously described are used for the computation of the SPL and
the OASPL; this means that the confidence level is ±2.85 dB. An analysis with a higher
confidence level was undertaken (not shown), which showed that the differences in the
peak magnitudes discussed henceforth are significant.

Firstly, for the microphones upstream of the cavity at ϕ = 135◦–180◦, Figures 14o and 15a–f,
the SPLs are flattened at high frequencies. This can be attributed to limited pressure fluctu-
ations. In other words, the differences are numerical rather than physical.

The SPL spectra at the microphones showed that the four Rossiter modes are altered
by the interaction between the fluid and the structure. The power of the 1st Rossiter mode
at 130 Hz is slightly lower for the elastic cavity at most of the microphones. This is most
apparent in Figure 14c,g,h. The spectra show the opposite trend for the 2nd Rossiter mode
at 381 Hz, namely an increase in power for the elastic cavity. This can be clearly seen in
Figure 14j–m. The power of the 3rd Rossiter mode at 614 Hz is lower for the elastic cavity
at most of the microphones. The largest differences are obtained in Figure 14g–i. A clear
and consistent difference between the rigid and the elastic cavity simulation is obtained
for frequencies between 800 Hz and 900 Hz. The 4th Rossiter mode is within this range,
namely at 852 Hz. In addition to the Rossiter mode, there is another peak at a frequency of
f ≈ 900 Hz for the rigid cavity case. This peak was identified through an analysis with a
higher frequency resolution, which is not shown here. The power of the 4th Rossiter mode
is depleted at most microphones for the elastic cavity. Concurrently, the peak at 900 Hz is
intensified, and a tone is induced at 816 Hz; these changes are clearly seen in Figure 14d.

The analysis using a higher frequency resolution (not shown here) revealed a few
more tones at higher frequencies, which are absent in the rigid cavity. A tone at 1139 Hz
and another at 1184 Hz were obtained. The former coincides with a structural eigenfre-
quency, whereas the latter does not. Another tone was identified at 1354 Hz, which is
close to a structural eigenfrequency. These tones are further investigated in the ensuing
SPOD analysis.

Figures 14 and 15 show that none of the Rossiter modes coincides with any struc-
tural eigenfrequency. However, the 4th Rossiter mode is close to normal mode shape 11
(see Table 4), which is merely 11 Hz below the 4th Rossiter mode. The tone induced by the
elastic cavity at 816 Hz is close to normal mode shape 9 at 812 Hz.

The OASPL at the microphones are given in Figures 14 and 15. The difference in the
OASPL between the rigid and elastic cavities is relatively small, approximately 1 dB at
most. The small difference between the rigid and the elastic cavities does not mean that
the elasticity can be neglected in a cavity noise analysis because it does not describe the
spectral content. The highest OASPL is approximately 145 dB and is found at θ = 20◦ and
ϕ = 0◦; see Figure 14b.

The analysis performed here should ideally be performed with microphones located
further away from the cavity, where the strong pressure fluctuations will have abated
further. However, this would demand a finer grid resolution further away from the cavity.
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(b) θ = 20◦, ϕ = 0◦.
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(c) θ = 40◦, ϕ = 0◦.
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(d) θ = 60◦, ϕ = 0◦.
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(e) θ = 80◦, ϕ = 0◦.
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(f) θ = 20◦, ϕ = 45◦.
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(g) θ = 40◦, ϕ = 45◦.
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(h) θ = 60◦, ϕ = 45◦.
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(i) θ = 80◦, ϕ = 45◦.
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(j) θ = 20◦, ϕ = 90◦.
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(k) θ = 40◦, ϕ = 90◦.
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Figure 14. SPL and OASPL at the microphones. Green vertical lines mark the structural eigenfre-
quencies.
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(b) θ = 80◦, ϕ = 135◦.
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(c) θ = 20◦, ϕ = 180◦.
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(d) θ = 40◦, ϕ = 180◦.
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(e) θ = 60◦, ϕ = 180◦.
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Figure 15. SPL at the microphones. Green vertical lines mark the structural eigenfrequencies.

5.2. Spectral Proper Orthogonal Decomposition of Wall Pressures and Displacements

The spectral proper orthogonal decomposition (SPOD) method [28,29] is employed for
the analysis of cavity wall pressure fluctuations p′ and wall displacements d; the pressure
fluctuations and the displacements are analysed separately. Pressure fluctuations from the
rigid cavity are also analysed for reference. The SPOD method extracts coherent features
from the turbulent flow; the turbulent structures are represented by a set of deterministic
modes, which represent the energy. Each mode oscillates at a single frequency and evolves
coherently in both space and time [29].

