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Abstract: In a launch environment, all satellites are subjected to severe random vibration and acoustic
loads owing to rocket separation, airflow, and injection/combustion of the fuel. Structural vibrations
induced by mechanical loads cause the malfunction of vibration-sensitive components in a satellite,
leading to failures during the launch process or an on-orbit mission. Therefore, in this study, a shape
memory alloy-based vibration isolator was used on the connection between the launch vehicle and
satellite to reduce the vibration transmission to a satellite. The vibration isolator exhibited a high
performance in the vibration isolation, owing to the dynamic properties of super-elasticity and high
damping. The vibration-reduction performance of the vibration isolator was experimentally verified
using random vibration and acoustic tests in a structural thermal model of the satellite developed in
the synthetic aperture radar technology experimental project. Owing to the super-elasticity and high
attenuation characteristics of the vibration isolator, it was possible to significantly reduce the random
vibration of the satellite in the launch environment. Although the mechanical load of the acoustic
test mainly excited the antenna on the upper side of the satellite rather than the bottom side, the
results of the acoustic test showed the same trend as the random vibration test. From this perspective,
the vibration isolator can contribute to saving the costs required for satellite development. These
advantages have made it possible to develop satellites according to the new space paradigm, which
is a trend in the space industry worldwide.

Keywords: synthetic aperture radar (SAR); small SAR technology experimental project (S-STEP);
random vibration test; acoustic test; shape memory alloy (SMA); structural thermal model (STM)

1. Introduction

The new space paradigm is changing the development philosophy of space engineer-
ing worldwide. The new space paradigm refers to the global gradual commercialization of
the space engineering field driven by private companies rather than government organi-
zations [1,2]. This acceleration has been enforced by the emergence of space philosophies
toward faster, cheaper, and lighter spacecraft development. In particular, the emergence of
small-satellite constellations can be considered one of the main elements of the new space
paradigm. Compared with existing mid to large satellites, small satellite constellations
have a fast design evaluation. In addition, recent rapid developments in manufacturing
technology have made it possible to mass produce satellites. As a result of these advantages,
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small satellite platforms are intensively used for various challenging tasks, such as real-time
remote sensing, fast telecommunication, and the global internet [3–5].

During the launch process, all satellites are subjected to various dynamic loads [6,7]
caused by static acceleration owing to engine thrust, sine vibration due to engine shutoff,
and self-excited vibration due to incomplete fuel combustion. In addition, thrust noises
cause random vibration, and the separation process between the launch pad and spacecraft
generates a mechanical shock. In addition, a diffused acoustic field of approximately
130–140 dB is generated in the satellite fairing owing to fuel combustion noise and aerody-
namic noise generated by the friction between the launching vehicle and air [8–11]. This
diffuse acoustic field is one of the primary sources of satellite vibration. Considering this,
dynamic load is serious and complicated as it can cause launching and satellite mission
failures and mechanical/electrical malfunctions. Therefore, to improve the structural sta-
bility of satellites, it is essential to achieve a mechanical design that guarantees structural
safety against vibration and acoustic noise in the launch environment.

There are two approaches to improving the structural stability of mechanical systems
subjected to dynamic loads: active and passive control methods. Active vibration control is
implemented with a combination of a sensor that analyzes vibration signals transferred to
the mechanical system and an actuator that generates anti-phase vibrational signals [12,13].
The artificially generated vibrational signals in the active control system have the advantage
of a high vibration reduction effect; however, the system power budget must be considered
for additional electric devices such as sensors and actuators. However, passive vibration
control has the advantage of not requiring additional power consumption. However, the
vibration reduction performance is relatively low because only the structure/material
of the mechanical system is changed. In addition, the active vibration control needs
the additional sensor and actuator systems. Considering the characteristics of the space
environment, which is very difficult to maintain and has a limited power budget for the
satellite system, passive vibration control is more suitable for reducing the vibration of
the satellite system. There is no additional mass or volume of the satellite system because
this passive vibration control does not require an additional printed circuit board (PCB)
or power supply unit (PSU) [14–16]. Additionally, it is expected that the notching process,
often used in environmental testing, can be simplified. The advantages of this passive
vibration-control-based vibration isolation system are in line with the new space paradigm
for developing small satellites at an effective cost.

