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Abstract: Given the limitations of escape maneuvers and decoy deployment of combat aircraft
under missile attacks; active defense dramatically improves the survival chances by launching
active defense missiles to intercept incoming missiles. Different from previous work, this paper
implemented impact angle constraints on the defense missile to achieve a better defense effect. The
low-cost active defense missile with limited maneuverability is considered to cooperate with the
aircraft through three mechanisms, namely two-way cooperation without any predetermined strategy,
one-way cooperation with the defense missile employing a linear guidance strategy, and one-way
cooperation with independent evasion maneuver for the target. Three optimal cooperative guidance
strategies with impact angle constraints were investigated. Finally, a nonlinear two-dimensional
model for agents with first-order autopilot dynamics was simulated to verify the performance of
the proposed strategies. The simulation results indicated that the cooperative mechanism directly
affects the available range of impact angles, and the constraints of a big impact angle can be realized
by introducing the nonlinear model parameters and considering the angle variation between the
velocity vector and the initial line-of-sight. Furthermore, the two-way cooperative mechanism
achieves the best performance and more flexible solutions to accommodate different vehicle maximum
overload limits.

Keywords: cooperative guidance strategies; impact angle constraints; optimal control theory;
three-body engagement; zero-effort quantities

1. Introduction

In modern warfare, capturing and maintaining air supremacy has a decisive influence
on the course and outcome of campaigns. In addition to improving the combat performance
of fighter aircraft, it is also very important to improve survivability in combat. Nowadays,
the protection technology for fighter aircraft has already been mature, but it focuses on
avoiding being found, tracked, attacked. Once attacked by an enemy air-to-air missile, a
protective measure is taken to perform evasive maneuvers and various decoying operations,
which can be considered a passive defense measure because the objective is to make a
successful escape. However, with the continuous improvement of surface-to-air and air-to-
air missile maneuver and anti-interference capability, the limitations of traditional passive
defense measures are increasingly exposed, and it becomes more and more difficult to meet
the requirements of aircraft protection on the battlefield. Therefore, at present, all countries
in the world are vigorously exploring new approaches to improve the survivability of
military aircraft, among which active protection is very representative and has broad
application prospects. When the target aircraft is attacked by an incoming missile, an active
defense missile can be deployed to intercept from its own or other friendly forces, which is
called “three-body engagement.” Instead of pursuit-evasion, an active defense missile is
introduced into the engagement.
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Active defense measures have been studied in recent years, and most of the research
on terminal constraint focuses on the requirement of miss distance. The main research
methods can be divided into the line-of-sight (LOS) guidance method, the optimal control
theory, the differential game theory, the sliding mode control theory, etc.

LOS guidance for active defense is based on the classical three-point guidance, which
attempts to keep the defense missile on the LOS between the target and the missile [1,2]
so that the latter will be destroyed by the defense missile before the former is intercepted.
Ratnoo and Shima [3] analyzed the kinematic relationship of LOS guidance. The speed
and acceleration requirements were compared for the missile, and it was shown that
better performance can be achieved by adopting the cooperative strategy. Kumar and
Mukherjee [4] designed the LOS guidance strategy based on sliding mode control, and the
same method was presented in [5]. To generalize the LOS guidance concept, Kumar and
Mukherjee [6] proposed guidance strategies and pointed out that knowledge of the bound
of interceptor acceleration is necessary.

On the premise of a known linear guidance strategy of the incoming missile, optimal
cooperative guidance strategies can be designed by selecting different optimal performance
indexes. Shaferman and Shima [7] used a nonlinear adaptation of a multiple-model adap-
tive estimator based on an extended Kalman filter to identify the homing-missile guidance
law, and a matched defender’s missile guidance law was proposed. Fang et al. [8] pro-
posed the static multiple model estimator based on a square-root cubature Kalman filter
to identify the potential attacking missile guidance strategy and deduced the adaptive
cooperative guidance laws. Prokopov and Shima [9] derived the guidance laws by using
optimal control for three types of cooperation mechanisms. The results showed that two-
way cooperation achieves the best performance, and one-way cooperation performs better
than the independent maneuver. Weiss and Shima [10] proposed the guidance law for the
pursuer in pursuit-evasion problem, which imposed an upper (lower) bound on the miss
distance, while minimizing the effort. Weiss et al. [11] proposed two guidance algorithms
for the target-attacker-defender scenario, which were derived under the assumption that
performance is prescribed in the sense of the required maximum miss distance for pursuit
and the required minimum miss distance for evasion. Fang and Cai [12] designed two
different optimal cooperative guidance laws for the target and defender, which considered
the miss distance as an inequality constraint. All the strategies mentioned above were
derived from a linear model, and the closed-loop analytical expression was deduced. The
nonlinear model can be applied to any engagement conditions [13,14], which is scarcely
possible to be obtained because it needs to solve the two-point boundary value problem
(TPBVP) using numerical algorithms. In [15], the optimal control strategy was derived by a
nonlinear program solver.

If the premise of optimal cooperative guidance strategies cannot be satisfied, the
differential game theory [16–18] can be applied to obtain the minimum miss distance,
even if the missile adopts its optimal guidance law. Perelman and Shima [16] studied
three different cooperative strategies using the linear-quadratic differential game (LQDG)
theory. Considering the limits of control quantity, Rubinsky and Gutman [18] designed the
bounded differential game (BDG) guidance law for the missile from the perspective of the
attacker, and similar work is also represented in [19]. Garcia et al. [20] derived the optimal
strategies for a differential game composed of three agents and capturing the radius for the
defense missile was considered.

In a large heading errors scenario, the guidance strategies derived from a linear model
may fail, and nonlinear control techniques have been used in guidance strategies design [21].
Kumar and Shima [22] used sliding-mode control (SMC) to design the cooperative nonlinear
guidance strategies by calculating the zero-effort quantities as the sliding mode surfaces.
Nevertheless, the strategies did not aim to optimize any cost function. Li et al. [23] further
improved the performance with the nonsingular terminal sliding mode method.

In terms of terminal performance indexes, the above studies mainly aim at satisfying
the miss distance constraint, which cannot meet the tactical requirements of optimal lethality.
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In modern-day warfare, it might be necessary to achieve certain terminal impact angles
besides ensuring interception of the target to enhance effectiveness of kill performance of
the interceptor. This necessity could arise from several factors, like a specific requirement on
the hit angle for maximum effectiveness of the interceptor’s warhead, a special directional
kill mechanism of the interceptor, seeker positioning and orientation, or effective avoidance
of the target’s countermeasures [24]. To achieve the best lethality and destroy the incoming
air-to-air missile to the greatest extent, the attitude of the active defense missile should be
considered when it hits the target, i.e., the impact angle constraint. If the active defense
missile can achieve the accuracy of hit-to-kill interception, then the head-on intercept will
get more kinetic energy damage. For the case that an active defense missile is equipped with
a warhead, the lethality can be greatly improved with a terminal impact angle constraint.
From the point of view of detection, impact angle constraint is beneficial to the detection of
incoming missiles. The radar cross-section (RCS) in the head-on direction of the incoming
missile will be minimal, while the RCS in the lateral direction will be significantly increased.
As a result, intercepting the incoming missile from the lateral direction by controlling the
impact angle will facilitate earlier locking and steady tracking for the active defense missile
equipped with an active radar seeker. Therefore, it is urgent to research the active defense
guidance method with impact angle constraint, but there are few relevant research studies
in the literature. To the best of our knowledge, Saurav et al. [17] made the earliest attempt
at an active defense guidance method considering the attack angle constraint, and the
closed-loop analytical expression for LQDG was deduced considering the dynamics of
vehicles as zero-lag. However, the derivation of guidance law-based zero-lag dynamics
was too idealistic. Also, the simulation did not impose necessary overload constraints and
did not consider other cooperative situations. In this study, we considered that the flight
vehicles have first-order dynamic characteristics, and the maximum overload value of the
defense missile is set to be smaller. In addition, we deduced the derivation of the guidance
laws under more cooperative mechanisms. Kumar et al. [25] proposed guidance laws based
on SMC to attack different targets at a predetermined angle. From the point of view of
the incoming missile, Zhang et al. [26] proposed the guidance law with a terminal angle
constraint under the assumption that the control strategies of the defense missile and the
target are known.