The data are divided into six blocks, each containing 214 samples (time steps). A Han-
ning window and a 50 percent overlap are used. This results in six modes with a frequency
resolution (also called bin size) of approximately 6.1 Hz. It should be mentioned that it
would be desirable to use more than six blocks for the SPOD analysis; it would significantly
increase the confidence level in the spectral estimate for each bin. However, it would
concurrently increase the bin size, which would result in a substantial leakage between the
bins. In other words, nearby energy peaks would meld together. This trade-off between
confidence and bin size must always be considered. Here, for both the displacements and
the pressure fluctuations, several energy peaks are near each other, and the bin size must
be sufficiently small to avert leakage between the bins. The main purpose of this analysis
is to identify specific tones and structural oscillatory frequencies rather than to accurately
determine the spectral energies.

The five cavity walls are analysed separately; for clarity, the naming of the cavity walls
is shown in Figure 16. The SPOD mode energies of the first three modes for d and p′ are
shown in Figure 17. The remaining modes mostly consist of broadband noise.

Figure 16. Naming of the cavity surfaces. The side walls are folded outwards.
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(b) Floor, SPOD mode energy of p′.
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(c) Right, SPOD mode energy of d.
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(d) Right, SPOD mode energy of p′.
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(e) Left, SPOD mode energy of d.
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(f) Left, SPOD mode energy of p′.
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(g) Rear, SPOD mode energy of d.
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(h) Rear, SPOD mode energy of p′.
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(j) Front, SPOD mode energy of p′

Figure 17. SPOD mode energy for displacements d (left column) and pressure fluctuations p′

(right column). Green vertical lines mark the structural eigenfrequencies. Black vertical lines mark
the Rossiter frequencies.
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Figure 18. The 1st SPOD modes for pressure fluctuations φ
p′
1 of the elastic cavity (left column), rigid

cavity (middle column), and for displacements φd
1 (right column) at the Rossiter frequencies.

The SPOD mode energy spectra of the pressure fluctuations (right column in Figure 17)
are similar to the spectra obtained at the microphones in the previous section. For the
elastic cavity, the energy peak at the 4th Rossiter mode is depleted on all five walls, and the
induced tone at 816 Hz is obtained on all five walls. In addition to the tones obtained at the
microphones, several others can be identified here. Figure 17b shows additional tones at
f = 1139, 1184, 1354, 1514, 2210 Hz. These are most apparent on the cavity floor. A few of
these coincide with structural eigenfrequencies, whilst others do not. Spectral POD modes
2–3 for p′ mostly contain broadband noise. However, the energy spectra for SPOD modes
2–3 for the front wall are an exception, as can be seen in Figure 17j. Additional tones that
coincide with structural eigenfrequencies are obtained. These tones are induced by the
elastic walls, the waves propagate upstream and impinge upon the front wall.
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Figure 19. The 1st SPOD modes for pressure fluctuations φ

p′
1 of the elastic cavity (left column), rigid cavity

(middle column), and for displacements φd
1 (right column) at frequencies f = 816,1139,1184,1354,1514,2210 Hz.
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The left column in Figure 17 shows the SPOD mode energy spectra of the structural
displacements. It is evident that all the fifty structural eigenmodes included are excited.
The impact of the 2nd Rossiter mode at 381 Hz is clearly visible. An energy increase is
also obtained at about 130 Hz, which is at the 1st Rossiter mode. The first and second
Rossiter modes are below the lowest structural eigenfrequency. However, the strength
of the Rossiter modes cause the structure to oscillate at the corresponding frequencies.
At frequencies above the highest structural eigenfrequency, the SPOD mode energies decay.

The 1st SPOD modes for displacement φd
1 and pressure fluctuations φ

p′
1 , for both the

rigid and the elastic cavity at the Rossiter frequencies, are displayed in Figure 18. Corre-
sponding figures for the previously discussed frequencies, namely f = 816, 1139, 1184, 1354,

1514, 2210 Hz, are shown in Figure 19. The SPOD modes φ
p′
1 for the elastic cavity are found

in the first column, the second column shows the corresponding modes for the rigid cavity;
these modes are approximately in-phase and displayed with equal scales. The third column
shows the SPOD modes of the structural displacement φd

1 . These modes are not necessarily

showed in-phase nor with the actual phase shift in relation to φ
p′
1 .

The SPOD modes of the pressure fluctuations φ
p′
1 for Rossiter modes 1–3, Figure 18,

are similar for the elastic and the rigid cavity. However, the 4th Rossiter mode is noticeably
weaker for the elastic cavity. This is in line with previous observations. The SPOD mode
energy spectra and the SPL spectra for the elastic cavity showed decreased energy at this
frequency. This implies that the energy transfer from the fluid to the structure is significant
at the 4th Rossiter frequency.

The SPOD modes for the other tones, Figure 19, show a clear pattern. The modes are
more distinct for the elastic cavity than for the rigid cavity. This is to be expected based
on the SPOD mode energy spectra and, in some cases, also the SPL spectra. Distinctive
pressure waves at these frequencies are absent or weak in the rigid cavity, whereas waves
are induced by the interaction between the fluid and the structure at the specific frequencies
in the elastic cavity.