In this study, the vibration reduction performance of a shape memory alloy (SMA)-
based high-damping vibration isolator was experimentally verified for the structural-
thermal model (STM) of a small synthetic aperture radar (SAR) satellite using acoustic and
random vibration tests. The SMA-based high-damping vibration isolator used in this study
had two key characteristics: the super-elasticity of SMAs and the high damping properties
of laminated structures [16]. Super-elasticity is an intrinsic property of SMAs caused by
a stress-induced phase transformation generated in a phase transition state. Because of these
characteristics, the structure did not undergo plastic deformation and recovered its original
shape under unloading conditions. Based on these dynamic behavior characteristics, the
SMA was first applied to reduce the vibration caused by pyro-shock impact [17] and
was constructed as a multilayered structure using viscoelastic tape to achieve a high
damping performance.

Kwon et al. [18] proposed an SMA-based vibration isolation structure to reduce ran-
dom vibrations in the launch environment of satellites. In 2017, an SMA-based blade-
type vibration isolator was applied to reduce the vibration of the cooler, which had
a high vibration reduction performance compared with that of the conventional struc-
ture consisting of titanium. In 2019, a super-elastic SMA wheel was used to reduce the
micro-jitter vibration of a two-axis gimbal-type X-band antenna [19]. Park et al. [20] de-
signed a high-damping PCB board using a laminated structure of viscoelastic acrylic tape.
This PCB board concept improved the fatigue life of the vibration-sensitive electronic
units in satellites. In 2021, Kwon et al. [4] proposed an SMA-based vibration isolator to
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improve the structural safety of a small SAR satellite subjected to random vibrations. This
SMA-based vibration isolator achieved a vibration energy attenuation of approximately
85% based on the center of mass of a small SAR satellite.

In this study, it was experimentally verified that the vibration reduction performance
of an SMA-based vibration isolator reduced the structural vibration caused by the dif-
fused sound field inside the fairing. Acoustic and random vibration tests were performed
using the STM for an SAR technology experimental project (S-STEP) satellite. Based on
the test results, the vibration reduction performance of the SMA-based vibration isola-
tor was validated for the acoustic and random vibration tests. In addition, because the
random vibration test results generally envelope the acoustic test, the entire process of
the environment test can be simplified, and the development cost for the satellite can
be reduced.

Section 2 presents a brief description of the S-STEP, a research project for small SAR
satellites. Section 3 presents the concept of an SMA-based vibration isolator and its vibration
reduction performance. Section 4 introduces the experimental setup of the random vibration
and acoustic tests, and shows the experimental results.

2. Brief Description of an S-STEP System

The S-STEP was a research project that established a smaller, lighter, faster, and com-
pact process for designing, evaluating, and manufacturing small SAR satellites according to
the new space paradigm. The small SAR satellite developed in this project was called the
S-STEP satellite and was used for missions to obtain high-resolution images for purposes
such as environmental investigation, surface mapping, and disaster monitoring [3–5].

Figure 1 shows the main missions and operational methods of the S-STEP satellite. The
S-STEP satellite had several operation modes depending on the mission, such as ScanSAR,
VideoSAR, and stripmap modes, which were the main missions [21,22]. The ScanSAR and
VideoSAR modes had resolutions of 1 and 4 m, respectively. These modes tracked various
conditions for different targets of interest. The high-resolution stripmap mode provided
a resolution of 1 m and wide area monitoring. Images and videos acquired through the
SAR antenna were stored in an integrated avionics unit (IAU) through the Wizard Link and
were transmitted to the ground through X-band antenna (at a speed of 1 Gbps). In addition,
communication of the satellite constellation via an S-band inter-satellite link (ISL) improved
mission performance at the system level. The main performances of the S-STEP satellite are
listed in Table 1 [3]. As seen in Figure 1b,c, the S-STEP satellite was a compact plate-type
structure, which had the weight of 80 kg class, and the resolution range, acquisition time,
and transmitted peak power were 1 m, 5 km, 60 s, and 2560 W, respectively. From this
perspective, the S-STEP satellite had a very high performance-to-mass ratio.