Aiming at the scenario where a group of missiles cooperatively intercept a single
maneuvering high-value target from different relative impact angles, Shaferman and
Shima [27] investigated cooperative guidance laws based on optimal control. Consistent
with the combat scenario in [27], Shaferman and Shima [28] derived the guidance law in the
LQDG framework, which enables to attack the target from different directions for the group
of missiles. Based on the optimal control and differential game theory, Shaferman and
Shima [29] derived two linear quadratic guidance laws with a terminal impact angle for one-
on-one engagement. Again, for the one-on-one problem, Taub and Shima [30] formulated
the linear guidance strategy for the missile with constraints of time-varying acceleration
and terminal impact angle. Fonod and Shima [31,32] considered the scenario where several
defense missiles launched by the target intercept a homing missile cooperatively. The
cooperation meant imposing different relative intercept angles for the defense missile to
enhance the observability of the multi-line-of-sight measuring environment.

Aiming at the known incoming attacking missile with linear proportional guidance
law, this paper proposed three types of optimal-control-based active defense guidance
strategies with impact angle constraint, which satisfied the minimized miss distance and the
specific terminal impact angle constraints. This paper makes the following contributions.
Firstly, for the incoming attacking missile with known linear proportional guidance law,
the zero-effect quantities of miss distance and terminal impact angle were calculated by
introducing parameters of the nonlinear model and considering the angle variation between
the velocities vector and the initial LOS, which fits for the large impact angle constraint in
actual combat. Secondly, two-way cooperation guidance strategies considering the terminal
impact angle constraint were designed for the target and the defender by calculating
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zero-effort quantities, and were verified by nonlinear model simulation. The simulation
results showed that the guidance strategies can achieve a broad range of terminal impact
angles with a small miss distance. Thirdly, aiming at the one-way cooperation with the
defense missile employing a linear guidance strategy, known to the target, to intercept the
incoming missile, the one-way cooperation guidance strategy considering the terminal
impact angle constraint was designed for the target by reconstructing the state equations
and calculating a new state transfer matrix. Finally, for the one-way cooperation mechanism
in which the target takes an arbitrary escape strategy, the one-way cooperation guidance
strategy considering the terminal impact angle constraint was designed for the defender.
Then, two methods for calculating zero-effect quantities and their applicable conditions
were presented.

The remainder of this paper is organized as follows. Section 2 presents the nonlinear
and linear target-missile-defender engagement kinematics. The design of cooperation
guidance strategies for different mechanisms are presented in Sections 3–5. Section 6
presents the simulation analysis of different impact angle commands and weight coefficients
for three cooperation mechanisms, followed by concluding remarks. The computation of
zero-effort impact angle for two-way cooperation is derived in Appendix A.

2. Model Description
2.1. Nonlinear Engagement Kinematics

A schematic diagram for active defense engagement in X—O—Y Cartesian inertial
reference frame is shown in Figure 1. In this active aircraft defense engagement with
three entities, one collision triangle is in the scenario between the attacker and the target,
and the other one is in the scenario between the defender and the attacker. T, D, and
M represent the target, the defender, and the missile, respectively; (xi, yi), i = (T, D, M)
represent the position of the target, defender, and missile, respectively; Vi,ai,γi,i = (T, D, M)
represent the velocity, lateral acceleration perpendicular to the velocity, and the heading
angle of each entity, respectively; The subscripts MT and MD represent the missile-target
(M-T) and defender-missile (D-M), respectively; r, λ, y represent the relative distance, LOS,
relative separation perpendicular to the initial LOS direction λMT0 or λMD0 , respectively;
γMD = γM + γD is used to denote the impact angle.
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Figure 1. Active aircraft defense engagement.

Under the assumption that each agent has arbitrary-order dynamic characteristics, the
relationship between acceleration and acceleration command can be represented as:

.
Xi = AiXi + Biui, ai = CiXi + diui, i = {M, T, D} (1)
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where Xi is the n-dimensional internal states, and ui is the acceleration command limited
to [umin

i , umax
i ]. In this paper, to simplify the model description, the first-order dynamic

characteristics of all flight vehicles are taken as an example, i.e., Ai = −1/τi, Bi = 1/τi,
Ci = 1, and di = 0, where τi is the time constant. It should be noted that the method
presented in this paper is also applicable to vehicles with arbitrary order. The dynamics of
heading angles are governed by

.
γM =

aM
VM

,
.
γT =

aT
VT

,
.
γD =

aD
VD

(2)

According to the geometric relation in Figure 1, the nonlinear relative kinematic
equations of M-T are:

.
rMT = −VM cos(γM + λMT)−VT cos(γT − λMT).
λMT = (VM sin(γM + λMT)−VT sin(γT − λMT))/rMT
..
rMT = aM sin(γM + λMT) + aT sin(γT − λMT) + rMT

.
λ

2
MT..

λMT = (aM cos(γM + λMT)− aT cos(γT − λMT)− 2
.
rMT

.
λMT)/rMT

(3)

Similarly, the relative kinematic equations of D-M in active defense are:

.
rMD = −VM cos(γM + λMD)−VD cos(γD − λMD).
λMD = (VM sin(γM + λMD)−VD sin(γD − λMD))/rMD
..
rMD = aM sin(γM + λMD) + aD sin(γD − λMD) + rMD

.
λ

2
MD..

λMD = (aM cos(γM + λMD)− aD cos(γD − λMD)− 2
.
rMD

.
λMD)/rMD.

γMD = aM/VM + aD/VD

(4)

2.2. Linear Engagement Kinematics

Assume that the LOS angle of initial collision triangle is small, and both D-M and
M-T engagement take place near the initial triangular collision area; that is, the LOS angle
has a small value and variation range. Without loss of generality, the initial LOS of D-M
engagement is taken as the X-axis, and the Y-axis is perpendicular to the X-axis. Based
on this small-angle assumption, the kinematic model of active defense can be linearized
along the initial LOS. aiN , i = (T, D, M) represents the acceleration components of each
flight vehicle along the Y-axis, and aiN = ai cos γi. Let δi = cos γi. The guidance laws in
this paper will be derived based on linearized models.

Take the state variable x = [xT
MT , xT

MD], where xMT = [yMT ,
.
yMT , XM, XT ]

T ,xMD =

[yMD,
.
yMD, XD, γMD]

T . The equations of motions (EOMs) of active defense considering the
impact angle constraint are given as:

.
x = A(t)x+B

[
uT uD

]
+ CuM (5)

where the expression of each matrix is:

A =

[
AMT [0]4×4
A21 AMD

]
, B =

[
BMT BMD

]
, C =

[
CMT
CMD

]
(6)

and

AMT =


0 1 0 0
0 0 −CM CT
0 0 AM 0
0 0 0 AT

, AMD =


0 1 0 0
0 0 −CD 0
0 0 AD 0
0 0 1

VD
0

, A21 =


0 0 0 0
0 0 CM 0
0 0 0 0
0 0 1

VM
0

 (7)
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BMT =


0

dT
0

BT
[0]4×1

, BMD =


[0]4×1

0
−dD
BD
0

, CMT =


0
−dM
BM
0

, CMD =


0

dM
0
0

 (8)

2.3. Timeline

Under the small-angle assumption, the time-to-go tgoMD and tgoMT of D-M and M-T
can be estimated as: {

tgoMD = rMD
VM cos(γM+λMD)+VD cos(γD−λMD)

tgoMT = rMT
VM cos(γM+λMT)+VT cos(γT−λMT)

(9)

The duration of D-M and M-T engagement is denoted as t fMD and t fMT , respectively.
In a successful active defense, t fMD < t fMT needs to be satisfied, i.e., ∆t = t fMT − t fMD > 0.
To make a simplification, the simulation time is set as that for the successful defender
interception. In the following expressions, t f and tgo are used to represent t fMD and tgoMD ,
respectively.