Not all structural normal mode shapes are shown here. However, in cases where they
coincide with or are close to the SPOD modes, there are similarities, but not necessarily on
all five walls. For example, at 2210 Hz (Figure 19r), the right, left, front, and rear walls are
similar to normal mode shape 47 (see Table 4). However, normal mode shape 47 does not
have the zigzag pattern of high and low values, as seen for the cavity floor in Figure 19r.
The SPOD mode φd

1 at 816 Hz is similar to the normal mode shape at 812 Hz (Mode 9,
Table 4), which is shown in Figure 20.

Figure 20. Structural normal shape of Mode 9.

6. Summary and Conclusions

The effects of elastic cavity walls on flow noise generation are investigated using
SA-IDDES and a modal formulation for structural analysis. Furthermore, a flow solver
validation is undertaken, where SA-IDDES and SA-DDES are used in combination with
a wall function and a rigid cavity. The M219 cavity geometry, which has been tested in a
wind tunnel is employed for the flow solver validation. The results are compared with
the wind tunnel data and LES data. The results are also compared with results using
a simplified geometric model. The simplified geometry consistently produced a higher
overall sound pressure level (OASPL) at the probes inside the cavity; this is likely due
to the lower level of resolved turbulence in the boundary layer upstream of the cavity.
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Furthermore, most Rossiter frequencies and sound pressure levels (SPL) are higher for the
simplified geometry. The flow over the wind tunnel model’s leading edge detaches and a
small separation bubble is formed. This affects the boundary layer upstream of the cavity
and thereby the cavity flow characteristics. This leads to lower and more accurate SPL and
OASPL compared to the simplified geometry, where less resolved turbulence is present in
the boundary layer at the cavity leading edge.

A comparison of the resulting flow field using SA-DDES and SA-IDDES with the wind
tunnel model shows that more resolved turbulence is present in the early stage of the free
shear layer with SA-IDDES than with SA-DDES. The SA-DDES turbulence model predicts
the 2nd, 3rd, and 4th Rossiter modes better than SA-IDDES in terms of frequency, but
completely fails to resolve the 1st Rossiter mode. Furthermore, SA-DDES overpredicts the
SPL at the Rossiter frequencies, and the OASPL is less accurate compared to the wind tunnel
data. The 2nd, 3rd, and 4th Rossiter frequencies are overpredicted by SA-IDDES. On the
other hand, the peak magnitudes of the SPL spectra align better with the experimental
data. The OASPL agrees with the experimental data in the front part of the cavity, whilst
it is approximately 1 dB lower in the rear-most part of the cavity. Comparisons with LES
velocity and shear stress profiles showed that SA-IDDES aligns better with the profiles
than SA-DDES.

The FSI simulation of the elastic cavity is performed with the simplified geometry. The
results are compared with a reference simulation of the rigid cavity with the simplified
geometry. Pressure fluctuations are recorded at 21 microphones located two cavity lengths
away from the cavity in a spherical pattern. Spectral analysis of the micropophone signals
shows a distinct tone at 816 Hz, which is not obtained for the rigid reference case. The
power of the 4th Rossiter mode is concurrently depleted at most microphones. The induced
tone at 816 Hz is 36 Hz below the 4th Rossiter mode; moreover, it is close to a structural
eigenfrequency at 812 Hz. Furthermore, changes to the SPL are obtained for the first
three Rossiter modes. The OASPL at the microphones are similar for the elastic and the
rigid cavity.

Spectral proper orthogonal decomposition (SPOD) is employed for analysis of the
cavity wall pressure fluctuations and for the wall displacements. The phenomenon at
the 4th Rossiter mode frequency is also obtained in the SPOD mode energy spectra for
the pressure fluctuations. A tone at 816 Hz is observed, and the energy peak at the 4th
Rossiter mode is depleted. This implies a substantial energy transfer between the fluid and
the structure at the 4th Rossiter mode frequency. Additional high-frequency tones above
1000 Hz are found in the SPOD mode energy spectra for the cavity’s front wall, which
coincide with structural eigenfrequencies. The SPOD mode energy spectra for the wall
displacements show that all included normal mode shapes of the modal representation
are excited.
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The following abbreviations are used in this manuscript:

CFD computational fluid dynamics
DDES delayed detached-eddy simulation
FE finite element
FSI fluid–structure interaction
IDDES improved delayed detached-eddy simulation
LES large-eddy simulation
OASPL overall sound pressure level
RANS Reynolds-averaged Navier–Stokes
SA Spalart–Allmaras
SPL sound pressure level
SPOD spectral proper orthogonal decomposition
PSD power spectral density
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