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Abstract: With the rapid development of the UAV, it is widely used in rescue and disaster relief, where
autonomous landing is the key technology. Vision-based autonomous landing has the advantages
of strong autonomy, low cost, and strong anti-interference ability. Moreover, vision navigation
has higher guidance and positioning accuracy combined with other navigation methods, such as
GPS/INS. This paper summarizes the research results in the field of vision-based autonomous landing
for the UAV, and divides it into static, dynamic, and complex scenarios according to the type of
landing destination. Among them, the static scenario includes two categories: cooperative targets and
natural landmarks; the dynamic scenario is divided into two categories: vehicle-based autonomous
landing and ship-based autonomous landing. The key technologies are summarized, compared, and
analyzed and the future development trends are pointed out, which can provide a reference for the
research on vision-based autonomous landing of UAVs.

Keywords: autonomous landing; computer vision; UAV

1. Introduction

The UAV platform has the characteristics of low cost, minimal risk and high efficiency,
and has been paid more and more attention by researchers. In addition to military use,
UAVs have been widely used in environmental monitoring, natural exploration, main-
taining social security, and disaster relief. Among them, many tasks are related to the
autonomous landing of UAVs. At the same time, the landing stage is a high-incidence stage
for the UAV, and the accuracy and success rate of autonomous landing often decides the
success of the mission.

A lot of research has been conducted on the autonomous landing of UAVs due to the
following characteristics [1]:

(1) Real-time massive information processing:

The autonomous landing of the UAV needs to comprehensively consider both the
environment and the UAV itself, so as to recognize the target and calculate the relative
pose in real-time in the case of unstable landing platforms and complex landing situations.
During the period, the huge amount of information, the complex calculation, and the
extreme requirement of high real-time performance and stability all bring difficulties to
autonomous landing.

(2) Limited onboard resources:

Due to the huge amount of information, requirements for the airborne computing
system are high, especially on the computer vision-oriented computing platform, so the
problem of limited computing power cannot be ignored. Moreover, the complex vision algo-
rithms are time consuming in image processing, which is very unfavorable for the real-time
navigation of the UAV system and makes it more difficult to fulfill the needs of autonomous
landing when the landing platform is unstable or in various complex situations.
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(3) High maneuverability of UAV platforms:

The high maneuverability of the UAV itself brings higher requirements to the control
system, which means it is necessary to give more rapid and accurate feedback results for
the pose estimation and motion state.

(4) Limitations of traditional image processing algorithms:

At present, the target detection algorithms carried on UAV embedded systems are
basically based on traditional image processing algorithms. Usually, different detection
icons need to be designed in different scenarios. The detection algorithm is limited by
specific geometric icons, so different detection icons need to be designed. According to the
situation above, it is difficult to easily migrate the feature extraction algorithm from one
scenario to another, so the stability and robustness need to be improved.

In recent years, research and literatures on the autonomous landing of UAVs continue
to emerge. Among them, scholars have reviewed general target detection, UAV target
detection, UAV autonomous landing, etc. However, the existing literature only briefly
describe various methods, lacking a systematic classification and summary of application
scenarios [2–4], and there are few studies on autonomous landing of UAVs in complex
scenes. In order to further promote the research in the field of UAV autonomous landing,
combine the existing algorithms to prepare for the future research work on autonomous
landing in complex scenes, it is necessary to sort out and analyze the existing results.

After studying the existing achievements, this paper innovatively classifies the au-
tonomous landing of UAVs based on vision into static scenes, dynamic scenes and complex
scenes. According to the different detection targets, static scenes are divided into coop-
erative target based and natural scenario based. According to the carrier of the moving
platform, the dynamic scene is divided into vehicle-based and ship-based. Complex scenes
include the selection of safe landing areas for UAVs, vision-based multi-sensor fusion, etc.
Figure 1 provides autonomous landing classification of this paper. Finally, we summarize
the problems to be solved of the existing achievements in the field, provide solutions and
discuss the future development direction.
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The rest of the paper is organized as follows. In Section 2, we discuss UAV autonomous
landings in static scenes. UAV autonomous landings in complex scenes are expounded
in Section 3. In Section 4, UAVs landing in dynamic scenes are provided correspond-
ingly. Section 5 involves the problems to be solved, the future development and gives
workable solutions.
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2. Autonomous Landing of UAVs in Static Scenes