2.4. Missile Guidance Law

Typical intercepting missile guidance laws including proportional guidance (PN), aug-
mented proportional guidance (APN), and optimal guidance law (OGL) can be expressed
as a function of the navigation coefficient, zero-effort miss distance, and time-to-go [33].
After arrangement, they can be represented as follows:

uMN = KMT(tgoMT )xMT + KuT (tgoMT )uTN (10)

where KMT(tgoMT ) =
[
K1 K2 KM KT

]
, which can be referred to [22]. In this paper, the

premise of all guidance law derivations is that the interceptor missile guided by a linear
guidance strategy form of Equation (10) has been identified.

3. Two-Way Cooperation Guidance Strategies with Impact Angle Constraints

In the two-way communication mechanism, the target and the defender are considered
as a whole to complete the task, i.e., intercept the missile with a specific terminal impact
angle. Each side knows the current state of the other side and knows the escape or pursuit
strategy that the other side is using afterward. In this section, such an optimal two-way
cooperation guidance strategy with impact angle constraints is designed for the defender
and the target. Meanwhile, the control effort is introduced into the optimizing index. The
target (such as an unmanned aerial vehicle) will implement a maneuvering strategy to
support the defender, and the latter will fly toward the predicted collision position from
the desired direction.

3.1. Two-Way Cooperation Dynamics with Impact Angle Constraints

By substituting the linear guidance law of the missile in Equation (10) to Equation (5),
the EOM of the two-way cooperation is given as:

.
x = AΦ

(
tgoMT

)
x + BΦT

(
tgoMT

)
uT + BΦDuD (11)

where AΦ

(
tgoMT

)
=

[
AΦMT

(
tgoMT

)
[0]4×4

AΦ21
(
tgoMT

)
AMD

]
,

AΦMT
(
tgoMT

)
=


0 1 0 0

−dMK1 −dMK2 −(CM + dMKM)δM (CT − dMKT)δT
BMK1/δM BMK2/δM AM + BMKM BMKTδT/δM

0 0 0 AT

,
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AΦ21
(
tgoMT

)
=


0 0 0 0

dMK1 dMK2 (CM + dMKM)δM dMKTδT
0 0 0 0
0 0 1

VM
0

,

BΦT
(
tgoMT

)
=

[
BMT + CMTKuT

CMDKuT

]
, BΦD =

[
[0]4×1
BMD

]
. The other matrices are given in

Equations (7) and (8).

3.2. Problem Statement with Impact Angle Constraints for Two-Way Cooperation

To minimize the miss distance and reach the set impact angle for the defender are
the requirements of the terminal indicator. Besides, minimum control effort during the
M-D engagement is also considered. Therefore, the optimal two-way cooperation problem
with terminal impact angle constraint is represented as the minimization of the following
objective function:

J =
1
2

αy2
MD

(
t f

)
+

1
2

αγ

[
γMD(t f )− γc MD

]2
+

1
2

∫ t f

0

[
u2

D(t) + βTu2
T(t)

]
dt (12)

subject to Equation (11), and with α, αγ, βT being nonnegative weights. γcMD is the set
terminal impact angle command.

3.3. Order Reduction

Terminal projection [34] is adopted in this paper by proposing two new variables:
zero-effort miss distance (ZMD) and zero-effort impact angle (ZIA), which will reduce the
problem’s order and the calculation difficulty. In D-M engagement, the physical meaning of
ZMD and ZIA is the terminal miss distance and the terminal impact angle of the defender
if, from the current moment t, the defender and target do not take any maneuvers and
the missile still uses the previous guidance law to chase the target aircraft. As shown in
Equation (13), through terminal projection, the terminal miss distance and the terminal
impact angle can be respectively denoted as ZTD and ZγTD, where the subscript TD refers
to the flight vehicle taking no maneuvers. In this paper, when the zero-effort quantities are
calculated at time t, it is assumed γi(i = T, D, M) remains constant after this moment.

ZTD(t) = DΦ(t f , t)x(t), ZγTD(t) = DγΦ(t f , t)x(t) (13)

where D =
[
01×4 1 01×3

]
, Dγ =

[
01×7 1

]
, and Φ(t f , t) is the state transition ma-

trix [9].
The EOMs of ZMD and ZIA are obtained as

.
ZMD and

.
ZγMD by differentiating with

respect to time, and they can be calculated as:
.
ZTD = B̃MT

(
t f , t

)
uT + B̃MD

(
t f , t

)
uD

.
ZγTD = B̃γMT

(
t f , t

)
uT + B̃γMD

(
t f , t

)
uD

(14)

where B̃MT

(
t f , t

)
= DΦBΦT , B̃MD

(
t f , t

)
= DΦBΦD, B̃γMT

(
t f , t

)
= DγΦBΦT , and

B̃γMD

(
t f , t

)
= DγΦBΦD.

Because ZTD(t f ) = yTD(t f ) and ZγTD(t f ) = γTD(t f ), the objective function in
Equation (13) can be transformed into minimizing the following cost function subject
to the EOM of Equation (14):

J =
1
2

αZ2
TD

(
t f

)
+

1
2

αγ

[
ZγTD(t f )− γc MD

]2
+

1
2

∫ t f

0

[
uD

2(t) + βTuT
2(t)

]
dt (15)



Aerospace 2022, 9, 710 8 of 26

3.4. Optimal Solution

The Hamiltonian for Equation (15) is obtained as

H =
1
2

u2
D(t) +

1
2

βTu2
T(t) + λTD

.
ZTD + λγTD

.
ZγTD (16)

The adjoint equations and transversality conditions are as follows.
.
λTD = − ∂H

∂ZTD
= 0

λTD

(
t f

)
= αZTD

(
t f

) (17)


.
λγTD = − ∂H

∂ZγTD
= 0

λγTD

(
t f

)
= αγ

[
ZγTD(t f )− γcMD

] (18)

The solutions to the adjoint equations of Equations (17) and (18) are immediate:

λTD(t) = αZTD

(
t f

)
, λγTD(t) = αγ

[
ZγTD(t f )− γcMD

]
(19)

The optimal two-way cooperation strategies of the defender and the target should
meet the following condition.

u∗T = arguT
minH, u∗D = arguD

minH (20)

By differentiating Equation (16) with respect to uT , uD, the open-loop optimal strate-
gies are calculated by solving Equation (22) and using the Lagrange multiplier λTD(t) and
λγTD(t) from Equation (19):{

∂H
∂uT

= βTuT + λTD B̃MT + λγTD B̃γMT = 0
∂H
∂uD

= uD + λTD B̃MD + λγTD B̃γMD = 0
(21)

Finally, we have u∗T = − α
βT

ZTD

(
t f

)
B̃MT −

αγ

βT

[
ZγTD(t f )− γcMD

]
B̃γMT

u∗D = −αZTD

(
t f

)
B̃MD − αγ

[
ZγTD(t f )− γcMD

]
B̃γMD

(22)

3.5. Solution of the Terminal Miss Distance and Terminal Impact Angle

Now, the problem is transformed into the solution of the terminal miss distance
ZTD

(
t f

)
and impact angle ZγTD

(
t f

)
while the optimal strategies u∗T and u∗D are subse-

quently implemented. ZTD(t) can be represented as [22]:

