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Abstract: Despite the importance of controlling the inter-arrival times of flights to propose strategies
for efficient arrival management by the Arrival Manager (AMAN), the specific guidelines of such
adjustments and their effect on reducing delays have not been explicitly considered. Accordingly, this
paper proposes a novel approach, which integrates the Gt/GI/st + GI time-varying fluid model and
nonlinear integer programming to flatten the arrival rate at terminal gates. This, in turn, is achieved
by minimizing the variance in inter-arrival times by penalizing any excessive change in arrival time,
considering operational constraints. The results for Tokyo International Airport show potential to
significantly reduce arrival traffic delays by minimizing said variance. This study may also spawn
subsequent work, which builds a queuing network comprising upstream and terminal airspace and
demonstrates the scope to reduce delays in the terminal airspace by controlling inter-arrival times at
the upstream airspace.

Keywords: arrival management; time-varying queuing model; fluid model; integer programming

1. Introduction

A significant increase in air traffic has caused severe congestion at airports and the
surrounding airspaces and will remain in issue in the future. Japan Aircraft Development
Corporation (2021) [1] forecasts that the number of passenger and cargo jets in service
will experience 2.3% and 2.0% growth per year, respectively. This trend has also meant
increasing delays. According to a joint report by Eurocontrol and FAA (2019) [2], in 2017,
about Air Traffic Management (ATM)-related delays for departing flights, the total delay
per flight was 1.73 min and 2.06 min in Europe and the U.S., of which the en-route-related
delay per flight was 0.89 min and 0.35 min, respectively. This showed that in the U.S., 82.8%
of delays were from terminals and 17.2% from en-route airspace, and severe weather was
the main factor for both. Conversely, in Europe, 48.4% were from terminals and 51.6% from
the en-route sector, and the Air Traffic Control (ATC) capacity and staffing constraints were
no less dominant than adverse weather was. Note that the current situation with regard
to air traffic in Japan is more similar to that in Europe, considering the policy of ATC and
its consequences.

Relevant to the capacity constraint, the major factor behind any delay is the imbalance
between supply and demand, which prevents air traffic controllers (ATCos) from matching
controllable air traffic flow with existing facilities. To solve this problem and manage air
traffic efficiently, Arrival Manager (AMAN), a system for supporting metering and vec-
toring, has been developed and implemented. Using AMAN, ATCos check the Estimated
Time of Arrival (ETA) and the recommended time of arrival of flights and instruct some of
them to reduce speed to prevent overloaded airspace intervals. Considering the AMAN
mechanism, a guideline for controlling inter-arrival times for flights should be issued
to reduce delays. This control corresponds to minimizing the variance in inter-arrival
times or smoothing the arrival rate for the time horizon. However, Sekine et al. (2022) [3]
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indicated that previous studies focusing on speed control tend to be generally applicable
to various airports and the surrounding airspaces and fail to pinpoint a viable strategy to
control the speed of each flight. In response, rule-based simulation via cellular automation,
multi-objective optimization and a decision tree were incorporated to determine such a
strategy. Nevertheless, the issue of inter-arrival times for control was still not explicitly and
quantitatively addressed, although Itoh et al. (2019) [4] suggested that a smaller variance in
inter-arrival times could mitigate congestion and be realized by trajectory-based operation
from a qualitative perspective.

Accordingly, this paper demonstrates potential to alleviate crowding by controlling the
inter-arrival times of flights to flatten arrival rates at congested periods. In concrete terms
and using Tokyo International Airport as a case study, we analyze the current terminal
airspace to calculate delays in crowded intervals and verify the benefit of optimizing arrival
times on delay reduction, taking operational constraints into consideration. This paper is
a subsequent work of Higasa and Itoh (2022) [5], which indicates the potential scope to
reduce delays by replacing a current arrival flow with a more orderly virtual flow, featuring
a smaller variance in inter-arrival times at the en-route airspace of Tokyo International
Airport. This study, which focuses on the actual (inter-)arrival times of flights, can directly
boost AMAN development by reflecting delay mitigation strategies within the system as
part of efforts to generate recommended arrival times.

The paper tackles the problem by combining two types of modeling approaches: the
queuing model and mathematical programming. Concretely, the Gt/GI/st + GI queuing
model, which can consider the time-varying characteristics of the general arrival process, is
applied to calculate delay times. It can check the effect of arrival intervals with less deviation
and is adopted with the future work of building the queuing network in mind. Moreover,
as a pioneer work to explicitly include variance in inter-arrival times for an objective
function, nonlinear integer programming is employed, while penalizing any excessive
changes in arrival time. The optimization model can consider operational constraints to
discuss operationally feasible solutions. The problem with less than 200 decision variables
is enough to be formulated as a flight-by-flight model, whose computation can become
complex in the large-scale network compared with the flow-based model considering a
set of flights together (see Sandamali et al. (2020) [6], in which a two-stage Air Traffic
Flow Management framework is proposed with the latter as the first stage and the former
as the second stage to deal with the potential increase in traffic). To the best of our
knowledge, no combination of two modeling approaches has ever been determined for the
purpose of improving AMAN by controlling inter-arrival times, although Jacquillat and
Odoni (2015) [7] developed an integrated approach to jointly optimize flight schedules on a
strategic level and airport capacity on a tactical level with the M(t)/Ek(t)/1 queuing model
for airport queues. Note that this method can be applied to building queuing networks and
for verifying that the control at the boundary of en-route airspace can mitigate congestion
in terminal airspace (described in further detail in Section 5). Given the lack of prior
research on jointly optimizing both airspaces, this study also contributes in that regard,
although excluding the en-route airspace.