As the short detectable distance of visual inspection, the built-in map is usually used
firstly in engineering for autonomous landing of the UAV. Then, the UAV is guided to the
landing area through the global positioning system or inertial navigation system. At last,
vision is used for guidance. Vision-guided UAV landing is mainly divided into three stages:
target detection, flight guidance and autonomous landing:

(1) The visual task load and other sensors on the UAV are called to collect and resolve
the information from the environment around the landing area, capture artificial
landmarks, and perform feature point calculation, feature extraction, feature matching
and other operations on the image to achieve landmark tracking and detection. The
relative pose information of the UAV and the landmark is continuously returned to
the head controller.

(2) Flight control system corrects and guides the aircraft’s position and attitude according
to the relative position and missed target amount returned by the vision module
in order to make it converge to the target with a relatively appropriate direction
and speed.

(3) Flight control system completes the real-time correction of the landing attitude at high
speed, and successfully landed at the target location at last.

In the research field of autonomous landing of UAVs, landing on a static target site or
a standard runway and apron is the basis for studying autonomous landing in dynamic
scenarios. The autonomous landing of UAVs in static scenes could be divided into two
different types: autonomous landing based on cooperative target and autonomous landing
based on natural scenario. The concept of scene-based landing is that UAVs can identify
environmental characteristics to land in the absence of artificial cooperative targets.

2.1. Cooperative Targets Based Autonomous Landing

The most important step for autonomous landing based on cooperative targets is the
detection and recognition of the artificially designed marker. It can accurately identify
and solve the current flight attitude of the UAV by extracting the features, so as to realize
the guidance of the autonomous landing of the UAV. However, in some special scenarios,
cooperation targets cannot be laid manually, especially for scenarios like UAV post-disaster
rescue, which puts forward higher requirements for the autonomy of UAVs, demanding
UAVs to analyze the surrounding environment autonomously and make correct feedback
results at the same time.

2.1.1. Classical Feature-Based Solutions

In feature-based methods, an artificial marker is a kind of identification mark that is
designed artificially according to geometric pattern or the principle of certain geometric
laws. How to design accurate and efficient identification patterns and applying appropriate
feature detection algorithms could be an important way to improve the autonomous
landing capability of UAVs. The current mainstream identification marks can be divided
into the following categories: “T”, “H”, circular, rectangular, and combination marks. Some
cooperative target images are shown in Figure 2 [5–10].
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(1) T shape

In 2006, Tsai et al. used Canny detection [11], Hough transform and Hu invariant
moment to detect “T” shape marks, and the pose of the aircraft is estimated based on
parallel lines. The root mean square errors of the attitude angles of this method are 4.8◦,
4.2◦, and 4.6◦, respectively. However, the parallel line pose estimation causes great errors
when the aircraft experiences larger pitch and attitude changes, and image noise has a
significant impact on the accuracy of the algorithm as well.

Aiming at solving the problem that the imaging quality of visual images has a great
impact on the recognition accuracy, Xu proposed to use infrared images for target detection,
and used the temperature difference between the target and the surrounding environment
to eliminate the impact from imaging quality on detection to a certain extent [12]. Using
adaptive threshold image segmentation and based on the characteristics that the tempera-
ture of the cooperative target is significantly higher than the environment and occupies a
relatively small proportion in the field of view, they proposed to use the maximum peak
position of the histogram and obtain the threshold by the Otsu method to generate a binary
image. For edge processing, they used the Sobel operator, and then obtained the edge
information through the chain code and segment table method. At last, the affine invariant
moment was used to solve the pose. Experimental data showed that the detection time of
the proposed method is 17.2 ms, and the accuracy is 97.2%.

