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Abstract: Steering large-scale particle or robot systems is challenging because of their high dimen-
sionality. We use a centralized stochastic approach that allows for optimal control at the cost of
a central element instead of a decentralized approach. Previous works are often restricted to the
assumption of fully actuated robots. Here we propose an approach for underactuated robots that
allows for energy-efficient control of the robot system. We consider a simple task of gathering the
robots (minimizing positional variance) and steering them towards a goal point within a bounded
area without obstacles. We make two main contributions. First, we present a generalized coordinate
transformation for underactuated robots, whose physical properties should be considered. We choose
Euler-Lagrange systems that describe a large class of robot systems. Second, we propose an optimal
control mechanism with the prime objective of energy efficiency. We show the feasibility of our
approach in robot simulations.

Keywords: aerospace; generalized multi-coordinates transformation; network control systems;
underactuated Euler–Lagrange systems

1. Introduction

The steer of large-scale multi-agent particle systems is challenging due to the high
degree of freedom in such distributed systems of loosely coupled robots [1]. The published
approaches on this subject can roughly be separated into two complementary classes:
(A) centralized approaches assuming complete information and focusing on precision
and efficiency [2] and (B) decentralized approaches assuming only partial observability
and focusing on simple reactive and behavior-based control [3]. While both concepts are
generally justified, the centralized approach may be almost unavoidable for certain tasks.
Here, we investigate a control problem in robot swarms with minimal hardware [4,5]. In the
case of a simple robot, such as the Kilobot robot with its minimal equipment of sensors [6],
certain tasks may be infeasible relying on a decentralized approach. The advantage of
having simple hardware is, in turn, that possibly many robots can be built to form a large-
scale formation with high redundancy. The automatic control problem can be thought of as
macroscopic or stochastic control of a cloud of robots determined by a distribution [4,7].

The global input can be, for example, the mean position of all robots and their variance.
The output is a global control law that is broadcasted to all robots or that operates as a
moment of force on each robot. The variance may be calculated based on robot positions [5],
which could be relaxed in a different approach. An option is to exploit the environment
by gathering robots at flat obstacles until minimum variance is achieved [8]. The control
iterates over measuring robot positions followed by possibly longer periods of not mea-
suring again but relying on the dynamical model of each robot plus adding Brownian
noise on positions, velocities, and accelerations. This is generally related to mean-field
models of multi-robot systems [9] and, specifically, the concept of assuming microscopically
Brownian particles and the resulting macroscopic evolution of a swarm described by a
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distribution relates directly to known modeling approaches in swarm robotics based on
Langevin equations and Fokker-Planck equations [10].

We propose an optimal energy-efficient control mechanism that minimizes positional
variance and steers the robot system’s mean position to a target position. In particular, our
work starts by showing that it is possible to obtain mathematically a mapping such that
underactuated robot systems take a partial form. However, due to the complexity of the
dynamics (coupling of the inertia matrix), it is not possible to design a controller. Another
challenge is the fact that the control input matrix G(q) is time-variant. However, in [3,11,12],
the authors assumed the input matrix to be in the form of G = [Im 0s]>. This assumption
on the input matrix G can be applied only to simple robot structures. In this paper, we
cover the case where G(q) = [Gu(q) Ga(q)]> has a general form. Therefore, we relax this
assumption on the input matrix G differently from what is done in [3,11,12]. Indeed, finding
a transformation to have the robot systems take a partial form is not straightforward.
Nonetheless, a new generalized coordinate transformation framework is proposed to
decouple the system. This allows the development of an optimal control mechanism with
the prime objective of energy efficiency. In control theory, several techniques exist to
design energy-efficient control laws [13]. However, the state-dependent Riccati equation
(SDRE) [14] does not cancel nonlinear terms, which is advantageous because canceling such
nonlinearities would significantly increase the control signals [15]. Furthermore, SDRE
parameterizes and characterizes the system to a state-dependent coefficient (SDC) form that
is useful for immediate stability analysis. Then, we show that our control design provides
set point tracking (stabilization) with semi-global properties. Our proof is based on the
Lyapunov stability criterion [16].