Here we review the literature on the queuing model and mathematical programming
for Air Traffic Management. The queuing model has been employed to model queues in an
air traffic flow to estimate operational delays and can consider two types of flow character-
istics: stochasticity and nonstationarity (Shone et al., 2021 [8]). It can also test any improve-
ment in ATC or AMAN strategies/tactics by focusing on the arrival process of the system.
Among various possibilities for modeling the process, the homogeneous/nonhomogeneous
Poisson arrival process has long been used (e.g., Bäuerle et al., 2007 [9], Itoh and Mitici,
2020 [10], Wang et al., 2018 [11]). However, the Poisson model has recently been questioned,
since the arrival process cannot be considered appropriate for a congested arrival flow with
arrivals successively adjusted by ATCos (Caccavale et al., 2014 [12]). Moreover, the model
cannot confirm the positive effect of accurately anticipating arrival time and controlling
it with a developed management system because the variance in inter-arrival time is the
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same as its mean, according to the Poisson process. In response, some researchers have
suggested the Pre-Scheduled Random Arrivals (PSRA) model, which presumes the actual
arrival time of each customer to constitute the sum of pre-scheduled arrival times and
variance from it, following the independent identical distribution. From Guadagni et al.
(2011) [13] as pioneer work, the PSRA model has been applied to a range of air traffic
situations (see Caccavale et al. (2014) [12], Gwiggner and Nagaoka (2014) [14] and Lancia
and Lulli (2020) [15] for instance). Note that these studies mainly focus on fitting the model
to an air traffic flow and pay little attention to verifying the effect of less-deviated arrivals
on delays.

Mathematical programming is another possibility with which to consider optimization
problems from strategic and tactical perspectives. As Agustin et al. (2010) [16] described,
most of the literature has focused on airports rather than sectors, because the problems
were originally and mainly studied in the U.S., where delays mainly occur in the airport. As
with Japan, where ATCos allocate metering delay to the en-route phase and the remaining
delay to the ground (Gwigger and Nagaoka, 2014 [14]), the ground delay program has
been conducted to let departure aircraft wait for some time to alleviate crowding in the
destination airport. The ground holding problem has been formulated for single/multiple
airports relevant to the ground delay program (Dell’Olmo and Lulli (2003) [17], Mukherjee
and Hansen (2007) [18], Zhang et al. (2007) [19] for instance). The slot allocation problem
for arriving flights in airports, needing to match the slot demand by airlines and airport
capacity, has also been considered (e.g., Zografos et al., 2012 [20], Zografos and Jiang,
2019 [21], Ribeiro et al., 2018 [22] and 2019 [23]). Contrary to those studies, however,
few studies have addressed en-route congestion. Barnier et al. (2001) [24] presented a
sorting model for the slot allocation problem, where capacity constraints can always realize
underloaded intervals; this is incorporated in our model (see Constraints (4) in Section 3.1).
Flener et al. (2007) [25] considered relieving complex air traffic in the target airspace by the
acceleration and deceleration of flights before entering the area. See Ball et al. (2003) [26],
Lulli and Odoni (2007) [27], and Ivanov et al. (2017) [28] for another example. Then, as a
recent work focusing on the concept of smoothing demand by speed control, Rosenow et al.
(2022) [29] formulated the integer programming problem to minimize fuel consumption
and capacity violation by controlling the arrival rate of 26 long-range flights arriving at
the terminal airspace of Singapore Changi Airport. The problem is based on a work shift
scheduling concept, and they found the scope to minimize it and prevent overload by
adjusting speed three to four hours before entering the sector. We have reviewed the
mathematical programming approaches, and found that none of them explicitly focused on
minimizing the variance of inter-arrival times while considering operational constraints.