(2) H shape

The H shape is almost the earliest cooperative target in the field of autonomous
landing of the UAV. The University of Southern California has taken a lead in studying the
autonomous landing system of UAVs. They used the AVATAR unmanned helicopter and
realized positioning of the UAV by identifying the target “H” [6]. The proposed system
used the Hu invariant moment and combined differential GPS to calculate the attitude and
achieved the autonomous landing with a pose error of 4.2 cm and an attitude error of 7◦,
which is the earliest autonomous landing with fast speed and strong robustness.

Yang used a white H shape cooperative target to perform median filtering to remove
noise in signal transmission, then perform image segmentation, and extract the segmented
images through a fixed threshold [13]. The simulation experiments showed that a Hu
invariant moment does not resolve the position and attitude very well, especially when
the landmark is changed in rotation. Therefore, they used Zernike Moments, of which the
most important characteristic from its definition, while Hu moments have to obtain such
invariance by complex calculation [14].

Invariant moment is an excellent method for solving pose and attitude, but the problem
is that the value of a Hu invariant moment of the same cooperative target at different sizes
and angles will differ by more than 20% [15]. Meanwhile, many tasks require the UAV and
cooperative target to match really well in directions. The orientation is kept corresponding,
and the Hu moment invariance effect is not ideal in the case of this specified orientation.
Therefore, Zeng designed an H-shaped logo with a triangle, indicating the direction to
determine the landing direction [16]. In the detection algorithm, the team first processed
and smoothed the image by filtering, Gaussian blurring, etc., and then segmented the
processed image through a depth-first search algorithm and compared the searched area
with a threshold. According to the truth, features in the H logo cannot be described in a
unified way, although it provides a variety of information for the UAV, and the Hu invariant
moment is not ideal for this situation, the team proposed an image registration algorithm,
which matches the image with the template images. The orientation is calculated with
methods such as Hough transform, line segment detection, and Helen’s formula. After
experimental verification, the average detection success rate of this method is 97.42%, and
the average image detection time is less than 60 ms, which indicates the advantages of
strong robustness and high precision. However, the image processing algorithm runs on
the ground station, and the image data link wastes a large amount of time. The UAV also
has poor anti-signal interference ability when it lands autonomously.
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(3) Round, rectangular shapes

Shakernia et al. in 1999 designed a cooperative target consisting of six white rectangles
and a black rectangle [17]. They assumed that all feature points are on the same plane and
proposed a new geometric estimation scheme. Finally, they discussed a nonlinear controller
based on differential fatness. The axial positioning accuracy is 5 cm, and the attitude angle
error is within 5◦. The simulation shows that the method has low computational cost and
is easy to implement. It can achieve stable landing even when the noise level of the image
is large. However, the disadvantage is that the feature points have limitations, and the
algorithm has low environmental adaptability and robustness.

In 2005, Zheng et al. designed a double-circle cooperation target using eight common
tangent points generated by the double circle to generate 21 feature points with perspective
projection invariance. They established world coordinates on the cooperative target at the
same time. The position information of the coordinate point is calculated based on the
segmentation of the ellipse to realize the resolving of the pose. The method has strong
anti-interference and anti-noise ability. Simulation experiments show that when the noise
deviation reaches 1.5 pixels at a distance of 10 m from the camera, the single-axis error is less
than 6 cm, and the single-axis attitude error is less than 0.7◦. Moreover, the method has high
processing speed. For 768 × 576 images, its feature extraction and labeling time is less than
9 ms. The disadvantage is that the complexity of the experimental environment is obviously
insufficient, which cannot show the robustness of the method under the interference of
complex environments and complex backgrounds.

In 2009, Sven designed a landing sign composed of concentric circles with different
inner and outer diameter ratios [18]. The cooperative target has adaptability at different
heights. By adding more rings based on the ratio of the radius between the rings, the
algorithm can achieve detection at higher heights. The team does not rely on any other
sensors, but only installs the optical flow sensor to resolve the pose. The experimental
results show that the UAV can hover stably for 5 min directly above the cooperative target.
The landing error is 3.8 cm, and the maximum error is 23 cm. Considering the error
accumulation of the optical flow sensor and the error caused by long-term hovering, this
result basically meets the requirements of autonomous landing.