ZTD(t) = VλMD tgo −VλMT φ52 + φ̂5TaTN + φ̂5MaMN − τ2
Dψ(tgo/τD)aDN (23)

where VλMT = rMT
.
λMT , VλMD = rMD

.
λMD, and ZγTD can be calculated as

ZγTD(t) = −rMT
.
λMTφ82 + φ̂8MaM + φ̂8TaTN −

τD
VD

ξ
(
tgo/τD

)
aD + γM + γD (24)

where φ̂5T = φ5T/δT ,φ̂5M = φ5M/δM, ψ(µ) = e−µ + µ− 1 > 0 ∀µ > 0, ξ(µ) = e−µ− 1 > 0
∀µ > 0. The detailed derivations of ZIA and the coefficients φ(·) in Equation (24) are
provided in Appendix A. The coefficients φ̂(·) are only related to tgo, which are independent
of δi and can be calculated separately. The benefit of this approach is that VλMD and VλMT
can be obtained directly for most vehicles, and satisfactory performance can be achieved
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by the derived guidance strategies in the large-heading-error engagement scenario [22].
According to the EOMs of ZTD(t) and ZγTD(t) in Equation (14), we have: ZTD

(
t f

)
= ZTD(t) +

∫ t f
t B̃MTu∗T + B̃MDu∗Ddτ

ZγTD

(
t f

)
= ZγTD(t) +

∫ t f
t B̃γMTu∗T + B̃γMDu∗Ddτ

(25)

where B̃MT = DΦBΦT = φ̂5TδT/τT , B̃MD = DΦBΦD = −τ2
DδD/τDψ(tgo/τD),

B̃γMT = DγΦBΦT = φ̂8TδT/τT , and B̃γMD = DγΦBΦD = −ξ
(
tgo/τD

)
/VD. Substitut-

ing the optimal guidance law of Equation (22) derived previously into Equation (25) yields:

ZTD

(
t f

)
= ZTD(t) + Q11ZTD

(
t f

)
+ Q12

[
ZγTD(t f )− γcMD

]
(26)

ZγTD(t f )− γcTD = ZγTD(t)− γcMD + Q21ZTD

(
t f

)
+ Q22

[
ZγTD(t f )− γcMD

]
(27)

where Q11(t) = −α
∫ t f

t B̃2
MT/βT + B̃2

MDdτ, Q12(t) = −αγ

∫ t f
t B̃MT B̃γMT/βT + B̃MD B̃γMDdτ,

Q21(t) = −α
∫ t f

t B̃MT B̃MT/βT + B̃MD B̃γMDdτ. After the transformation and reconstruction

of Equations (26) and (27), ZTD

(
t f

)
and ZγTD

(
t f

)
− γcMD can be written as ZTD

(
t f

)
ZγTD

(
t f

)
− γcMD

 = P
[

ZTD(t)
ZγTD(t)− γcTD

]
(28)

where P(t) =
[

P11(t) P12(t)
P21(t) P22(t)

]
= 1

(1−Q11)(1−Q22)−Q12Q21

[
1−Q22 Q12

Q21 1−Q11

]
. By substitut-

ing ZTD

(
t f

)
and ZγTD

(
t f

)
− γcMD from Equation (28) back into Equation (22), u∗T , u∗D can

be rewritten as a navigation gains form:
u∗T(t) =

N′T(t)ZTD(t)
t2
go

+
N′γT(t)[ZγTD(t)−γcMD]

t2
go

u∗D(t) =
N′D(t)ZTD(t)

t2
go

+
N′γD(t)[ZγTD(t)−γcMD]

t2
go

(29)

with the navigation gains N′T(t) = −
(

αB̃MT P11 + αγ B̃γMT P21

)
t2
go/βT ,

N′γT(t) = −
(

αB̃MT P12 + αγ B̃γMT P22

)
t2
go/βT , N′D(t) = −

(
αB̃MDP11 + αγ B̃γMDP21

)
t2
go,

and N′γD(t) = −
(

αB̃MDP12 + αγ B̃γMDP22

)
t2
go.

3.6. Special Cases

Since the primary task of the defender is to destroy the target, it doesn’t make sense to
constrain the impact angle without firstly obtaining the required miss distance to destroy
the target. As a result, the special cases considered in this paper are listed in Table 1. When
α tends to infinity, the situation corresponds to the linear-quadratic optimal cooperation
strategies discussed in [9].
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Table 1. Navigation gains of special cases for a two-way cooperation.

Special Cases N’
T(t) N’

γT(t) N’
D(t) N’

γD(t)

α→ ∞ −αB̃MT P11t2
go/βT 0 −αB̃MDP21t2

go 0

βT → ∞ 0 0 −
(

αB̃MDP11+

αγ B̃γMDP21

)
t2
go −

(
αB̃MDP12+

αγ B̃γMDP22

)
t2
go

βT → 0 −
(

αB̃MT P11+

αγ B̃γMT P21

)
t2
go/βT −

(
αB̃MT P12+

αγ B̃γMT P22

)
t2
go/βT

0 0

α→ ∞ βT → ∞ 0 0 −αB̃MDP21t2
go 0

α→ ∞ βT → 0 −αB̃MT P11t2
go/βT 0 0 0

4. One-Way Cooperation Guidance Strategy with Impact Angle Constraints for
Independent Defender

Additional hardware needs to be equipped on the defender for the communication
of two-way cooperation in the previous section. A one-way cooperation mechanism is
considered in this section, where the future maneuver strategy of the defender is known
to the target. Then, the target can predict the behavior of the defender, and the one-way
cooperative strategy is derived for the target to assist the defender to intercept the missile
with a specific impact angle.

4.1. One-Way Cooperation Dynamics with Impact Angle Constraints for Independent Defender

The linear guidance law of the defender can be expressed as:

uD = L
(
tgo
)[

xT
MD xT

M

]T
+ LuM

(
tgo
)
uM (30)

where L
(
tgo
)
=
[
L1 L2 LM LT

]
. By substituting the guidance laws of the missile and

defender into Equation (5), the EOM of the cooperative one-way cooperation for the
independent defender is written as:

.
x = Aθ

(
tgo, tgoMT

)
x + BθT

(
tgo, tgoMT

)
uT (31)

where

Aθ

(
tgo, tgoMT

)
=

[
AθMT

(
tgo, tgoMT

)
[0]

Aθ21
(
tgo, tgoMT

)
AθMD

]
(32)

and AθMT
(
tgo, tgoMT

)
= AΦMT

(
tgo, tgoMT

)
,

Aθ21
(
tgo, tgoMT

)
=

 0 0 [0] [0]
FK1 FK2 CM + FKM − dDLT FKT
JK1 JK2 (JKM + BDLT) JKT

, F = (dM − LuM dD),

J = LuM BD, AθMD
(
tgo
)

=

 0 1 0
−dDL1 −dDL2 −(CD + dDLM)
BDL1 BDL2 AD + BDLM

,

BθT
(
tgo, tgoMT

)
=

[
BθMT

(
tgo, tgoMT

)
BθMD

(
tgo
) ]

, BθMT =


0

dT − KuT dM
BMKuT

BT

,

BθMD =

 0
−dDKuT LuM + dMKuT

BDKuT LuM

.
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4.2. One-Way Problem Statement with Impact Angle Constraints for Independent Defender

Only considering the control effort of the target and referring to Equation (15), the
optimal one-way cooperation problem with impact angle constraint is represented as
minimizing the following function:

J =
1
2

αy2
MD

(
t f

)
+

1
2

αγ

[
γMD(t f )− γc MD

]2
+

1
2

∫ t f

0
βTuT

2(t)dt (33)

subject to the EOM of Equation (31).

4.3. Order Reduction

Different from the computational process of zero-effort quantities for two-way coop-
eration, the defender uses known linear guidance law to intercept the missile, then the
zero-effort quantities can be denoted as ZT and ZγT through terminal projection [35], where
the subscript T refers to the target taking no maneuvers, as shown in Equation (34).