Table 1. System specification of the S-STEP satellite [3].

Specification Value

Mission lifetime 3 years

Mass 80.3 kg

Satellite size 1970 × 1060 × 200 mm

Power
Generation 340 W

Save 648 Wh

Inter-satellite link RF (X-band)

TMTC/image download link S-band/X-band

Pointing accuracy 0.085◦

Resolution (25◦)
1 m (Stripmap)
4 m (ScanSAR)

1 m (VideoSAR)

Swath (elevation × azimuth)
5 × 420 km (Stripmap)
15 × 420 km (ScanSAR)
5 × 5 km (VideoSAR)

Image acquisition time 60 s (Stripmap)
10 s (VideoSAR)
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Figure 1. Schematic of S-STEP satellite: (a) S-STEP operation concepts of the mission; (b) bottom side
with solar cell; (c) top side with SAR antenna [3].

Similar to most satellites, the environment tests of S-STEP satellites were implemented
to verify the function and performance in the launch/orbit environment during the de-
velopment process. In particular, the dynamic behavior of the S-STEP satellite caused by
the random vibration (generated in the launch environment) and the acoustic load (from
the interior acoustic field inside the fairing) should be investigated. This is because the
vibro-acoustic effect in combination with the acoustic load and random vibration caused the
malfunction of electronic components in S-STEP satellites. Consequently, mission failure of
the S-STEP satellite could occur. Section 3 describes an SMA-based vibration isolator to
minimize the vibration of the satellite in response to acoustic/vibration load acting in the
launch environment.

3. Dynamic Behavior of SMA-Based Vibration Isolator

Figure 2 shows an SMA-based vibration isolator. The SMA-based vibration isolator
used in this study consisted of two types of vibration-isolating elements for axial and lateral
vibrations. As shown in Figure 2a, the vibration of the launch vehicle transferred from the
outer bracket was transmitted to the inner bracket through the vibration-isolating element
in the axial direction (Figure 2c), which was transferred to the upper plate through the
vibration-isolating element in the lateral direction (Figure 2d). Vibration generated by the
projectile is transmitted to the satellite through a vibration isolator. Here, the SMA-based
vibration isolator reduced vibrations above the target cutoff frequency (28 Hz) with a high
damping performance. This phenomenon is called “frequency decoupling”, which means
that the peak vibration value over the cutoff frequency can theoretically be reduced by up
to 50%. This dynamic behavior of vibration isolation is caused by the super-elasticity of
SMA-blade and the high damping property of viscoelastic tape.

This meant that the SMA-based vibration isolator could reduce the vibrations caused
by sound/vibration excitation in the target frequency band. As shown in Figure 2e, it
had high damping characteristics owing to the super-elastic properties of the vibration-
insulating element, composed of a laminated structure consisting of an SMA blade, FR-4
material, and a constrained layer. Therefore, the SMA-based vibration isolator had a
very high recovery, and the significantly deformed (12–20%) structure was restored to its
original state without plastic deformation. The SMA-based vibration isolating element
had a peak acceleration level and high vibration energy within a low-frequency band
(≤100 Hz), whereas the energy level in the high-frequency range over the critical frequency
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was relatively reduced owing to “frequency decoupling”. In addition, the structural
deformation caused by the vibrating modes was restored to its original shape owing to
its super elasticity, which was an inherent characteristic of the SMA, and the vibration
responses were nearly impervious to the high-frequency modes owing to the high damping
characteristics of the multilayered lamination. As there were two types of vibration-
isolating elements in the lateral and axial directions, the SMA-based vibration isolator used
in this study significantly reduced the vibration transmitted to the satellite from the launch
vehicle. Section 4 presents the vibration reduction performance of the vibration isolator
according to the acoustic/vibration load inside the fairing using environmental tests.
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combination with a SMA blade, and viscoelastic layer [16].