The rest of the paper is ordered as follows. Section 2 corresponds to the present analysis
of terminal airspace. In Section 2.1, aspects of the Gt/GI/st + GI queuing model, such
as the assumption, parameters and functions, are described, whereupon a methodology
to simulate airspace accurately via a queuing model using actual data is proposed. This
approach is generally applicable to wide-ranging arrival flow around various airports.
In Section 2.2, we discuss how to set up parameters in the Gt/GI/st + GI queuing model
based on real data for flights arriving at Tokyo International Airport in the terminal airspace
during the evening hours when congestion peaks. In particular, how to determine capacity
should be carefully considered, given that the balance between arrival rate and capacity is
what dictates system behavior, and capacity setting can be relatively more arbitrary than
that of other parameters. In Section 2.3, the calculation by the model indicates that an
excessive arrival rate can cause a very considerable delay over four periods in the terminal
airspace of Tokyo International Airport. Section 3 corresponds to the replacement of the
arrival flow with an updated one, Section 3.1 presents the methods and Section 3.2 discusses
applications. In Section 3.1.1, a nonlinear integer programming problem is formulated that
minimizes the sum of the variance of inter-arrival times of entering aircraft and arrival time
adjustment for all flights as a penalty. The constraints are for smoothing the peak of arrivals
to prevent the overload of the airspace. Moreover, operationally feasible constraints are
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additionally considered in Section 3.1.2. In Section 3.2.1, we apply the approach to air
traffic flow entering the terminal airspace to demonstrate that an early control of inter-
arrival times can be effective for drastically reducing delay, leveling a peak in an originally
congested period. In Section 3.2.2, we impose more realistic constraints on the extent
of early arrival and adjustment, the result of which implies the limit of controlling the
flow at the boundary of terminal airspace from an operational point of view. After the
discussion on the distribution of inter-arrival time for each adjustment scenario in Section 4,
we propose future work, which will consider more front-loading control of air traffic flow
in en-route airspace using a network model. Concluding remarks are given in Section 5.

2. Estimating Arrival Queue in Terminal Airspace
2.1. Queue-Based Modeling of Aircraft Arrival Traffic Flow

The conceptual diagram of the Gt/GI/st + GI queuing model is presented in Figure 1.
It comprises the arrival process characterized by a time-varying arrival rate λ(t)(Gt),
the service process characterized by an independent and identical distribution of service-
receiving time g(x) (GI) and a time-varying service capacity s(t) (st), and the independent
and identical distribution of the abandon time, namely when the system is left before
service is rendered, f (x) (+GI).

This paper applies the deterministic fluid model developed by Liu and Whitt (2012) [30],
which approximates the stochastic queuing model. In the fluid model, the functions
and delay time, which represent the system state, are uniquely determined by the given
parameters and initial conditions. Note that the service discipline is first-come–first-served.
The input parameters are as follows:

• λ(t): arrival rate at time t;
• g(x): probability distribution function of service time x;
• f (x): probability distribution function of abandon time x;
• s(t): service capacity at time t.

The output functions, including delay time, are as follows:

• Q(t): number of aircraft in a queue at time t;
• B(t): number of aircraft in service at time t;
• σ(t): number of exiting aircraft per unit time at time t;
• v(t): expected delay time of an airplane entering the airspace at time t.

Figure 1. Conceptual diagram of the Gt/GI/st + GI queuing model.

Figure 2 is the methodology used to analyze the current airspace with given s(t),
with the top left box representing the given flight data. We obtain the time of passage at
each point, provided by the Trajectorized Airport Traffic Data Processing System (TAPS)
(Ministry of Land, Infrastructure, Transport and Tourism [31]). These data then elicit the
arrival and exit time of each aircraft, whereupon an overview of airspace in the real world
can be determined by counting c(t), the actual number of aircraft in the airspace. We can
then roughly predict the time-varying behavior of the airspace, such as when the area has a
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large quantity of traffic flow and when delays are expected. Conversely, parameters in the
Gt/GI/st + GI queuing model can be set up according to the data to calculate functions
and delay time. Then, to check whether we can develop the model adequately, we must
validate it with the following equation:

c(t) ≈ X(t) = B(t) + Q(t). (1)

Equation (1) means that the number of aircraft in real airspace is nearly equivalent to the
sum of the number of aircraft in a queue and in service in the model (see Figure 1, where
B(t) = Q(t) = 2). It ignores the amount of arrival, exit, and abandonment, which are
proportionally smaller than c(t), B(t), and Q(t). The calculation by the model should be
repeated to ensure that Equation (1) can be properly satisfied while tuning parameters.
Combining data analysis with queuing theory can elicit more insight into the time-varying
characteristics of the airspace, and this process can also be applied to various types of
arrival flow at general airports.

Figure 2. Methodology to analyze current airspace.

2.2. Stochastic Features in the Queuing Model

We obtained flight data for 25 days with 4700 airplanes, limiting the scope to flights
arriving in the area after 17:00 and exiting (or leaving) it before 22:00. This period was the
most congested (Itoh and Mitici, 2020 [10]). In this paper, we focus on the terminal airspace,
10–80 nm away from Tokyo International Airport (see the orange region in Figure 3),
surrounded by the adjacent en-route airspace.

Figure 3. Terminal airspace (the orange region).
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The parameters are determined as follows. Firstly, we set the averaged airspace arrival
rate, denoted as λav(t), which is the mean value of λi(t) for each time t, and the arrival rate
of each day i (1 ≤ i ≤ 25). av corresponds to the present state of the terminal area for the
remainder of the paper. We assume that the arrival rate is right continuous with left limits
and is constant for the time interval of arrival between preceding and subsequent flights,
being the reciprocal of inter-arrival times. Accordingly, λav(t) and λi(t) are step functions.
Figure 4 is the boxplot of λi(t), showing the time/day-dependent behavior of the arrival
flow. Secondly, we assume identical service and flight times, defined as the difference
between the passage time of each side of the airspace. Although this only technically applies
when no system queue exists, it remains broadly valid given that underloaded intervals
prevail over overloaded intervals in airspace. Figure 5 is the service time distribution gav(x).
In this paper, we presume gav(x) to be N(1233.4, 183.52), referencing Itoh et al. (2019) [4].
Thirdly, the abandon time distribution fav(x) is assumed to be N(1233.4× 1.4, 183.52). The
left-hand tail of fav(x) slightly overlaps the right-hand tail of gav(x), reflecting the rarity of
emergency circumstances, such as the runway closing.