Recently in [2], the author introduced a centralized control of underactuated non-
identical Euler–Lagrange systems. The methodology is valid based on the assumption
of the accessibility of the information of the whole network. In this paper, we develop a
novel centralized control of underactuated large-scale multi-agent systems using only the
mean position of all agents and their variance. The experiment highlights three advan-
tages: (i) It resolves the limitation of the existing control strategy by introducing a novel
two-step methodology to control the swarm, (ii) it increases the performance by exploiting
the torque generated for the orientation of particles and providing smoother trajectories,
and (iii) it proposes a base performance comparison with the actuated holonomic swarm of
particles [5,17].

2. Euler-Lagrange Dynamics

We consider an underactuated robot system with dynamics described by the well-
known Euler-Lagrange (EL) equations of motion

M(q)q̈ + C(q, q̇)q̇ +∇V(q) = G(q)u, (1)

where q ∈ Rn are the configuration variables, u ∈ Rm are the control signals, M(q) > 0 is
the generalized inertia matrix, C(q, q̇) represent the Coriolis and centrifugal forces, V(q) is
the systems potential energy, and G(q) is the input matrix. First, we make an assumption
characterizing the class of generalized coordinate transformation T that we use here.

Assumption 1. There exists an invertible mapping Φ : Rn → Rn, such that

∇qΦ(q) = T−1(q). (2)

is invertible for all q.

Lemma 1. Consider a mapping Φ : Rn → Rn that satisfies Assumption 1 and define the gener-
alised coordinate transformation as follows

q = Φ(q). (3)
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Then, the EL dynamics (1) can be written as follows

M(q)q̈ + C(q, q̇)q̇ +∇V(q) = G(q)u, (4)

where

q̇ := T−1(q)q̇ (5)

M(q) := T>(q)M(q)T(q)
∣∣∣
q=Φ−1(q)

(6)

V(q) := V(q)
∣∣∣
q=Φ−1(q)

(7)

G := T>(q)G(q)
∣∣∣
q=Φ−1(q)

(8)

and C(q, q̇)q̇ are the Coriolis and centrifugal forces associated with mass matrix M(q) that we
can compute by

C(q, q̇)q̇ =

[
∇q[M(q)q̇]− 1

2
∇>q [M(q)q̇]

]
q̇. (9)

The Lagrangian in the new generalized coordinates is

L(q, q̇) =
1
2

q̇>M(q)q̇−V(q). (10)

Proof. The proof follows from the coordinate invariance property of the EL equations (or
from straightforward calculation computing the derivative of the coordinate transformation
and using the original dynamics).

Remark 1. Notice that the matrix T(.) can be used to shape the form of the mass matrix M(.) in
the new generalized coordinates. However, we only consider invertible matrices T(.) that satisfy
the integrability Assumption 1. That is, given an invertible matrix T(.), we assume there exists an
invertible mapping Φ : Rn → Rn that satisfies

Φ̇(q) = T−1(q)q̇.

Therefore, the generalized coordinated transformation (3) is well-defined.

We consider now mechanical systems (1) with an input matrix of the general form

G(q) =
[

Gu(q)
Ga(q)

]
, (11)

where rank G(q) = m < n, and Ga(q) is an invertible m × m matrix. Gu(q) and Ga(q)
are the underactuated and actuated components of G(q) , respectively. The EL dynamics
(1) is coupled when Gu(q) 6≡ 0. Furthermore, to simplify the notation, we partition the
generalized coordinates and velocity as q = col(qu, qa), q̇ = col(q̇u, q̇a) with qa, q̇a ∈ Rm

and qu, q̇u ∈ Rs, and partition the inertia and Coriolis matrices as

M(q) =
[

muu(q) m>au(q)
mau(q) maa(q)

]
,

C(q, q̇) =
[

cuu(q) cua(q)
cau(q) caa(q)

]
,

where maa : Rn → Rm×m, mau : Rn → Rs×m, muu : Rn → Rs×s, caa : Rn ×Rn → Rm×m,
cau : Rn × Rn → Rs×m, cua : Rn × Rn → Rm×s, cuu : Rn → Rs×s. Next, we impose
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several assumptions to show particular forms of the EL dynamics (1) under generalized
coordinate transformations.