In 2016, Benini et al. designed a cooperative target consisting of two concentric circles
and two six circles used for camera pose estimation [19]. After image pre-processing,
algorithms, such as noise reduction, the detection algorithm, will be divided into two
stages: searching for the main structure of the marker and detecting the inner ellipse. After
detection, several groups of ellipses consistent with the characteristics of the cooperative
target will be obtained. Noise caused by camera vibration and camera is occlusion will
decline as the Kalman filtering is processing. The experimental results showed that the
minimum frame rate is 30 fps when the size of the image is 640 × 480. Regardless of the
complexity of the image, the time required for GPU computation is 3 ms, while the error is
less than 8% of the diameter of the cooperative target.

In 2018, Yuan designed a system called robust and quick response landing pattern
(RQRLP) based on the hierarchical vision detection [20]. The system is divided into three
stages: namely “Approaching”, “Adjustment” and “Touchdown”. During the three stages,
the different detection methods of the cooperative target contours were adopted respectively.
The markers were extracted and used during the approaching stage in the RQRLP. During
the landing stage, optical flow sensors achieved robust pose estimation by tracking the
previous position. Meanwhile, a federated filter based on the extended Kalman filter is
costumed to integrate these vision solutions. The method is suitable for the landing height
of 0–20 m, the error of which is less than 0.0639 m in the range of 20 m. The attitude angle
error of the method is less than 0.0818◦. Compared with other methods, it has higher
recognition distance, stronger robustness, and more computing power which can deal with
the image with 1920 × 1080 resolution.
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(4) Combination shape

Combination logos usually refer to the arrangement and combination of standard geo-
metric figures, such as “H”, “T”, circles and rectangles, and also include two-dimensional
codes and barcode types of cooperative logos that can carry information. In 2011, the
University of Michigan developed an open-source UAV autonomous landing vision system,
AprilTag, based on a two-dimensional code combined graphic cooperative target [21]. It is
similar in concept to the ARTag system, but has improved performance compared to both
ARTag and ARToolkit in the field of autonomous UAV landing [22]. The system is divided
into two parts: detector and encoder. The detector utilizes a gradient-based clustering
method while applying low-pass filtering to reduce noise to a usable level, and finally uses
quaternary detection to determine the location of cooperative targets. The false detection
rate of this method is less than 0.3%. Additionally, as the project is open source, it is favored
by many researchers. For example, Zhou has conducted research on autonomous landing
based on AprilTag [23–25].

In 2016, the University of Michigan team carried out iterative optimization of AprilTag,
and proposed AprilTag2. ApriTag2 optimized the tag detector and used adaptive thresholds
to reduce random noise interference. It improved computational efficiency, and adopted
continuous boundary segmentation to provide more accurate boundaries information,
and used edge refinement to improve the accuracy of pose estimation at last [26]. These
optimizations not only improve efficiency and robustness, but also reduce false positives.

In 2013, Yang et al. studied the landing of UAVs under complex backgrounds [27].
They designed a combined logo with H placed in a ring. Using the method of projective
geometry, the five degrees of freedom of a UAV’s pose were calculated by identifying
ellipses. Another degree of freedom is calculated using H. This method can achieve
accurate identification in the presence of various edge information and can distinguish
it from a single ring and H logo. The landing error is 2.4 cm and 8.6 cm in the two axes,
respectively. The attitude angle error is 6◦.

In 2017, Nguyen et al. designed a three-circle nesting composition [28], which is
divided into eight parts at the same time. The image processing speed of this method is
about 40 ms. At a height of 10 m, the errors of the three axes are 7.6 cm, 1.4 cm, and 9.5 cm,
respectively, and the attitude angle errors are 1.8◦, 1.15◦, and 1.09◦, respectively.