ZT(t) = Dθ(t f , t)x(t), ZγT(t) = Dγθ(t f , t)x(t) (34)

where θ(t f , t) refers to the state transition matrix, as shown in Equation (36).

θ(t f , t) = θ(tgo) ,
.
θ(t f , t) = −θ(t f , t)Aθ(t), θ(t f , t f ) = I8×8 (35)

By differentiation with respect to time, the EOMs of ZMD and ZIA are obtained as
.
ZT

and
.
ZγT :

.
ZT = B̃MT

(
t fMD , t

)
uT ,

.
ZγT = B̃γMT

(
t fMD , t

)
uT (36)

where B̃MT

(
t f , t

)
= Dθ

(
t f , t

)
BθT , B̃γMT

(
t f , t

)
= Dγθ

(
t f , t

)
BθT . The problem can be

rewritten by using ZT and ZγT . Because ZT(t f ) = yMD(t f ) and ZγT(t f ) = γMD(t f ), the
objective function in Equation (33) can be transformed into minimizing the following cost
function subject to the EOM of Equation (36):

J =
1
2

αZ2
T

(
t f

)
+

1
2

αγ

[
ZγT(t f )− γc MD

]2
+

1
2

∫ t f

0
βTu2

T(t)dt (37)

4.4. Optimal Solution

The Hamiltonian for Equation (37) is obtained as

H =
1
2

βTu2
T(t) + λT

.
ZT + λγT

.
ZγT (38)

The adjoint equations and transversality conditions are as follows.
.
λT = − ∂H

∂ZT
= 0

λT

(
t f

)
= αZT

(
t f

) (39)


.
λγT = − ∂H

∂ZγT
= 0

λγT

(
t f

)
= αγ

[
ZγT(t f )− γc MD

] (40)

The solutions to the adjoint equations of Equations (39) and (40) are immediate:

λT(t) = αZT

(
t f

)
, λγT(t) = αγ

[
ZγT(t f )− γc MD

]
(41)
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The optimal strategy of the target minimizes the Hamiltonian of Equation (38), and
we have

u∗T = arguT
minH (42)

By differentiating Equation (42) with respect to uT , the open-loop optimal strategy is
calculated by solving

∂H
∂uT

= βTuT + λT B̃MT + λγT B̃γMT = 0 (43)

and using the Lagrange multiplier λT(t) and λγT(t) from Equation (41):

u∗T = − α

βT
ZT

(
t f

)
B̃MT −

αγ

βT

[
ZγT(t f )− γc MD

]
B̃γMT (44)

4.5. Solution of the Terminal Miss Distance and Terminal Impact Angle

ZT can be represented as:

ZT(t) = −VλMT θ52 + VλMD θ56 + θ̂5TaTN + θ̂5MaMN + θ̂5DaDN (45)

and ZγT can be calculated as:

ZγT(t) = −VλMT θ82 + VλMD θ86 + θ̂8MaMN + θ̂8TaTN + θ8DaD + γM + γD (46)

where θi2 = θi1tgoMT , θi6 = θi5tgo, θ̂ij = θij/δj,(i = 5, 8; j = M, T), and θ̂5D = θ5D/δD. The
detailed derivations of zero-effort quantities and the computation of coefficients θ(·) in
Equations (45) and (46) are calculated by referring to Appendix A. Note that the coefficients
in Equations (45) and (46) are all only related to tgo and tgoMT , which can be obtained by
numerical integration because the analytical expression cannot be solved. According to the
EOMs of ZT(t) and ZγT(t) in Equation (36), we have:

ZT

(
t f

)
= ZT(t) +

∫ t f

t
B̃MTu∗Tdτ, ZγT

(
t f

)
= ZγT(t) +

∫ t f

t
B̃γMTu∗Tdτ (47)

Substitute the optimal guidance law of Equation (44) derived previously into (47) yields:

ZT

(
t f

)
= ZT(t) + R11ZT

(
t f

)
+ R12

[
ZγT(t f )− γc MD

]
(48)

ZγT(t f )− γc MD = ZγT(t)− γc MD + R21ZT

(
t f

)
+ R22

[
ZγT(t f )− γc MD

]
(49)

where R11 = −α
∫ t f

t B̃2
1T/βTdτ, R12 = −αγ

∫ t f
t B̃1T B̃2T/βTdτ, R21 = −α

∫ t f
t B̃1T B̃2T/βTdτ,

and R22 = −αγ

∫ t f
t B̃2

2T/βTdτ. After the transformation and reconstruction of

Equations (48) and (49), ZT

(
t f

)
and ZγT

(
t f

)
− γcMD can be written as ZT

(
t f

)
ZγT

(
t f

)
− γcMD

 = S
[

ZT(t)
ZγT(t)− γcMD

]
(50)

where S(t) =

[
S11(t) S12(t)
S21(t) S22(t)

]
= 1

(1−R11)(1−R22)−R12R21

[
1− R22 R12

R21 1− R11

]
. Finally, the

optimal one-way cooperation strategy for the target is obtained by substituting ZT

(
t f

)
and ZγT

(
t f

)
− γcMD from Equation (50) back into Equation (44), and it is rewritten with a

navigation gain form:
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u∗T(t) =
N′T(t)ZMD(t)

t2
go

+
N′γT(t)

[
ZγMD(t)− γcMD

]
t2
go

(51)

where the navigation gains N′T(t) = −
(

αB̃MTS11 + αγ B̃γMTS21

)
t2
go/βT ,

N′γT(t) = −
(

αB̃MTS12 + αγ B̃γMTS22

)
t2
go/βT . For the same reason as two-way cooper-

ation, the special case to be considered here is α tends to infinity, and the navigation gains
are given by:

N′T(t) = −αB̃MTS11t2
go/βT , N′γT(t) = 0 (52)

5. One-Way Cooperation Guidance Strategy with Impact Angle Constraints for
Independent Target

Here, this study focuses on the last one-way cooperation mechanism. In this mech-
anism, the target may perform any arbitrary maneuver, which has been known to the
defender. Based on the information about the target and the missile, the defender can pre-
dict the missile’s behavior and head toward the interception point from a specific direction.
If the maneuver overload value of the target is small, e.g., the constant maneuver of a small
overload adopted for simulation in [9], the linear model similar to the previous one can
be used to calculate, which is considered the first method here. However, if the maneuver
overload value of the target is large, the linear model is no longer applicable because the
angle between the speed vector and the linearized benchmark (i.e., the initial LOS angle)
changes greatly. However, considering that the maneuver strategy of the target and the
pursuit strategy of the missile are both known, the nonlinear simulation model can be
pre-run once. Meanwhile, the precise state of the missile at any time can be obtained by
directly looking up the table in the simulation for each step, and the state of the defender
can be deduced through the linear model, which is considered the second method here. As
for the calculation amount, the first method mainly includes the calculation of the transfer
matrix, and the integral calculation in every step; the second method mainly handles the
simulation process of the missile chasing the target for one time. The two methods have a
similar calculation in the early stage, but the calculation amount of the second method is
small in each step. Both methods will be described later.