Assumption 2. There exists a function Φa : Rm → Rs, such that

Φ̇a(qa) = m−1
uu m>au q̇a. (12)

Assumption 3. The inertia matrix depends only on the actuated variables qa, i.e., M(q) = M(qa).

Assumption 4. The sub-block matrix muu of the inertia matrix is constant.

Assumption 5. The potential energy can be written as

V(q) = Va(qa) + Vu(qu).

Proposition 1. The dynamics of the system (1), under Assumption 2 and using the generalised
coordinates q = col(q1, q2) = Φ(q), can be written as follows

muuq̈1 +

[
∇q1(muuq̇1)−

1
2
∇>q1

(ms
uuq̇1)

]
q̇1 +[

∇q2(m
s
uuq̇2)−

1
2
∇>q1

(maaq̇2)

]
q̇2 +

∇q1V(q) = Gu(q)u (13)

ms
aaq̈2 +

[
∇q1(m

s
aaq̇2)−

1
2
∇>q2

(muuq̇1)

]
q̇1

+

[
∇q2(m

s
aaq̇2)−

1
2
∇>q2

(ms
aaq̇2)

]
q̇2 +

∇q2V(q) =
[

Ga(q)− Gu(q)maum−1
uu

]
u, (14)

where [
q1
q2

]
=

[
qu + Φa(qa)

qa

]
(15)

ms
aa(q) = maa(q)−mau(q)m−1

uu (q)m
>
au(q)

∣∣∣
q=Φ−1(q)

, (16)

muu(q) = muu(q)
∣∣∣
q=Φ−1(q)

, (17)

mau(q) = mau(q)
∣∣∣
q=Φ−1(q)

. (18)

Proof. First notice that, under Assumption 2, the coordinate transformation (15) satisfies
Assumption 1 with

T(q) =
[

Is −m−1
uu m>au

0m×s Im

]
. (19)

Then, from Lemma 1 we obtain that the dynamics can be written in the form (10) with[
q̇1
q̇2

]
=

[
Is m−1

uu m>au
0m×s Im

][
q̇u
q̇a

]
(20)

and Lagrangian

L(q, q̇) =
1
2
[

q̇>1 q̇>2
][ muu 0s×m

0m×s ms
aa

][
q̇1
q̇2

]
−V(q). (21)
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The dynamics (13) and (14) follow, after some simple calculations, from the EL formula
using the Lagrangian (21).

Corollary 1. The system (1) satisfying Assumptions 1–3 can be written as in the EL form as follows

muu(qa)q̈1 +∇q1V(q1, qa) = Gu(q)u, (22)

ms
aa q̈a +

[
∇qa [m

s
aa(qa)q̇a]−

1
2
∇>qa [m

s
aa(qa)q̇a]

]
q̇a +

∇qaV(q1, qa) =

[
Ga(q)− Gu(q)maum−1

uu

]
u, (23)

with ms
aa(qa) = maa(qa)−m>au(qa)m−1

uu mau(qu). In addition, if Assumptions 3 and 4 also holds,
then the EL dynamics can be written as follows

muuq̈1 +∇qu Vu

∣∣∣
qu=q1−Φa(qa)

= Gu(q)u, (24)

ms
aa q̈a +

[
∇qa [m

s
aa q̇a]−

1
2
∇qa [m

s
aa q̇a]

]
q̇a

+∇qa Va −maumuu∇qu Vu

∣∣∣
qu=q1−Φa(qa)

=[
Ga(q)− Gu(q)maum−1

uu

]
u. (25)

Proof. The proof follows from Proposition 1 and Assumptions 1–3 by setting in (13) and
(14) the following conditions: q1 = qu + Φa(qa), q2 = qa, muu is a constant matrix,
and ms

aa(q) = ms
aa(qa). The second part follows from the fact that, under Assumption 4,

the potential function is V(q) = Va(qa) +Vu(q1 −Φa(qa)).