Figure 4. Boxplot of λi(t) (1 ≤ i ≤ 25).

Figure 5. Service time distribution gav(x).

Unlike the parameters mentioned above, s(t) can have a higher degree of freedom
for its value in this process. Since even a few servers suffice to accommodate light traffic,
but more are needed when the traffic intensifies, the ratio between s(t) and λ(t) must reflect
the reality as accurately as possible. With that in mind, we have to check Equation (1) while
changing s(t) to accurately assess the airspace, since an excessively large/small s(t) can
result in the queue or delay time being under- or over-estimated. Table 1 is the RMSE (Root
Mean Squared Error) of the model for some fixed s(t), defined by

√
1

T + 1
‖X(t)− c(t)‖ =

√√√√ 1
T + 1

T

∑
i=0

(Xi − ci)2,
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where 0 ≤ t ≤ T, Xi = X(i) and ci = c(i). The possible candidates of s(t) are selected
based on the history of c(t). From this result, we can deduce that s(t) = 15.0 would provide
the most precise analysis of airspace and that the system can accommodate all flights with
constant capacity. In this paper, with the optimization discussed below in mind, we assume
the constant capacity sav(t) = 15.0, which can simulate airspace with high accuracy. Note
that s(t) = 14.0 is infeasible in the model.

Table 1. RMSE for three types of s(t).

s(t) RMSE

15.0 1.09
16.0 1.10
17.0 1.11

2.3. Arrival Delay Time in the Queue

For the calculation in the fluid model, we used Julia as the programming language
and a computer with a 3.2 GHz 6 Core Intel Core i7 processor and 64 GB 2667 MHz DDR4
memory. The computational time is within 2 min for calculating the functions in the fluid
model. The computational grid of the fluid model is orthogonal with 1674 × 252 points
(0 ≤ t ≤ T = 1673, 0 ≤ x ≤ E[g(x)] + 7V[g(x)] = 251). Figure 6a shows the histories of
λav(t) [/10 s], Qav(t), Bav(t) and σav(t) [/10 s], whereas Figure 6b is on vav(t) [×10 s] and
Xav(t) = Bav(t) + Qav(t), under sav(t) = 15.0, gav(x) and fav(x). cav(t) is also shown with
them. Note that the initial time t = 0 corresponds to 17:00:00 and the end time t = 1673,
namely the time the final aircraft arrives, corresponding to 21:38:50 in the real world. The
mean value, variance, and maximum value are listed in Table 2. The delay time occurs
over four periods in the current terminal airspace: 17:45–17:58, 18:07–18:22, 20:21–21:00,
and 21:24–21:36. In particular, congestion tends to peak during the period between 20:00
and 21:00, with max{vav(t)}=157.3 s. These delays occur due to the excessive arrival rates
at 17:30–17:40, 18:00–18:20, 20:10–20:30, and 21:20–21:30, respectively, all of which exceed
45 flights in terms of the number of arrivals per hour. This excessive arrival traffic should
be dispersed by modifying the arrival time to the neighborhood time.

(a) (b)

Figure 6. Results of current terminal airspace with sav(t) = 15.0, cav(t), gav(x), and fav(x). (a) λav(t)
[/10 s], Qav(t), Bav(t), and σav(t) [/10 s] from top to bottom. (b) vav(t) [×10 s], Xav(t) = Bav(t) +
Qav(t), and cav(t) from top to bottom.
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Table 2. Representative values of functions in the actual terminal airspace.

s(t) = 15.0 E[·] V [·] max{·}
Q(t) 0.15 0.12 1.95
B(t) 13.3 5.7 15.1

σ(t)[/s] 0.010 9.2× 10−5 0.014
v(t)[s] 12.4 77.0 154.0
X(t) 13.5 6.4 17.0

3. Controlling Inter-Arrival Time for Minimizing Arrival Delay
3.1. Optimization Model
3.1.1. Formulation of a Nonlinear Integer Programming Problem

As mentioned above, highly concentrated arrivals should be modified by changing
their arrival times. This corresponds to the smoothing of inter-arrival time since the (piece-
wise) arrival rate is the inverse of inter-arrival time. Subsequently, we develop the integer
programming problem.

Firstly, the given parameters are set up:

• t ∈ N∪ {0}: time horizon (0 ≤ t ≤ T);
• j ∈ N∪ {0}: j th-arriving flight (0 ≤ j ≤ J);
• bj ∈ {0, 1, ..., T}: arrival time of flight j before adjustment (b0 = 0, bj = T, see Figure 7);
• s ∈ N: airspace capacity;
• µ1 ∈ N: flight time;
• µ2 ∈ R: mean inter-arrival time for all aircraft to be achieved (= T/J).