In 2018, Zhang et al. proposed a UAV autonomous landing system based on hierarchi-
cal identification method and designed a cooperative identification based on multi-layer
nested two-dimensional coding [29]. Through the identification of nested QR codes, the
system maintained a good positioning effect at the multi-scale level. At the same time,
the experimental results showed that the system has good robustness and anti-interfere
ability of environmental factors, such as noise and temperature, while its requirement
for computing capability is low. However, it only relies on the stratum identification for
positioning, lacking other environmental information.

2.1.2. Machine Learning-Based Solutions

A feature-based solution needs different feature extraction methods for different
cooperative targets, and it is difficult to accurately extract the deep features of cooperative
target images. Therefore, traditional feature-based methods meet a theoretical choke point
in environmental adaptability and algorithm robustness. Since machine learning-based
methods are able to learn high-level semantic features from a large amount of data, they
have been widely studied and applied to the field of object detection. Machine learning-
based target detection methods can be further divided into two categories: classifier-based
methods and deep learning-based methods.

(1) Classifier-based methods

The classifier-based identification detection is similar to the target detection tasks,
which is a method combining sliding window and machine learning. For the image in
each window, the features are extracted as the input of the classifier, the training result is
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obtained afterwards as the final learning model. The commonly used classifiers include
Support Vector Machine, AdaBoost, K-Nearest Neighbor, etc. [30–32]. This method has
high accuracy under certain circumstances, but it still relies on manual feature extraction.
Different feature extraction methods need to be designed for different identifications in
different application scenarios, so the method also lacks robustness.

In 2012, based on the cooperative target composed of six circles, Li et al. extracted
affine invariant moments as input features, and used an SVM classifier for detection [33].
For undistorted and distorted images, the classification accuracy was 98.25% and 92.1%,
the recognition time of a single image was 7 × 10−3 ms. Compared with the traditional
geometric invariant moment and BP neural network, it has extraordinary real-time perfor-
mance, and the required computing power is relatively low. However, the portability of it
is not strong, and environmental factors cause great interference to it.

In 2014, Verbandt used the SVM classifier to detect the cooperative target and resolved
the pose through the Hough transform. The experimental data showed that the landing
error was within 5 cm, and it had a robust performance under different ambient lighting
and sharpness.

(2) Deep learning-based methods

The basic idea of the identification detection algorithm based on deep learning is to
optimize the target detection algorithm from the perspective of detection speed, detection
accuracy and model lightweight, and integrate dehazing, deblurring and other algorithms
to adapt to complex scenes in practical applications, achieving high precision and real-time
identification detection in the end to meet the original requirements. Compared with
traditional feature-based detection algorithms, deep learning-based detection algorithms
have good generalization, less dependence on specific logos, high robustness, and broad
application prospects [34,35].

In 2017, Chen et al. used faster regional neural networks (Faster R-CNN) to detect
cooperative targets and realize autonomous landing of the UAV [36]. After detecting the
cooperative target, the least squares ellipse fitting and Shi-Tomasi corner were adopted
for pose calculation. The R-CNN method proved that it is not only capable of extracting
features from the color and texture level of the target, but also extracting high-level features
from multiple color channels. Even if there is noise interference, the accuracy of recognition
can be guaranteed. Experiments showed that the accuracy of the SVM and BP network
is greatly reduced in the case of image distortion. Compared with the YOLO algorithm,
which is also a convolutional neural network, Faster R-CNN has higher accuracy because
of RPN. In the case of image distortion or no distortion, the recognition accuracy can reach
99.2% and 97.8% respectively, and the average detection time is 0.081 s, which meets the
requirements of real-time and accuracy and has high robustness. Within 5 m height, the
error of x, y, z axis was not more than 1.5 cm in the position estimation, and the error of the
direction estimation was within three degrees.