Remark 2. Notice that the system in the partial linear form (24) and (25) has been used to design
a PID passivity-based controller in [18]. In that work, an outer partial feedback linearization (PFL)
control is used to obtain the desired form, which compromises the robustness of the closed loop.
However, this PFL control can be avoided by using a generalized change of coordinates as shown in
Corollary 1.

The generalized coordinate transformation in Proposition 1 is also useful (as it will be
shown in the next section) for the underactuated swarm of particles.

3. Underactuated Robot System

We consider an underactuated robot system with masses m1, m2, and m3, as shown in
Figure 1 that are rigidly fastened to the mass-less shaft and are free to move in the 2D plane.
We now set up the equation of motion of the holonomic robot using convenient coordinates
q = [q1, q2, q3]

> = [x1, y1, θ]>. An external force f1 is applied to m1 in the direction of−x1
and y1 respectively, and f3 to m3 in the direction of −x3 and y3 respectively. To simplify
the notation, we assume that all representative particle masses are the same (e.g., mi = m
for i = 1, . . . , 3). Applying Lagrange’s equations, it immediately follows that

L =
1
2

q̇>

 3m 0 −3Lm sin(θ)
0 3m 3Lm cos(θ)

−3Lm sin(θ) 3Lm cos(θ) 5L2m

q̇ (26)
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where (x1, y1) is positioned at the center of the first mass particle, L is the distance between
each mass, and θ is the inclination angle (see Figure 1). The equations of motion can be
written in compact form as

M(q)q̈ + C(q, q̇)q̇ = G(q)u, (27)

where M(q) is the generalized inertia matrix

M(q) =

 3m 0 −3Lm sin(θ)
0 3m 3Lm cos(θ)

−3Lm sin(θ) 3Lm cos(θ) 5L2m

. (28)

C(q, q̇) is the Coriolis matrix

C(q, q̇) =
0 0 −3Lθ̇m cos(θ)
0 0 −3Lθ̇m sin(θ)

3Lθ̇m cos(θ)
2

3Lθ̇m sin(θ)
2

hs

 (29)

with

hs = −
3Lm(ẋ1 cos(θ) + ẏ1 sin(θ))

2
. (30)

Therefore, the elements of the inertia matrix for the holonomic robot are given by

muu = 3m

mau = m>au =
[
0 −3Lm sin(θ)

]
maa =

[
3m 3Lm cos(θ)

3Lm cos(θ) 5L2m

]
. (31)

The virtual work is given by

δW =

−( f1 + f3) sin(θ)δx1

+( f1 + f3) cos(θ)δy1

2L f3δθ

. (32)

The derivation of (32) is given in Appendix A. Without loss of generality, G(q) can be
written as

G(q) =

−sin(θ) 0
cos(θ) 0

0 1

, (33)

with u = [u1, u2]
> = [ f1 + f3, 2L f3]

>. Therefore, Gu(q) =
[
−sin(θ) 0

]
and Ga(q) =[

cos(θ) 0
0 1

]
. Note that Ga(q) is an invertible 2× 2 matrix.
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Figure 1. Underactuated robot as a system of particles.

Mechanical Properties of the Underactuated Robot

The robot as defined by (27) has several fundamental properties, which can be used to
facilitate the design of an automatic control mechanism.