5.1. One-Way Cooperation Dynamics with Independent Target

The linear model is used for the target maneuver with a small overload value. The
EOM of the one-way cooperation with an independent target is obtained as:

.
x = AΦ

(
tgo + ∆t

)
x + BΦT

(
tgo + ∆t

)
u∀T + BΦDuD (53)

where u∀T represents the arbitrary maneuver of the target. When the target adopts an
arbitrary maneuver mode, especially a large maneuver overload, the missile state obtained
through nonlinear simulation is denoted as xM(t) = [yM

.
yM aMN γM ]. The state

of the defender is xD(t) = [yD
.
yD aDN γD ]. Then, the EOM of the defender can be

expressed as:
.
xD = AΛxD + BΛDuD (54)

where AΛ =


0 1 0 0
0 0 1 0
0 0 AD 0
0 0 1

VDδD
0

, and BΛD =
[
0 0 BD 0

]T .
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5.2. One-Way Problem Statement with Independent Target

Only the control effort of the defender can be considered, and by referring to Equation (15),
the optimal one-way cooperation problem with impact angle constraint is represented as
minimizing the following function subject to the EOM of Equation (53) or (54):

J =
1
2

αy2
MD

(
t f

)
+

1
2

αγ

[
γMD(t f )− γc MD

]2
+

1
2

∫ t f

0
uD

2(t)dt (55)

5.3. Order Reduction

Different from the computation process of zero-effort quantities for two-way coop-
eration, the target adopts its evasion maneuver. Thus, through terminal projection [34],
the zero-effort quantities can be denoted as ZD and ZγD, where the subscript D refers to
the defender taking no maneuvers. For the target maneuver with a small overload value,
zero-effort quantities are calculated in Equation (56).{

ZD(t) = DΦ(t f , t)x(t) +
∫ t f

t DΦ(t f , t)u∀T(t)dt

ZγD(t) = DγΦ(t f , t)x(t) +
∫ t f

t DγΦ(t f , t)u∀T(t)dt
(56)

The general form of Φ(t f , t) has been calculated before. By differentiation with respect

to time, the EOMs of ZMD and ZIA are obtained as
.
ZD and

.
ZγD:

.
ZD = B̃MD

(
t f , t

)
uD

.
ZγD = B̃γMD

(
t f , t

)
uD

(57)

where B̃MD

(
t f , t

)
= DΦ

(
t f , t

)
BΦD, B̃γMD

(
t f , t

)
= DγΦ

(
t f , t

)
BΦD. As for the target

adopting any maneuver mode, the zero-effort quantities are calculated as follows:{
ZD(t) = yM(t f )− yZ

D(t)
ZγD(t) = γM(t f ) + γZ

D(t)
(58)

where yM(t f ) and γM(t f ) are respectively the separation perpendicular to the initial LOS
direction and the flight-path angle of the missile at t f obtained by nonlinear pre-run
simulation. yZ

D(t) and γZ
D(t) are respectively the zero-effort separation and flight-path

angle of the defender by calculating the transfer matrix of Equation (60) when the defender
takes no maneuver. The projection principle and other methods can be used to obtain the
following equation: {

yZ
D(t) = yD + VDδDtgo + τ2

Dψ(tgo/τD)aDN

γZ
D(t) = γD −

τDξ(tgo/τD)
VD

aD
(59)

The EOMs of ZMD and ZIA of the second method are the same as those of the first
method, which can be calculated as Equation (57). The problem can be rewritten by using
ZD and ZγD. Because ZD(t f ) = yMD(t f ) and ZγD(t f ) = γMD(t f ), the objective function
in Equation (55) can be transformed into minimizing the following cost function:

J =
1
2

αZ2
D

(
t f

)
+

1
2

αγ

[
ZγD(t f )− γc MD

]2
+

1
2

∫ t f

0
u2

D(t)dt (60)

5.4. Optimal Solution

The Hamiltonian for Equation (60) is obtained as

H =
1
2

u2
D(t) + λD

.
ZD + λγD

.
ZγD (61)
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The adjoint equations and transversality conditions are as follows.
.
λD = − ∂H

∂ZD
= 0

λD

(
t f

)
= αZD

(
t f

) (62)


.
λγD = − ∂H

∂ZγD
= 0

λγD

(
t f

)
= αγ

[
ZγD(t f )− γc MD

] (63)

The solution to the adjoint equations can be solved as:

λD(t) = αZD

(
t f

)
, λγD(t) = αγ

[
ZγD(t f )− γc MD

]
(64)

The optimal strategy of the target minimizes the Hamiltonian of Equation (61), and
we have

u∗D = arguD
minH (65)

By differentiating Equation (61) with respect to uD, the open-loop optimal strategy is
calculated by solving

∂H
∂uD

= uD + λD B̃MD + λγD B̃γMD = 0 (66)

and using the Lagrange multiplier λD(t) and λγD(t) from Equation (64). Finally, we have

u∗D = −αZD

(
t f

)
B̃MD − αγ

[
ZγD(t f )− γc MD

]
B̃γMD (67)

5.5. Solution of the Terminal Miss Distance and Terminal Impact Angle

According to the EOMs of ZD(t) and ZγD(t) in Equation (57), we have: ZD

(
t f

)
= ZD(t) +

∫ t f
t B̃MDu∗Ddτ

ZγD

(
t f

)
= ZγD(t) +

∫ t f
t B̃γMDu∗Ddτ

(68)

Substituting the previously derived optimal guidance law of Equation (67) into
(68) yields ZD

(
t f

)
= ZD(t) + T11ZD

(
t f

)
+ T12

[
ZγD(t f )− γc MD

]
ZγD(t f )− γc MD = ZγD(t)− γc MD + T21ZD

(
t f

)
+ T22

[
ZγD(t f )− γc MD

] (69)

where T11 = −α
∫ t f

t B̃2
MDdτ, T12 = −αγ

∫ t f
t B̃MD B̃γMDdτ, T21 = −α

∫ t f
t B̃MD B̃γMDdτ, and

T22 = −αγ

∫ t f
t B̃2

γMDdτ. After the transformation and reconstruction of Equation (69),

ZD

(
t f

)
and ZγD

(
t f

)
− γcMD can be written as ZD

(
t f

)
ZγD

(
t f

)
− γcMD

 = W
[

ZD(t)
ZγD(t)− γcMD

]
(70)

where W(t) =

[
W11(t) W12(t)
W21(t) W22(t)

]
= 1

(1−T11)(1−T22)−T12T21

[
1− T22 T12

T21 1− T11

]
. Finally, the

optimal one-way cooperation strategy for the target is obtained by substituting ZT

(
t f

)
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and ZγT

(
t f

)
− γcMD of Equation (70) back into Equation (67), and it can be rewritten into

the following navigation gain form:

u∗D(t) =
N′D(t)ZD(t)

t2
go

+
N′γD(t)

[
ZγD(t)− γcMD

]
t2
go

(71)

where the navigation gains N′D(t) = −
(

αB̃MDW11 + αγ B̃γMDW21

)
t2
go,

N′γD(t) = −
(

αB̃MDW12 + αγ B̃γMDW22

)
t2
go. When α tends to infinity, the navigation gains

are represented by:

N′D(t) = −αB̃MDV11t2
go, N′γD(t) = −αB̃MDV12t2

go (72)

6. Simulation Analysis

The simulation analysis of the guidance law under the impact angle constraint is
carried out. As mentioned above, the missile adopts the general linear guidance law, and
the value of the guidance coefficient is set to 3. The other general simulation conditions
are listed in Table 2, where the low-cost defender has limited maneuverability. In the
simulation, all the vehicles are modelled by nonlinear kinematics equations.

Table 2. Simulation parameters.