4. Environment Test of the S-STEP Satellite under Random Vibration and
Acoustic Loading

In this section, the vibration responses of the S-STEP satellite to random vibrations
from the launch vehicle and the acoustic load generated in the fairing were investigated.
Random vibration and acoustic tests were conducted with and without a vibration isolator.
Random vibration and acoustic tests were conducted using the STM of the S-STEP satellite.

4.1. Introduction to the STM of the S-STEP Satellite

In this subsection, the STM of the S-STEP satellite, which was the target system for
acoustic/random tests conducted in this study, is described. STM refers to the model
used to experimentally verify the structural and thermal performance for achieving struc-
tural/thermal stability in an on-orbit/launch environment. Figure 3 shows a conceptual
diagram of the S-STEP satellite. As aforementioned in Section 2, the S-STEP satellite had
a plate-like structure in combination with an aluminum-skinned honeycomb panel, solar
panel, SAR antenna, and another honeycomb with payload and electronics [3]. There
was a cutout in the honeycomb structure in order to enhance mass reduction, except for
the interface area attached to the electronics and payload structure. Thus, this composite
structure provided an interface for the internal systems (PSU, battery, and IAU), and the



Aerospace 2022, 9, 642 6 of 13

payload and bus structures shared a platform for installation. As this type of satellite had
no deployment mechanism, the S-STEP satellite guaranteed high structural stability of
the SAR antenna and thermal reliability of the internal components installed inside the
S-STEP satellite.
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Figure 3. Conceptual diagram of the S-STEP satellite.

Figure 4 shows a section view of the S-STEP satellite with a vibration isolation system
and launch adapter (24′′ ring-type structure in Space X) [8]. The vibration isolation system
consisted of an aluminum-skinned honeycomb panel, SMA-based vibration isolator (4EA),
and in-orbit separation device (4EA). This system also had a flange bolt connecting the
S-STEP satellite to the vibration isolator entirely isolated from the launch adaptor, using
only the passive method based on the spring-damper system. The first natural frequency
of the S-STEP satellite equipped with the vibration isolation system was set as 25 Hz in
order to avoid the effects of the cutoff frequency [16]. Therefore, it was possible to realize
vibration-free conditions in which the acoustic and vibrational loads transmitted to the
satellite were significantly reduced. In this study, the performance of the vibration isolation
system applied to the STM of an S-STEP satellite was investigated using acoustic and
random vibration tests.

Aerospace 2022, 9, x FOR PEER REVIEW 7 of 14 
 

 

(4EA), and in-orbit separation device (4EA). This system also had a flange bolt connecting 

the S-STEP satellite to the vibration isolator entirely isolated from the launch adaptor, us-

ing only the passive method based on the spring-damper system. The first natural fre-

quency of the S-STEP satellite equipped with the vibration isolation system was set as 25 

Hz in order to avoid the effects of the cutoff frequency [16]. Therefore, it was possible to 

realize vibration-free conditions in which the acoustic and vibrational loads transmitted 

to the satellite were significantly reduced. In this study, the performance of the vibration 

isolation system applied to the STM of an S-STEP satellite was investigated using acoustic 

and random vibration tests. 

 

Figure 4. SMA-based vibration isolation system and STM of the S-STEP satellite. 

4.2. Random Vibration Test of the S-STEP Satellite 

Figure 5 shows the experimental setup of the random vibration test for the STM of 

the S-STEP satellite with SMA-based vibration. The qualification levels of the random vi-

bration inputs transmitted from the launch vehicle are listed in Table 2. Using the setup 

in Figure 5 and the qualification level listed in Table 2, a random vibration test was per-

formed to measure the acceleration response at the center of gravity (CoG), PSU, battery, 

and SAR antenna of the S-STEP satellite’s STM. 

Table 2. Qualification level of the vibrational profile for the random vibration analysis. 