P.1 M(q) is a positive definite matrix.
P.2 The inertia matrix depends only on the actuated variables qa, i.e., M(q) = M(qa).
P.3 The sub-block matrix muu of the inertia matrix is constant.
P.4 From (28) and (29), and by using (30), we get

Ṁ(q)− 2C(q, q̇) =
0 0

9Lθ̇m cos(θ)
2

0 0
9Lθ̇m sin(θ)

2

−9Lθ̇m cos(θ)
2

−9Lθ̇m sin(θ)
2

0

, (34)

which is a skew-symmetric matrix.

The system has three degrees of freedom and only two actuators, hence, we have
an underactuated mechanical system. We have nonlinearities because the generalized
inertia matrix is off-diagonal and the input matrix is highly coupled. Due to the lack of
more actuators, this system cannot be fully linearized using exact feedback linearization.
However, it is still possible to apply PFL to the system, such that the translational dynamics
q1 = x1 and q2 = y1 become a double integrator. As already mentioned, PFL compromises
the robustness of the closed loop. However, the PFL can be avoided by using the proposed
transformation, as shown in Corollary 1. Given the properties P.1–P.4, we apply the
generalized coordinate transformations based on Proposition 1 to decouple the system.

Proposition 2. Considering the holonomic robot in (27), the dynamical system model can be
rewritten as

ẍ1 = fx1(θ, θ̇)− u1L sin(θ), (35)

ÿ1 = fy1(θ, θ̇) +
5 cos(θ)

6m
u1 −

cos(θ)
2m

u2, (36)

θ̈ = − 1
2m

u1 +
1

2m
u2 . (37)

Proof. By applying Proposition 1 the result follows.
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In the next section, we address questions related to the automatic control of a parti-
cle swarm that minimizes energy by applying the transformed underactuated model in
(35)–(37). We prove that the mean of configuration variables is controllable and provide
conditions under which the variance is also controllable.

4. Control Design for a Swarm

In this section, we present an automatic controller for a swarm of particles that mini-
mizes energy. We show that it only relies on the first two moments of the swarm configura-
tion variables, i.e., the position and the orientation angle distribution. The main objective
of our automatic control approach is to act on forces optimally so that particles can reach
the desired target position q∗ = [x∗, y∗, θ∗]> with the stable Euler angle ( lim

t→∞
θ = 0).

4.1. Swarm Dynamical System Model

By defining x = (x1, ẋ1, y1, ẏ1, θ, θ̇), the dynamics of (35)–(37) can be written as

ẋ = A(x)x + B(x)u. (38)

The elements of A(x) and B(x) are

ẋ1

ẍ1

ẏ1

ÿ1

θ̇

θ̈


=



0 1 0 0 0 0

0 0 0 0 3Lm sin(θ)θ̇(−θ̇ + 1) + 5L 3Lm cos(θ)(2θ̇ − 1)

0 0 0 1 0 0

0 0 0 0 Lθ̇2 cos(θ) + 3sin(θ) 2Lθ̇ sin(θ)

0 0 0 0 0 1

0 0 0 0 0 0





x1

ẋ1

y1

ẏ1

θ

θ̇



+



0 0
−Lsin(θ) 0

0 0
5L cos(θ)

6m
−cos(θ)

2m
0 0

− 1
2m

1
2m


[

u1

u2

]
(39)

The system is nonlinear, since matrices A(x) and B(x) both depend on the current state vari-
ables. Firstly, we analyze the number of controllable states as given by the following definition.

Definition 1. The states in (38) are controllable if the pair {A(x), B(x)} is point-wise controllable.
This can be observed by the rank of the controllability matrix

C =
[
B(x) A(x)B(x) . . . A5(x)B(x)

]
. (40)

The consequence of Definition 1 is that the C matrix for the system in (38) has the
full rank (i.e., rank (C) = 6). Therefore, all states are controllable. Previous work has
shown that the mean and variance of many particles for simple fully actuated particles
are controllable [5,7]. Next, we show how we can stabilize the nonlinear underactuated
particles by a global state-feedback controller designed via state-dependent Riccati equation
(SDRE) control [14]. Motivated by (38) and defining the mean states x̄ that represent the
mean states of N particles, we can write the dynamical system model of the swarm as

˙̄x = A(x̄)x̄ + B(x̄)u . (41)



Aerospace 2022, 9, 702 9 of 15

Interestingly, analyzing the controllability of the swarm dynamics results in the same form
as in (38), hence, the mean states are controllable.