Parameters Values Parameters Values Parameters Values Parameters Values

VT 200 m/s amax
M 30 g τM, τD, τT 0.1 s γD0 10◦

VM, VD 300 m/s γT0 0◦ amax
D , amax

T 10 g γM0 150◦

6.1. Two-Way Cooperation
6.1.1. Transfer Matrix

Some of the transfer matrix elements with respect to tgo are calculated numerically
using Equations (A4), (A7) and (A8), and the results are shown in Figure 2. The other
necessary elements are φ58

(
tgo
)
= φ85

(
tgo
)
= φ86

(
tgo
)
= 0, φ55

(
tgo
)
= φ88

(
tgo
)
= 1, and

φ56
(
tgo
)
= tgo. It can be seen from Figure 2 that the magnitude order of elements in the

right column are much lower than the ones in the left column.
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6.1.2. Simulation of Different Terminal Impact Angle Commands

The terminal impact angle commands are successively given as −110◦, −80◦, −50◦,
−20◦, 0◦, 30◦, 60◦, 80◦, and the weight coefficients α, αγ, βT are set to 50,000, 1011, 8,
respectively. Figure 3a shows the trajectory diagram of the two-way cooperation guidance
law, and the corresponding miss distance and actual terminal impact angle of each terminal
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impact angle command are illustrated in Figure 3b. It can be seen that the miss distance is
less than 0.3 m when the terminal impact angle commands are within [−110◦, 80◦], and it
can realize hit-to-kill interception [35]. If the angle error instruction exceeds this interval,
the miss distance will increase. Except for the error in the large impact angle instruction,
the angle error is very small in the wide range of distribution, but it is still within the
allowable range. The overload curves of the entities and total control effort are shown in
Figure 3c–f, respectively. It can be seen that as |γcMD| increases, the maximum overload
demand of the three entities and the control effort all increase. Meanwhile, the maximum
overload value of the target appears in the early stage of the engagement, while that of the
defender appears in the late stage of the confrontation. For the sake of simplification, the
same weight parameters are adopted under different impact angle directives, and good
terminal requirements are achieved. Also, better performance can be achieved by adjusting
the weight parameters.
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6.1.3. Variation Curves for Different Weight Coefficients

When α approaches infinity, only the minimization for miss distance is considered,
which has been analyzed in [9]. The influence of different βT is mainly considered here.
Here, the values of α and αγ are the same as those in the previous subsection. Figure 4a,b
show the miss distances and the terminal impact angles under different conditions, where
βT is set to 0.1, 5, 8, 12, 20, and 50, respectively. It can be seen that if the terminal impact
angle command is not too large, terminal quantities can meet the requirements in most
cases. However, when the absolute value of the impact angle command is too large, it
cannot be satisfied if βT is too small or too large, and the missile may even miss the target.
When βT is too large, the completion of the task depends largely on the defender; when
βT is too small, it depends on the target maneuver. The overloads of the target and the
defensive missile are very limited, so for a large impact angle command, the mission will
not be accomplished unless βT is set to invoke the maneuver abilities of the target and the
defender reasonably. For the simulation conditions satisfying terminal constraints, the final
control effort and the total final control effort of the target and the defender are shown
in Figure 4c–e, respectively. In this initial configuration of the encounter, the smaller the
absolute value of the terminal impact angle command is, the smaller the three control effort
values are. Meanwhile, as βT increases, the control effort of the target corresponding to
the same terminal impact angle command becomes smaller, while the control effort of the
defender becomes larger.
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6.2. One-Way Cooperation with Independent Defender

In this subsection, the proportional guidance law with a proportional guidance coef-
ficient of 3 is used for the defender. The other simulation parameters are consistent with
those in the two-way cooperation simulation.

6.2.1. Transfer Matrix

Some of the transfer matrix elements are shown in Figure 5, and the other necessary
coefficients are θ58 = 0, θ88

(
tgo
)
= 1. It can be seen that θ81, θ82, and θ̂8T are more sensitive

to tgo, while other parameters tend to be constant when tgo is large, but fluctuate greatly
when tgo is small.
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6.2.2. Simulation of Different Terminal Impact Angle Commands

The terminal impact angle commands are the same as those in the last subsection, and
the weight coefficients α, αγ, βT are set to 1000, 1010, 100, respectively. Figure 6a shows the
trajectory diagram of the one-way cooperation guidance law, and the corresponding miss
distance and the actual terminal impact angle are shown in Figure 6b. The miss distances
in [−110◦ 80◦] are all less than 0.2 m, and the impact angle errors are very small, which
directly affects the hit-to-kill interception [35]. If the impact angle command exceeds this
interval, the terminal quantities errors will increase. The overload of the target, defense
missile, missile, and the total control effort curves are shown in Figure 6c–f. It can be seen
that as |γcMD| increases, the maximum overload demand and the control effort of the three
entities also increase. Meanwhile, the overload value of the target is relatively stable during
the whole process. For the same terminal impact angle command, the requirements of the
target’s overload value do not vary much compared with those in two-way cooperation,
but the overload requirement of the defense missile in one-way cooperation is higher. The
other simulation results are similar to those in the two-way cooperation.

The miss distances and terminal impact angles corresponding to different αγ are shown
in Figure 7a,b, and the values for different βT are presented in Figure 7c,d, respectively. The
defender uses the proportional guidance law to intercept the missile, so it can always ensure
a small miss distance for various coefficients. However, αγ must be large enough; otherwise,
the terminal impact angle error will be large. Also, βT should also be small enough so that
it can allow the target to maneuver with enough energy and lure the incoming missile.
For different βT , the control effort when the terminal constraints are satisfied are shown
in Figure 7e,f, respectively. In the cases with the same γcMD, it can be found that the
two control effort values are insensitive to βT , and the control energy allocation of the
defense missile and the target can be adjusted more freely in the two-way cooperation.



Aerospace 2022, 9, 710 20 of 26Aerospace 2022, 9, 710 22 of 29 
 

 

  
(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 6. Comparison of performance for different terminal impact angle commands in one-way 
cooperation with an independent defender: (a) trajectories of entities; (b) the terminal miss distance 
and terminal impact angle; (c) target lateral acceleration; (d) defender lateral acceleration; (e) missile 
lateral acceleration; and (f) total control effort. 

The miss distances and terminal impact angles corresponding to different γα  are 

shown in Figure 7a,b, and the values for different βT  are presented in Figure 7c,d, re-
spectively. The defender uses the proportional guidance law to intercept the missile, so it 
can always ensure a small miss distance for various coefficients. However, γα  must be 

large enough; otherwise, the terminal impact angle error will be large. Also, βT  should 

Figure 6. Comparison of performance for different terminal impact angle commands in one-way
cooperation with an independent defender: (a) trajectories of entities; (b) the terminal miss distance
and terminal impact angle; (c) target lateral acceleration; (d) defender lateral acceleration; (e) missile
lateral acceleration; and (f) total control effort.



Aerospace 2022, 9, 710 21 of 26

Aerospace 2022, 9, 710 23 of 29 
 

 

also be small enough so that it can allow the target to maneuver with enough energy and 
lure the incoming missile. For different βT , the control effort when the terminal con-
straints are satisfied are shown in Figure 7e,f, respectively. In the cases with the same 
γcMD , it can be found that the two control effort values are insensitive to βT , and the con-
trol energy allocation of the defense missile and the target can be adjusted more freely in 
the two-way cooperation. 

  
(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 7. Comparison of performance for different γα  and βT  in one-way cooperation with an 

independent defender: (a) miss distance for different γα ; (b) impact angle for different γα ; (c) miss 

Figure 7. Comparison of performance for different αγ and βT in one-way cooperation with an
independent defender: (a) miss distance for different αγ; (b) impact angle for different αγ; (c) miss
distance for different βT ; (d) impact angle for different βT ; and (e) control effort of the target for
different βT ; (f) control effort of the defender for different βT .

6.3. One-Way Cooperation with Independent Target

As an example, this paper supposes that the target executes a bang-bang evasive
maneuver with one time switch. The target maneuver strategy is shown below

uT =

{
−umax

T , t ≤ tb
umax

T , t > tb
(73)



Aerospace 2022, 9, 710 22 of 26

where tb is the switching time of bang-bang maneuver, and it is set to 6 s. Here, the method
in Equation (58) for an arbitrary maneuver mode is adopted for calculation.