In 2018, Nguyen et al. replaced the original adaptive template matching with Light-
DenseYOLO and used Profile Checker to further improves the accuracy rate at the same
time [37]. LightDenseYOLO is divided into two parts, one is the feature extraction network,
the other is the label detection module YOLOv2. The experimental results showed that the
new model inherits the good feature extraction effect of the LightDense network and has
both the high real-time performance and robustness of YOLO. It runs at a speed of 50 ms
on a desktop computer and about 20 fps on a Snapdragon 835 processing platform. In the
process, the time required for contour detection is only 10 ms. If traditional methods, such
as Hough transform, are used, the detection time will be longer.

In 2020, Noi Quang Truong et al. proposed a two-phase framework of deblurring
and object detection, by adopting a slimmed version of the deblur generative adversarial
network model called SlimDeblurGAN and a you only look once version 2 (YOLOv2)
detector, respectively [38]. It considered the performance of a combination of motion
deblurring and marker detection for autonomous UAV landings. The processing speed of
the SlimDeblurGAN algorithm is 54.6 fps, and the total processing speed reaches 20.3 fps.
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Using this method can improve the robustness of the system, but the disadvantage is that
the calculation complexity is high.

2.2. Natural Scenario Based Autonomous Landing

The autonomous landing of UAVs based on the natural scenario is evidently different
from that of the cooperative target. Specifically, the method based on the cooperative target
can perform accurate positioning and navigation according to the markers that are highly
differentiated from the background. The algorithm design can be custom-made to match
traditional features. However, the markers must be set up in advance, otherwise it will
not be recognized. In some scenarios with high requirements for UAV autonomy, such as
rescue missions, UAVs often arrive at the scene before humans and perform preliminary
task processing. In this situation, the method of placing cooperative markers in advance do
not satisfy the mission requirements. Therefore, scene-based autonomous landing has been
developed. The existing technologies in this field include autonomous landing based on
scene matching [39], which is autonomous landing based on SLAM 3D scene modeling

2.2.1. Scene Matching-Based Solutions

A scene matching navigation system has the characteristics of simple structure, passive
type, high positioning accuracy, etc. It uses image sensors to obtain regional images near
the flight or target area and match them with the stored reference images to obtain aircraft
position data. Different from other active navigation systems, scene matching navigation
can be combined with an inertial navigation system to form a highly autonomous and
high-precision navigation system as an auxiliary navigation method. It can make the UAV
achieve precise autonomous landing in specific scenarios.

In 2008, Gianpaolo Conte et al. researched on the problem of scene matching correct-
ness in a UAV autonomous landing system and developed a method showing how to detect
incorrect image registration [40,41]. Its vision system uses image registration and visual
odometers to work stably in unstructured environments. At the same time, a multi-sensor
fusion vision-aided architecture is used, the core of which is the Kalman filter, inertial
and position sensors. The image registration technique developed here is based on the
Sobel edge detector, which is robust to illumination changes as well as geographic feature
changes. In the experiment, the vehicle flies at a speed of 3 m/s at an altitude of 60 m,
and the final landing error was about 3 m. The system can stably guide the autonomous
landing of the UAV.

In 2008, Andrew et al. built a map reference database of the runway on the UAV [42].
After the UAV landed on the expected area roughly, the scenario information was matched
to the information collected from the processor on the UAV to provide distance parameters
and attitude angle parameters between the UAV and the runway. The advantage is that it
does not depend on the model of the UAV, the parameters of the camera or the style of the
landing runway and does not require the support of cooperative targets. The weakness
lies in a large angle deviation when a UAV approaches the runway, which is easy to cause
harm to flight safety.

In 2010, Cesetti et al. researched on a UAV safe landing system based on natural
landmarks [43]. The operator can define the target area or navigation point path from high-
resolution satellite or aerial images and use the airborne scene feature matching algorithm
to control the system to land autonomously. Moreover, using the optical flow method to
construct a sparse terrain map, two detection methods were proposed for safe landing: one
to use SIFT features to estimate optical flow, and a simple classifier with binary thresholds
is used to determine whether the surface is flat and has conditions for landing; the other
to observe whether the target features change linearly during the vertical landing process.
The proposed method did not require cooperative targets, and experimental results showed
that it was robust to illumination changes and occlusions.