Frequency [Hz] Power Spectral Density (PSD) [g2/Hz] 

20 0.014 

80 0.044 

160 0.07 

640 0.07 

800 0.12 

1150 0.12 

1300 0.04 

2000 0.04 

Root mean square (RMS) acceleration 11.64 grms 

Figure 4. SMA-based vibration isolation system and STM of the S-STEP satellite.



Aerospace 2022, 9, 642 7 of 13

4.2. Random Vibration Test of the S-STEP Satellite

Figure 5 shows the experimental setup of the random vibration test for the STM of
the S-STEP satellite with SMA-based vibration. The qualification levels of the random
vibration inputs transmitted from the launch vehicle are listed in Table 2. Using the setup in
Figure 5 and the qualification level listed in Table 2, a random vibration test was performed
to measure the acceleration response at the center of gravity (CoG), PSU, battery, and SAR
antenna of the S-STEP satellite’s STM.
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Table 2. Qualification level of the vibrational profile for the random vibration analysis.

Frequency [Hz] Power Spectral Density (PSD) [g2/Hz]

20 0.014
80 0.044

160 0.07
640 0.07
800 0.12
1150 0.12
1300 0.04
2000 0.04

Root mean square (RMS) acceleration 11.64 grms

Figure 6 shows the design load of the random vibration test and frequency responses
of the CoG, PSU, battery, and SAR antenna of the satellite. As shown in Figure 6a,b, the
satellite with a vibration isolator showed an overall lower energy level than that of the rigid
connector for the same random input. This was because the energy was concentrated in
the low-frequency band (under 100 Hz) owing to the influence of the vibrating mode, and
the overall vibration level (100–2000 Hz) was reduced by the high damping properties of
the multilayered vibration-isolating elements. Figure 6c shows the root mean square (RMS)
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acceleration of the S-STEP satellite with and without a vibration isolator. As shown in this
figure, the overall vibrational response of the S-STEP satellite with the vibration isolator
was lower than that of the rigid connector.
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4.3. Acoustic Test of the S-STEP Satellite in the Diffused Field

Figure 7 shows the experimental setup for the acoustic test of the STM of the S-STEP
satellite. As mentioned before, the airflow and combustion/injection of fuel generates
acoustic noises during the satellite launch. The acoustic noise in the launch environment
was transmitted to the inside of the launch vehicle’s fairing, and a diffuse sound field was
generated in the fairing, which was an enclosed space. Owing to the characteristics of
the diffused sound field, a significant acoustic energy was evenly formed in space in the
fairing [23–25]. An acoustic test of the S-STEP satellite for the diffused sound field was
conducted at the Korea Aerospace Research Institute (KARI). The volume of the acoustic
chamber at KARI in Figure 7a was 1227 m3 ((W) 10.7 × (D) 8.5 × (H) 13.5 m), which
was 800 times larger than that of the volume of the S-STEP satellite (1.5 m3). The test
space was sufficient for the environment test of the diffused sound field inside the fairing.
Figure 7b shows the S-STEP satellite installed in the testbed. For the acoustic test, the S-
STEP satellite was mounted at an oblique angle of 25◦. The horizontally installed plate-type
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satellite focused on the acoustic energy between the acoustic source and satellite body.
Consequently, the acoustic energy in the reverberation space was not uniformly distributed.
In this way, the influence of the acoustic mode was avoided and a uniform diffused sound
field was generated. Because the acoustic source was located on top of the chamber and
the S-STEP satellite was a plate-type, the acoustic energy could be focused between the
source and satellite, and the sound field in the chamber was no longer a diffused field.
Figure 7c shows the acoustic source used to generate the diffused sound field. The target
frequency band of the acoustic source was divided into low and high frequencies according
to the shape and structure of the sources. The two sources produced sound through
a cylinder-shaped double air valve reciprocated by pumping air. The acoustic profile was
produced via feedback control using a microphone in the chamber.
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Figure 7. Experimental setup for the acoustic test of the S-STEP satellite (STM) subjected to the
acoustic loading generated from the diffused field: (a) conceptual diagram of the reverberation
chamber; (b) test bed for the S-STEP satellite (STM); (c) acoustic modulator to generate the sound field.