4.2. Control Law

Our objective is to find minimum energy inputs that steer the swarm to a given target
state defined on t ∈ [t0, t f ] = [0, ∞]. To do so, consider now the following cost functional

J =
1
2

∫ ∞

0

(
x̄>Q(x̄)x̄ + u>R(x̄)u

)
dt , (42)

with respect to the state x̄ and control input u subject to the nonlinear dynamical system
model constraint

˙̄x = A(x̄)x̄ + B(x̄)u,

where Q(x̄) ≥ 0 penalizes the state, and R(x̄) > 0 penalizes the control effort for all x̄.
We aim for a nonlinear state-feedback controller u that stabilizes solutions of problem (41)
and (42).

Remark 3. Cloutier [14] obtains the nonlinear feedback controller via SDRE. Our interest is to
provide an alternative interpretation of solving the problem (41) and (42) via Pontryagin’s minimum
principle [13].

From (41) and (42), the Hamiltonian can be written as

H =
1
2

[
x̄>Q(x̄)x̄ + u>R(x̄)u

]
+p>(t)

[
A(x̄)x̄ + B(x̄)u

]
, (43)

where p(t) is the adjoint vector. The necessary condition is derived by differentiating (43)
with respect to u which yields

∇u H = R(x̄)u + B>(x̄)p = 0 . (44)

We obtain the nonlinear feedback controller

u = −R−1(x̄)B>(x̄)p . (45)

Now, we define p , P(x)x, where the matrix P(x) can be obtained by solving the algebraic
Riccati equation

A>(x̄)P + PA(x̄)− PB(x̄)R−1(x̄)B>(x̄)P

+Q(x̄) = 0. (46)

By that we fulfill the second optimality condition

ṗ = −∇x̄ H(x̄, t, p) . (47)

Therefore, as long as the two conditions in (44) and (47) hold, it is always possible to
construct a nonlinear feedback controller that solves the problem (41) and (42). The closed-
loop solution for this feedback controller is at least a local optimum and possibly the
global optimum.
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4.3. Stability Analysis

Theorem 1. Consider the dynamical system model (41), with the feedback controller (45). Assume
in addition that for a constant input weighting matrix R > 0, the state weighting matrix Q(x) > 0
can be chosen, such that Ṗ(x) < 0 for all x, where P(x̄) is the solution of (46). Then the zero
equilibrium of the closed-loop system is semi-globally stable.

Proof. Consider the Lyapunov function candidate

L(x̄) = x̄>P(x̄)x̄, (48)

the time derivative of which, along the trajectories of the closed-loop dynamical system, is
such that

L̇(x̄) = ˙̄x>P(x̄)x̄ + x̄>P(x̄) ˙̄x + x̄>Ṗ(x̄)x̄

= x̄>
[

Ṗ(x̄)−Q(x̄)

−P(x̄)B(x̄)R−1B>(x̄)P(x̄)
]

x̄, (49)

where P(x̄)B(x̄)R−1B>(x̄)P(x̄) > 0. In addition, based on the assumed selection of Q(x̄),
yields Ṗ(x̄) < 0 and L̇(x) < 0, hence our claim.