Flight 0 is for convenience in writing. Note that airspace capacity s, determined by the
result of the queuing model, is interpreted as the maximum number of flights permissible
in the airspace in the problem, although it technically corresponds to the number of flights
in service in the queuing model. Moreover, we assume a constant flight time µ1 for all
flights, as Rosenow et al. (2022) [29] adopt, while current arrival flow experiences various
flight times for each aircraft. This study presumes µ1 as the mean flight time.

Secondly, we consider the variable corresponding to bj.

• aj ∈ {0, 1, ..., T}: arrival time of flight j after adjustment (a0 = 0, aj = T, see Figure 8)

We move the arrival time of each flight j so as to minimize the deviation in inter-arrival
time from an ideal value µ2, namely, the variance in inter-arrival time. This is achieved
using the decision variable dj representing the inter-arrival time.

• dj(= aj+1 − aj) ∈ N: inter-arrival time between flight j and j + 1 after adjustment
(0 ≤ j ≤ J − 1) (see Figure 8)

Since we assume an unchanged order of arrival, dj > 0. We set not aj but dj as the decision
variable due to the computational tractability for theoretical reasons and interpretability
for AMAN for practical reasons.

Figure 7. Initial arrival time bj.

Figure 8. Adjusted inter-arrival time dj with adjusted arrival time aj.
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Moreover, given the penalty for excessive adjustments, such as operational inconve-
nience for airlines and extra fuel consumed when accelerating and decelerating, the sum of
arrival adjustment should also be minimized. This penalty term can reduce computational
effort, which means that combining arrival times with unrestrained changes elicits a large
degree of freedom. Accordingly, we can formulate the nonlinear integer programming
problem shown below:

Minimize
1

J − 1

J−1

∑
j=0

(dj − µ2)
2 + α

J

∑
j=1

Yj, (2)

subject to

J−1

∑
j=0

dj = T, (3)

j+s−1

∑
k=j

dk > µ1(1 ≤ j ≤ J − s), (4)

−Yj ≤
j−1

∑
k=0

dk − bj ≤ Yj(1 ≤ j ≤ J), (5)

dj ∈ N(0 ≤ j ≤ J − 1), (6)

Yj ∈ N∪ {0}(1 ≤ j ≤ J). (7)

where α is weight.
α remains 1 throughout the paper for simplicity, which even elicits a significant re-

duction in delay time. Note that when α decreases, the variance in inter-arrival time
carries more weight. The first term in the objective function (2) is the unbiased vari-
ance in inter-arrival time, while the second term constitutes the adjustment for all flights.
The auxiliary variable Yj is used to avoid the absolute value, corresponding to |aj − bj|.
Constraint (3) works as the conservation condition of the time horizon. Constraint (4)
represents a situation where the number of aircraft in the airspace is less than or equal to
the capacity, since we can deduce that aj = ∑

j−1
k=0 dk(1 ≤ j ≤ J) from the definition of dj

and aj+s − aj > µ1(1 ≤ j ≤ J − s) represents it. Provided Constraint (4) is met, no delay is
expected because it is equivalent to the number of aircraft c(t) being less than or equal to
capacity s(t) from the perspective of the Gt/GI/st + GI fluid model. Constraints (5) and
(7) are established by introducing Yj.

3.1.2. Nonlinear Integer Programming Problem with Operational Constraints

In the previous section, we assumed that any adjustments would be allowed unless
the constraints were not satisfied. Consequently, congested periods saw earlier arrivals or
significant changes in arrival times occur. However, early arrivals rarely arise in air traffic
management in Japan today. Similarly, substantial changes in entry time are unpopular
with both airlines/pilots and controllers, given the operational inconvenience and extra fuel
consumption. Accordingly, we would like to add operational constraints to the problem.
To restrict the adjustment, we can set constraints as follows:

Yj ≤ n (8)

which means that flights are instructed to move their arrival time by a maximum of n [×10
s] (n ∈ N), whether this involves advancing or postponing the operation. Moreover, if we
prohibit any early arrival of more than m [×10 s] (m ∈ Z), we can impose a condition:
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j−1

∑
k=0

dk − bj ≥ −m (9)

For example, if bj = 17:00 and m = 2 h, aj ≥ 15:00 and aircraft j can arrive earlier (15:00–17:00)
or later (17:00–). If bj = 17:00 and m = 0 h, aj ≥ 17:00 and aircraft j cannot arrive earlier.
Moreover, although it is not considered in this paper, if bj = 17:00 and m = −2 h, aj ≥ 19:00
and aircraft j can only arrive later (19:00–). Thus, if m = 0, no flight enters the terminal
airspace before the original arrival time.