Figure 8 shows the acoustic input profile for the acoustic test performed in this study.
As aforementioned, the satellite design can be determined by functional and environmental
tests just before the launch process. In most cases, because the satellite design is decided
after the certification process in which all functional and environmental tests are performed,
the detailed design of the satellite can be changed during environmental testing. Moreover,
it is difficult for a satellite designer to prepare an environmental test before the launch
vehicle is decided. In this regard, the acoustic test input was determined as the envelope
of the acoustic specifications of Vega-C, Falcon9, Soyuz, and Epsilon [8–11]. The acoustic
environments of the several commercial launch vehicles were achieved with the test launch
and realistic measurement of the acoustic pressure.

Figure 9 shows the design load of the random vibration test and frequency response of
the CoG, PSU, battery, and SAR antenna. As shown in the acoustic test results in Figure 8a,
the effect of the SMA-based vibration isolator on the acoustic load was relatively smaller
than that of the random vibration test. Moreover, the RMS acceleration of the SAR antenna
with the vibration isolator was higher than (0.5 grms) that of the result without the vibration
isolator. However, the RMS acceleration of the satellite with the vibration isolator was
smaller than that of the other cases, except for the SAR antenna. The SAR antenna of
the satellite without the vibration isolator had a high RMS acceleration because the SAR
antenna was directly excited by the diffused sound field.
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Figure 10 shows random vibration responses of the SAR antenna measured during the
random vibration test for the SAR antenna level and acoustic test for the satellite level. As
shown in Figure 10a, the specification level for the SAR antenna derived from the random
vibration test was lower than that of the acoustic test result by a factor of 54%. However,
the vibration level at the edge area was lower than that of the central area. In terms of
energy, the random vibration result in the central area achieved from the SAR antenna
level test enveloped the acoustic test result. The random vibration response did not cover
the acoustic test result at partial frequency ranges (330–527 and 800~1350 Hz). Although
the mechanical load of the acoustic test mainly excited the SAR antenna, the design load
determined by the random vibration test was 100 g [3], whereas the maximum equivalent
static loads at two partial frequency ranges were 77 and 85 g. These equivalent static loads,
calculated by Mile’s Equation [26] and ECSS rule [27], were relatively smaller than the
design load. In addition, in this load condition, the SAR antenna assured the structural
safety of the system. On the upper side of the satellite (not the bottom side), the results of
the acoustic test showed the same trend for the random vibration test. This means that
the random vibration test covered the acoustic test. Therefore, for cheaper, lighter, and
faster development of spacecraft, the random vibration test can replace the acoustic test.
As shown in Table 3.
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Figure 10. Random vibration responses of SAR antenna measurements from the random vibration
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Table 3. Results of the low-level sine sweep (LLSS) test performed before and after the random
vibration test.
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Difference (%)
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Before 25
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Battery Before 25
0After 25
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5. Conclusions

This study focused on an environmental test for an acoustic field and random vibration.
During the launch, all of the satellites were subjected to severe mechanical loads of diffused
sound field and random vibration. To reduce these mechanical loads, an SMA-based
vibration isolator was applied at the interface between the launch adapter and satellite.
Although the mechanical load of the acoustic test mainly excited the SAR antenna on the
upper side (SAR antenna) of the satellite (not the bottom side (solar panel)), the results of the
acoustic test showed the same trend as that of the random vibration test. Therefore, using
the SMA-based vibration absorber, the environment test of the satellite can be simplified.
In addition, the dynamic load from the acoustic and random vibration disturbance can
be reduced and the vibration-sensitive component can have mechanical stability. From
this perspective, SMA-based vibration isolators can contribute to saving the time and
capital required for satellite development. These advantages have made it possible to
develop satellites according to the new space paradigm, which is a trend in the space
industry worldwide.
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