4.4. Controlling Mean and Variance

The variances σ2
x1

and σ2
y1

of N underactuated particle’s position is

x̄1 =
1
N

N

∑
i=1

x1i, σ2
x1

=
1
N

N

∑
i=1

(x1i − x̄1)
2, (50)

ȳ1 =
1
N

N

∑
i=1

y1i, σ2
y1

=
1
N

N

∑
i=1

(y1i − ȳ1)
2. (51)

The objective now is to control both, the mean and variance, effectively to ensure ap-
proaching a target position with minimum variance. Therefore, the selected strategy is
the hysteresis-based approach following [5,19]. The idea is that the automatic controller
regulates the mean states of N underactuated particles with radius r but switches to mini-
mizing variance if the variance exceeds the threshold σmax = 2.5r + σ2

optimal(n, r) and until

σmin = 15r ++σ2
optimal(n, r) is reached [5]. The idea of using such values comes from Gra-

ham and Sloane [8]. They proved that the minimum variance to collect N 2D circles with
radius r is 0.55Nr2. Our proposed methodology in total consists of (1) applying the gener-
alized coordinate transformation shown in Algorithm 1 and (2) proposing and analyzing
the control mechanism to regulate the mean and variance of the swarm of underactuated
particles shown in Algorithm 2.



Aerospace 2022, 9, 702 11 of 15

Algorithm 1 Generalised Coordinate Transformation for Underactuated Particle (27).
begin procedure
Step 1: Partition the generalized coordinates and velocity w
Step 2: Construct the invertible mapping

Φ̇(q) = T−1(q)q̇,

with

T(q) =
[

Is −m−1
uu m>au

0m×s Im

]
.

Step 3: Apply Proposition 1.
end procedure

Algorithm 2 Hysteresis-based Mean and Variance Automatic Control

Require: Knowledge of underactuated particle swarm mean x̄, variance [σ2
x1

σ2
y1
]>,

the boundary of the search space {xmin xmax ymin ymax}, and the desired mean state
q∗ = [x∗, y∗, θ∗]>.
xgoal ← x∗ , ygoal ← y∗

loop
if σ2

x1
> σmax then

xgoal ← xmin
else

xgoal ← x∗

end
if σ2

y1
> σmax then

ygoal ← ymin
else

ygoal ← y∗

end
Apply the automatic control law (45) to regulate the underactuated swarm to the desired
state q∗ = [x∗, y∗, θ∗]>

end loop

4.5. Fully-Actuated vs. Underactuated Particle Swarm

We now consider a small swarm of N = 4 particles to showcase the performance of
the proposed control law and highlight the advantage of the underactuated particle swarm
over the fully-actuated swarm [5]. The sampling time is set to 0.01 s and the physical
parameters are given in Table 1. The control gain matrices Q(x̄) and R are based on the
assumptions of Theorem 1 and we get

Q(x̄) =
(

1 + 0.01(x̄5 − 0)2 + 0.01(x̄6 − 0)2
)

0.001 (260 , 1 , 260 , 1 , 160 , 100), R =

[
50 0
0 50

]
.

Table 1. Parameters of the simulated underactuated swarm.

Parameters Symbol Value Unit

mass m 0.01 kg
shaft L 0.02 m
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We compare it to the approach of Shahrokhi et al. [5]. Their control gains for the PD
controller are Kpx = 0.04, Kpy = 0.03, Kdx = 0.03, and Kpy = 0.04. Figure 2 compares our
approach and the PD controller [5] for the obtained trajectories of mean, variance, and the
control inputs. Even though the settling times seem satisfactory for both approaches, the
trajectory and the control inputs allow us to discriminate between the two approaches. The
control inputs obtained through our approach are significantly smaller resulting in less
energy consumption. Also, note that there are no sudden peaks in the control inputs. The
fully-actuated approach consumes 1.0347 of energy compared to the under-actuated one
that consumes 0.4639. This is an energy reduction of approximately 57%.

Figure 2. Simulation of control laws. (a): Automatic control of the mean and variance with 4 particles
in the search space (black dashed line). Underactuated particle swarm under control Algorithms 1
and 2 over the fully-actuated [5]. (b): In the simulation, increased Brownian noise results in a more
agile increase of variance.