3.2. Results

In this section, we demonstrate the delay-reduction effect by controlling inter-arrival
times, with none of the operational constraints in Section 3.2.1 (given in Scenario 1 below)
and with the constraints in Section 3.2.2 (given in Scenarios 2 to 6 below). To set scenarios,
we consider severe constraints from two directions. We whittle down n and m from 10
[×10 s] independently until the model becomes infeasible and find that n ≤ 8 [×10 s] and
m ≤ −1 [×10 s] are not allowed. Moreover, two kinds of constraints can only be satisfied
simultaneously when (n, m) = (9, 9), (9, 10), (10, 9), (10, 10). Accordingly, five types of
scenarios are to be discussed (see Table 3), compared with Scenario 1. Note that n = 10
in Scenario 1 corresponds to (n, m) = (10, 10) and n = 9 in Scenario 2 corresponds to
(n, m) = (9, 9).

Table 3. Scenarios to be discussed. Scenario 0 is the original arrival flow, and - represents no limitation.

Scenario Arrival Rate Maximum Earlier Arrival [s] Maximum Later Arrival [s]

0 λav(t) - -
1 λav,n=10(t) - -
2 λav,n=9(t) 90 90
3 λav,m=9(t) 90 -
4 λav,m=6(t) 60 -
5 λav,m=3(t) 30 -
6 λav,m=0(t) 0 -

3.2.1. Delay Reduction by Control of Arrival Time in Terminal Airspace

For the actual arrival flow in the current terminal airspace, the arrival time is controlled
using nonlinear integer programming to demonstrate the scope for the control to ease
crowding. From the analysis mentioned in Sections 2.2 and 2.3, we set the parameters
as follows: T = 1673 [×10 s], J = 188, µ1 = 123 [×10 s], and µ2 = T/J = 8.90 [×10 s].
The parameters are optimized using Gurobi Optimizer with Python. We used the same
computer as the one used for the fluid model, and the calculation time is within 2 s for
optimizing the arrival sequence. Figure 9 represents the calculation result of Scenario 1,
focusing on the adjustment for each flight j. If aj − bj > 0 for flight j arriving at the airspace
at time bj, the flight is decelerated beforehand in more upstream airspace. Conversely,
if aj− bj < 0 for flight j arriving at the airspace at time bj, the flight is accelerated beforehand.
Figure 10 clarifies that an excessive number of arrivals are manipulated: some are advanced,
while others are postponed. The updated arrival history is denoted as λav,n=10(t). In the
first cluster (17:30–17:40), most flights should be instructed to advance their arrival time. In
the second cluster (18:00–18:20), controllers should ask pilots to slow down for later arrival.
Then, for the most overcrowded arrival flow (20:10–20:30), flights are divided into two
clusters, in the first and second half, respectively. The former group should move forward
with their incoming schedules, while the latter should push off them.

The adjustment represents a value peaking at about 100 s. Finally, in the last cluster
(21:20–21:30), most aircraft should enter the airspace behind the originally scheduled time.
This spacing adjustment can reduce arrival flow deviation, conserving the total amount
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of arriving aircraft. This optimization reduces the standard deviation of inter-arrival time
from 14.0 s (Scenario 0) to 12.5 s (Scenario 1).

Figure 9. Adjustment of arrival time for each aircraft (Scenario 1).

Figure 10. Original Scenario 0 and updated Scenario 1.

Using the updated arrival history λav,n=10(t), we recalculate the functions of the
model. Figure 11a shows the histories of λav,n=10(t) [/10 s], Qav,n=10(t), Bav,n=10(t),
and σav,n=10(t) [/10 s], whereas Figure 11b is on vav,n=10(t) [×10 s] and Xav,n=10(t) =
Bav,n=10(t) + Qav,n=10(t). This calculation is under sav(t) = 15.0, gav(x), and fav(x). Com-
paring Figures 6 and 11, we find that no delay can be achieved by a more controlled arrival
flow and that the flow leads to a more ordered exit flow, i.e., a landing flow. Smoothing
arrivals helps avoid periods of heavy traffic, and it can be concluded that air traffic con-
trollers should anticipate the arrival times beforehand as precisely as possible and instruct
flights in the intervals to adjust before entering the terminal airspace.



Aerospace 2022, 9, 663 12 of 18

(a) (b)

Figure 11. Calculation results of Scenario 1 with sav(t) = 15.0, gav(x), and fav(x). (a) λav,n=10(t)
[/10 s], Qav,n=10(t), Bav,n=10(t), and σav,n=10(t) [/10 s] from top to bottom. (b) vav,n=10(t) [×10 s] and
Xav,n=10(t) = Bav,n=10(t) + Qav,n=10(t) from top to bottom.

3.2.2. Delay Reduction Considering Operational Constraints

For the relatively feasible scenarios in which arrival time is controlled by AMAN,
the delay time is calculated by the Gt/GI/st + GI fluid model. Table 4 summarizes Sce-
narios 2 to 6 with Scenarios 0 and 1 already mentioned above. Firstly, the variance in
inter-arrival time rises with excessive restrictions on early arrival. In particular, the arrival
flow is less ordered if we prohibit early arrival (Scenario 6), although delays can be reduced
under the problem structure in this paper (Constraint (4) guarantees the delay reduction).
Figures 12 and 13 illustrate the characteristics of arrival rate in Scenario 6, which fluctuates
in the congested period by substantial adjustment (see Figure 14). There is a trade-off
between fluctuation and delay reduction by maintaining an operational policy of prohibit-
ing early arrival. Consequently, although all arrival histories, including Scenario 6, can
alleviate crowding as well as Scenario 1 without any operational constraints, the possibility
of postponing the arrival for a couple of minutes should be considered.