The terminal impact angle commands are successively given as −80◦, −70◦, −50◦,
−40◦, −30◦, −10◦, 0◦, 5◦, and the weight coefficients α and αγ are set to 1000 and 1010,
respectively. Figure 8a shows the trajectory diagram of the one-way cooperation guidance
law, and the miss distance corresponding to each terminal impact angle instruction and
the actual terminal impact angle are presented in Figure 8b. The miss distance in the
range of [−80◦ 0◦] is 0.25 m, and a hit-to-kill interception can be achieved. However,
for other instructions, the performance will decline, and the missile may even miss the
target. When the target adopts the maneuver mechanism, compared with the previous
two cooperative modes, the range of available terminal impact angle commands is the
smallest. The overload of the defender and the total control effort curves are illustrated
in Figure 8c,d, respectively. Under the above simulation conditions, when γcMD = −40◦,
the maximum overload demand of the defender and the minimum control effort is shown.
When γcMD = 5◦, the defender overload becomes saturated, the final miss range reaches
1.43 m, and the terminal impact angle error reaches −0.556◦. Since the weight coefficient
of the defender is 1, α and αγ cannot be too small; otherwise, the overload of the defense
missile cannot meet the demand, which will not be shown here due to the limited space of
this paper.
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7. Conclusions

This paper investigated the three-body engagement where the defender with an im-
pact angle constraint is deployed by the aircraft to intercept the incoming missile. Optimal
cooperative guidance laws with an impact angle constraint for three cooperation mecha-
nisms were presented and mathematically formulated. In the first scenario, the two-way
cooperation for the target and the defender was studied. In the second scenario, the one-
way cooperation assumed that there is an independently homing defender using linear
guidance law to intercept the incoming missile, and the guidance strategy is known for the
target. In this case, the optimal one-way cooperative strategy was derived for the target
to support the defender to intercept the missile with a specific impact angle constraint.
In the third scenario, the escape strategy of the target is known to the defender, which is
utilized by the defender to intercept the missile with a specific impact angle constraint. The
cooperative strategy proposed in this paper is based on the premises of the entities with
linear dynamics, perfect information-sharing mechanisms, and the known linear guidance
strategy of the missile.

Then, a nonlinear two-dimensional model for flight vehicles with first-order autopilot
dynamics was simulated to verify the performance of the proposed strategies. The simula-
tion results indicated that the cooperative mechanism directly affects the available range
of impact angles, and the constraint of a big impact angle can be realized by introducing
the nonlinear model parameters and considering the angle variation between the velocity
vector and the initial line-of-sight, although the guidance law was derived from the linear
model. Because the future guidance strategies of the defender and the missile are known
through the cooperative mechanism, the target can predict the behavior of the defender. In a
similar way, based on the future maneuver strategies of the target and the guidance strategy
of the missile, the defender can predict the missile’s behavior. Furthermore, compared to
the one-way cooperation mechanism, the two-way cooperation mechanism achieves the
best performance, so it can intercept incoming missiles with a larger terminal angle of attack
and can be flexibly designed for the maximum overload capability of different defensive
missiles and targets. In one-way cooperation, the independent defender can also intercept
the others with the impact angle in a wide range, but the energy distribution of both parties
cannot be adjusted. In addition, for an independent target in one-way cooperation, its
terminal impact angle range is closely related to the maneuvering escape strategy of the
target. The three cooperative strategies mentioned above can achieve a small miss distance
and even make direct collision killing under a reasonable terminal impact angle command.
The two-way cooperation needs additional hardware to be equipped on the defender for
the communication, which will increase the cost of the defender. The one-way cooperation
mechanism for independent defender is the easiest to implement, because no additional
hardware support is required, and the defender implemented a guidance law such as PN is
very possible. The other one-way cooperation mechanism gives the target aircraft more
freedom to maneuver, but only in a form known to the defender in advance.

In this paper, the guidance strategies of the incoming missile were assumed to be the
typical guidance laws, which are expressed as the linear guidance law form under the
small angle linearization assumption. Based on this, the research of three active defense
guidance strategies was completed. This assumption of typical guidance laws has certain
applicability but designing active defense guidance strategies will be challenging for other
guidance laws, especially some new guidance laws against targets protected by defenders,
which is one of the research directions in the future. In addition, the method proposed
in this paper can be extended to three-dimensional engagement, and the launch time for
the defender missile is also worth studying. Finally, the defender missile should have
omnidirectional interception capability.
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Appendix A. Computation of ZIA for Two-Way Cooperation

This Appendix deduces the computation of ZIA in the three-body engagement where
the target and the defender take no maneuver and the missile uses linear guidance law.
According to Equation (13), ZIA is calculated as

ZγTD(t) = φ81x1 + φ82x2 + φ8MxM + φ8TxT + φ85x5 + φ86x6 + φ8DxD + φ88x8 (A1)

The computation of ZIA is transformed into solving the coefficients of state variables.
We have

Dγ
dΦ

dtgo
= Dγ

dΦ

dt
dt

dtgo
= DγΦ

(
t fMD , t

)
AΦ, Φ(0) = I (A2)

which can be expanded as

dφ81
dtgo

= −dMK1φ82 + K1φ8MBM/δM+dMK1φ86
dφ82
dtgo

= φ81 − dMK2φ82 + K2φ8MBM/δM+dMK2φ86
dφ8M
dtgo

= (−CM − dMKM)δMφ82 + φ8M(AM + BMKM) + (CM + dMKM)δMφ86 + 1/VM
dφ8T
dtgo

= (CT − dMKT)δTφ82 + φ8MBMKTδT/δM+φ8T AT + dMKTδTφ86
dφ85
dtgo

= 0
dφ86
dtgo

= φ85
dφ8D
dtgo

= −φ86CDδD + φ8D AD + 1/VD
dφ88
dtgo

= 0

(A3)

where all initial values are zero, except for φ88(0) = 1. The solutions to φ85, φ86, and φ88
are φ85 = 0, φ86 = 0, and φ88 = 1. If the missile uses linear guidance laws, we have
K2 = K1tgoMT . Then, the relationship for φ81 and φ82 can be represented as

φ82 = φ81tgoMT (A4)

Then, with the results already obtained, Equation (A3) can be rewritten as

dφ82
dtgo

= φ82
tgoMT

− dMK2φ82 + K2φ8MBM/δM
dφ8M
dtgo

= (−CM − dMKM)δMφ82 + φ8M(AM + BMKM) + 1/VM
dφ8T
dtgo

= (CT − dMKT)δTφ82 + φ8MBMKTδT/δM+φ8T AT
dφ8D
dtgo

= φ8D AD + 1/VD

(A5)

where, all initial conditions are set to zero. The new coefficients φ̂(·) only related to tgo are
introduced, which are defined by

φ̂8i = φ8i/δi, ∀i = {M, T} (A6)
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By solving the last equation in Equation (A5), we have

φ8D = − τD
VD

ξ
(
tgo/τD

)
(A7)

where the function ξ(·) is represented in Equations (24) and (A5) is transformed as
dφ82
dtgo

= φ82
tgoMT

− dMK2φ82 + K2φ̂8MBM
dφ̂8M
dtgo

= (−CM − dMKM)φ82 + φ̂8M(AM + BMKM) + 1/VM
dφ̂8T
dtgo

= (CT − dMKT)φ82 + φ̂8MBMKT + φ̂8T AT

(A8)

The coefficients φ82, φ̂8M, and φ̂8T can be obtained by numerical integration of
Equation (A8). By substituting the coefficients of Φ into Equation (A1), the form of ZID
can be represented as

ZγTD(t) =
φ82
(
yMT +

.
yMTtgoMT

)
tgoMT

+ φ̂8MaMN + φ̂8TaTN −
τD
VD

ξ
(
tgo/τD

)
aD + γM + γD (A9)

The above formula can still be improved by the kinematic variables of the nonlinear
model. Considering the small angle approximations, the following relation can be obtained.

yMT = −rMT(λMT − λ0) (A10)

By using Equation (A10) and its derivative, we have

yMT +
.
yMTtgoMT = −VλMT tgoMT (A11)

Finally, by substituting Equation (A11) into Equation (A9), ZIA can be calculated as in
Equation (A12).

ZγTD(t) = −VλMT φ82 + φ̂8MaMN + φ̂8TaTN −
τD
VD

ξ
(
tgo/τD

)
aD + γM + γD (A12)
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