Both approaches minimize mean and variance. However, in the underactuated case,
we stabilize the mean Euler angle θ̄ with only two global control inputs. Hence, we
reasonably balance the tradeoff between control complexity and system performance.

5. Multi-Robot Simulations and Discussion

We also show the result for a swarm of N = 8 robots to visualize our results in an
accessible way. Time is discretized and the control signal is scaled by δt = 0.01. The underac-
tuated robots and arena boundaries are simulated as physical entities. Each underactuated
robot has a random initial pose and the swarm’s mean position has a randomly generated
target pose. The nonlinear controller described in Algorithm 2 steers the robot’s from a
starting position to a target position (equilibrium point of the swarm) with a stable Euler
angle. Figure 3 shows four screenshots during a representative simulation run. This result
shows how the properties of the underactuated robot system (e.g., torque and inertia) are
exploited to regulate the mean, to minimize the variance, and to steer the swarm to the
target on the right pose.

Looking ahead there will be a need for the further abstraction of details like actuators
and engines, making it a building-blocks tool using various components. There are several
limitations of the automatic control mechanism at this time. At this stage of the method
development, non-holonomic constraints do not consider. Furthermore, we only tackle to
track only the boundary of a ‘cloud of robots’ and their center of gravity. Possibly also the
particle density could be measured instead of each individual robot.
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Target

(a) frame 1

Target

(b) frame 11

Target

(c) frame 35

Target

(d) frame 49

Figure 3. Different stages of N = 8 underactuated robots using our nonlinear controller
(Equation (45)). (a) Initial condition. (b) Hysteresis-based control following Algorithm 2. (c) Mini-
mizing mean and variance of robot positions utilizing the arena boundary. (d) Regulating mean state
and stabilizing the Euler angle θ.

6. Conclusions

We have proposed a centralized automatic stochastic control of large-scale robot
systems for underactuated robots based on a generalized change of coordinates. We
transform underactuated robot systems to the partial form that can be used for control
design. At the cost of centrally tracking all robots, we gain the benefit of optimal energy-
efficient control in the task of minimizing positional variance and moving the robot system’s
mean to a goal position. The requirement of having to track all robots is unlikely to scale
arbitrarily. A future extension of our method could hence be to track only the boundary
of a cloud of robots and their center of gravity. Possibly also the particle density could be
measured instead of each individual robot. There is no immediate way of transferring
our method to a decentralized approach, hence making it complementary to behavior-
based approaches from swarm robotics that show increased robustness without a central
element. However, centralized and decentralized approaches and their pros and cons are
complementary to each other, which needs to be carefully considered by the designer for a
given use case. In future work, we plan to test and study our approach on real robots with
different physical characteristics, such as the Kilobot and other robots with bigger masses.
Also, an extension of the method to a manipulation scenario [7] seems particularly relevant.
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Appendix A. Derivation of the Variation of the Work δW

In this appendix, the virtual of the work is derived. Let us consider the positions of
the mass particles

x = x1 + L cos(θ),

y = y1 + L sin(θ),

x3 = x1 + 2L cos(θ),

y3 = y1 + 2L sin(θ).

Now talking variations[
− f1 sin(θ)
f1 cos(θ)

]
δ

[
x1
y1

]
=

[
− f1 sin(θ)δx1
f1 cos(θ)δy1

]
, (A1)

and[
− f3 sin(θ)
f3 cos(θ)

]
δ

[
x3
y3

]
=

[
− f3 sin(θ)(δx1 − 2L sin(θ))δθ
f3 cos(θ)(δy1 + 2L cos(θ)δθ)

]
.

Collecting terms, we have

δW =

[
− f1 sin(θ)δx1 − f3 sin(θ)δx1 + f3 sin2(θ)2Lδθ
f1 cos(θ)δy1 + f3 cos(θ)δy1 + f3 cos2(θ)2Lδθ

]

=

−( f1 + f3) sin(θ)δx1
+( f1 + f3) cos(θ)δy1

2L f3δθ

. (A2)
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