Figure 12. Adjustment of arrival time for each aircraft (Scenario 6).
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Figure 13. Original Scenario 0 and updated Scenario 6.

Figure 14. Histogram of inter-arrival times for each scenario.

As mentioned in Section 3.1.1, Constraint (4) ensures that no delay is expected, but a
little delay is observed if early arrival is allowed only within 30 s. This is probably at-
tributable to differing assumptions between mathematical optimization and the queuing
model. The actual flight time distribution gav(x) demonstrates a wide-ranging flight time,
while we presume flight time to be constant in the integer programming. Based on these
findings, we can deduce that Scenario 3, allowing for a 90 s earlier arrival at most, with
an up to 100 s later arrival, constitutes the ideal control strategy, but may represent a
daring attempt. From a tactical perspective and based on the concept presented in this
paper, AMAN should calculate the adjustment time of each aircraft according to the ETA
and instruct pilots to accelerate or decelerate. Hence, a precise ETA forecast is necessary
using the latest technologies, such as the concept of four Dimension (4D) Trajectories-Based
Operation (TBO) or data science using machine learning, as studied in the recent literature.

Although our approach is unique, and it is difficult to compare the results with
those in conventional studies due to the difference in targeting airspace and operational
conditions, here, we introduce one of the benchmark studies by Khassiba et al. (2019) [32],
which proposed a two-stage (before and after entering the terminal airspace) stochastic
programming model considering the uncertainty of passage time at the Initial Approach
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Fix. We could reduce the maximum delay time max{v(t)}[s] by 94.4 % (comparing the
results in Scenario 0 and 6 in Table 4), which is the most conservative value in our study.
On the other hand, the delay reduction was 73.5 % inside the terminal airspace of Paris
Charles-De-Gaulle airport under the simulation-based experiments for 10 arrivals [32].
Note that 73.5 % was calculated under the condition of deviations in terminal-entry times
from target times following N(0, σ2) (σ = 30 s). The enhancement of the modeling fidelity
under detailed assumptions, such as flight-dependent flight times, routes constraints,
and rule-based control policies, is necessary for validating our results. As mentioned in
the discussion section, fast-time simulation experiments will be conducted to confirm the
delay reduction in future works.

Table 4. Calculation results for Scenarios 2 to 6 with Scenario 0 and 1.

Scenario Standard Deviation of Inter-Arrival Time
[s] min{aj− bj} [s] max{aj− bj} [s] E[v(t)] [s] max{v(t)} [s]

0 (λav(t)) 14.0 - - 12.4 154.0
1 (λav,n=10(t)) 12.5 −100 100 0.0 0.0
2 (λav,n=9(t)) 12.6 −90 90 0.0 0.0
3 (λav,m=9(t)) 12.5 −90 100 0.0 0.0
4 (λav,m=6(t)) 13.1 −60 120 0.0 0.0
5 (λav,m=3(t)) 13.7 −30 150 0.03 6.68
6 (λav,m=0(t)) 14.8 0 180 0.05 8.67

4. Discussion

Controlling arrival intervals means a more orderly air traffic flow. This section focuses
on the inter-arrival times themselves for each scenario. Figure 14 is the histogram of
inter-arrival times for each scenario. Scenario 0 is the baseline, i.e., the original arrival
flow without any intervention. Scenario 3 corresponds to the adjusted arrival flow with
an arrival time change of up to 100 s and a maximum of 90 s earlier arrival. Note that
Scenarios 1, 2, and 3 have the same shape for the histogram, although dj may differ in each
case. Scenario 6 is the condition where no early arrival is allowed. For those scenarios,
inter-arrival times have a maximum value of 140 s in periods with the sparsest arrivals
around 19:20–19:30 (840–900 [×10 s], see Figure 13) and the behavior of flights in congested
periods influences the distribution of inter-arrival time.

From this diagram, it is deduced that Scenario 3 is the best strategy for forming a
narrow peak of inter-arrival times if the ATM can allow speed control for flights to shift
their passage time to about 1.5 min. Before control, during congested periods, some flights
would experience narrowly spaced rows, while others would be widely spaced, and their
inter-arrival times would be varied. By smoothing the arrival rate by adjusting during
crowded intervals, flights in the different periods are made uniform, since the flattened
arrival rate equates to the flattened inter-arrival time. Conversely, the mode value of inter-
arrival times is 100 s in Scenario 6 and the arrival flow becomes more varied, compared
with not only Scenarios 1, 2 and 3 but also the current arrival flow in Scenario 0. This is
due to the fluctuation in congested periods (see Figure 13), in which dj and dj−1 can be
totally different and there is no choice for some flights but to postpone their arrivals by
more than 90 s.

The minimum inter-arrival time is 70 s in all scenarios, including Scenario 0 with
the original arrival flow. This satisfies the minimum time-based separation at the Initial
Approach Fix. According to Meyn and Erzberger (2005) [33], 72 s is required for the 5 NM
distance-based separation. This indicates that both radar separation (3 NM) and wake
vortex separation minima are satisfied considering the arrival aircraft types at the Tokyo
International Airport. Note that one of the extensions when analyzing the arrival flow
of each day is to incorporate the type of each aircraft into the problem as constraints,
restricting the maximum value of dj.
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Table 5 summarizes the values of the objective function, first term (the variance in
inter-arrival time), and second term (the adjustment for all flights). For Scenarios 4, 5,
and 6, all the values, particularly the second term, become worse than those in Scenarios
1, 2, and 3 due to operational constraints. These limitations on early arrival generate
postponement on a very large scale for flight arrival times during congested periods,
although congestion is mitigated even in more deviated arrival flows, as guaranteed by
Constraint (4) in Section 3.1.1. Note that weight α is constant at 1 and the second term
dominates in this paper, with an imbalance emerging between the first and second terms.
In the current problem structure, the penalty for excess adjustment is supposed to have
more influence than optimization for a more orderly flow. Although even this setting
can realize alleviated crowding, there is room to improve the programming problem
by changing α or allowing an increase in mean inter-arrival time and so on. The latter
modification means the time horizon is expanded backward (e.g., from 17:00:00–21:38:50 to
17:00:00–22:00:00) and we should investigate the potential for more reasonable operation
by AMAN through this modification as a topic for future work.

Table 5. Objective function and its breakdown for each scenario.

Scenario Objective Function First Term Second Term

0 - - -
1 263.6 1.6 262.0
2 263.6 1.6 262.0
3 263.6 1.6 262.0
4 274.7 1.7 273.0
5 331.9 1.9 330.0
6 440.2 2.2 438.0

Moreover, it is meaningful to further analyze the characteristics of the arrival flow
for each day. This paper used the mean arrival rate by averaging 25-day arrival histories.
Although the given assumption leads to the solution being generally applicable, it is
important to clarify how the flight-time-dependent arrival rates have effects on the queuing
model and integer programming in future work.

Another approach involves verifying the delay-reduction propagation effect. Figure 15
shows a conceptual diagram of a queuing network. We learned that the arranged arrival
flow helps to reduce delays in the interested area (Higasa and Itoh, 2022 [5] for the en-route
area by generating a virtual flow, and in this paper for the terminal area using the real
flow). Accordingly, we will verify that controlling the arrival time of certain clusters at the
border of en-route airspace can mitigate congestion in the terminal airspace. According
to Figure 15, this corresponds to controlling λ(t), i.e., stabilizing the exit flow σ(t) and
pouring λT(t) into the terminal airspace to decrease delay time. If this holds, the exit
flow from the terminal airspace σT(t) also becomes stabilized, providing a more orderly
landing flow, and the smoother landing can ease crowding on the surface or at departure
in an airport. Furthermore, we will verify the effectiveness of earlier interval control in
the en-route airspace, assuming the increasing volume of air traffic in the future. The
proposed optimization method will be applied to a virtually created aircraft arrival flow,
which mimics the increasing volume of future air traffic.

Finally, we will conduct fast-time simulation experiments using AirTOP simulator,
with bj and aj as input. Future work will validate whether the simple assumptions men-
tioned above, such as the constant flight time in the integer programming formulation,
reduce aircraft arrival delays under realistic operational conditions, considering aircraft-
dependent flight time , and even increasing air traffic volume.
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Figure 15. Arrival and departure flows in an airport and surrounding airspaces.

5. Conclusions

For efficient Arrival Traffic Management (ATM), the imbalance between demand and
capacity should be remedied in the surrounding airspace. Considering the mechanism
of the Arrival Manager (AMAN) displaying the Estimated Time of Arrival (ETA) and the
Scheduled Time of Arrival (STA), the advanced control of flights to optimize their inter-
arrival times can be an effective approach to solve this problem and mitigate congestion.
However, little attention has been paid to the quantitative demonstration of interval control.
Thus, we developed a methodology to optimize arrival flow so that inter-arrival times
are less deviated while the excess adjustment of arrival time is restricted, combining the
Gt/GI/st + GI time-varying queuing model and nonlinear integer programming. The
integrated approach clarifies that crowding in the terminal airspace can be mostly alleviated
by advancing and postponing flights entering the area during the congested period, even
with the operational constraints for early/late arrival being at most about 90 s in the case of
Tokyo International Airport.

Note that airlines and controllers may experience a much heavier workload than before
because they must maintain close contact in order to accelerate or decelerate flights in cruise
phase in the en-route airspace. Since the terminal airspace is far more crowded to enter than
en-route airspace, more aggressive intervention is required for potentially overcrowded
arrival flow, as identified by our additional analysis, which will be discussed in future work.
In this future work, we will apply this process to relatively sparse en-route airspace to
examine whether adjustment elicits a similar effect when controlling inter-arrival times at
en-route gates and when the adjustment is modest. Furthermore, future work will include
demonstrating the positive effect of advancing adjustment points by building a queuing
network. It may also help to propose operational strategies for integrating AMAN (arrival
management), SMAN (surface management), and DMAN (departure management).
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