In 2012, Northwestern Polytechnical University realized the autonomous landing
of UAVs based on the key frame method of natural landmarks. The researchers used
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image feature extraction technology to autonomously extract key frames containing natural
landmarks in real-time image sequences, and innovatively gave up the feature matching
between real-time images and benchmark images. Through a detection mode based on the
inter-frame image matching technology, they used the dynamic key frame images calculated
between real-time images to accomplish “relative” scene matching, which overcomes the
difficulty of tracking and matching image features. At the same time, a dynamic key frame
management mechanism [44] is proposed on the basis of this method [45]. This method can
greatly reduce the cumulative error caused by long-term video mosaic without increasing
the computational complexity, and it is robust to image blur and noise interference.

In 2015, Wang et al. proposed a fast scene registration algorithm based on FREAK fea-
tures to solve the problem that the scene matching processing of traditional local invariant
features took to much time. The FAST-Difference method is used to extract feature points,
and the FREAK descriptor is used to calculate the feature vector. Finally, the RANSAC
algorithm is used to eliminate the mismatched points, and the least squares method is used
to calculate the spatial geometric transformation parameters between the two images. The
experimental results showed that compared with the classic SIFT and SURF algorithm, the
detection speed is greatly improved with 38 ms under the image size of 235 × 472. The
detection accuracy is comprehensively improved, and the robustness is enhanced at the
same time.

2.2.2. Near-Field 3D Reconstruction-Based Solutions

Importantly, 3D reconstruction means that the UAV platform relies on its own sensors
and poses information to obtain the surrounding 3D environment data. Due to the particu-
larity of the UAV platform and the autonomous landing task, the algorithm that realizes
the positioning function in the autonomous landing system can be narrowly classified
as the SLAM algorithm. In the existing research, the UAV is generally navigated to the
vicinity of the target through its own inertial navigation or global positioning system, and
then guided to land by the SLAM algorithm. Since most of the SLAM algorithms used in
autonomous landing tasks are used for near-field 3D reconstruction and positioning, they
are defined as near-field 3D reconstruction.

Visual SLAM mainly includes two parts: front end and back end. The front end
is responsible for grabbing sensors and pose data and estimating the state of the UAV.
The back end optimizes the data generated by the front end, and performs loop closure
detection [46]. At the same time, with the continuous rise of artificial intelligence and
deep learning, artificial intelligence technology is constantly being combined with SLAM
technology, which has achieved remarkable results.

The multi-sensor information fusion research carried out by the GRASP Laboratory
of the University of Pennsylvania realized the accurate indoor and outdoor environment
positioning and modeling of UAVs [47]; ETH Zurich studies indoor precise positioning
algorithms for multi-rotor UAVs [48]; the Vision Laboratory of Munich University of Tech-
nology is engaged in research on V-SLAM algorithms and 3D environment reconstruction
for multi-rotor UAVs [49].

Shen Shaoxie researched the fusion strategy of aircraft V-SLAM and IMU, and pro-
posed the VINS-Mono algorithm and the MVDepthNet algorithm for monocular depth
estimation [50,51], which can overcome the inherent characteristics and disadvantages of
monocular V-SLAM. At present, it has been widely used on multi-rotor UAV platforms.
Wang et al. of the National University of Singapore proposed a complete set of UAV
navigation systems based on visual optical flow and laser SLAM [52]. The main idea is to
combine IMU with tachymeter data to robustly estimate the speed and position of the UAV.

In 2021, Cui proposed a precise landing method based on binocular SLAM [53].
The team simplified the traditional SLAM framework, which contains front end sensor
information fusion and back end nonlinear optimization. In the improved SLAM, the ORB
algorithm was used to extract a fixed number of features, and the GMS strategy based on
the assumption of motion smoothness was used to evaluate the detection results. Based on
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the results of 100 actual scene experiments, the maximum error of this method is 1 m, while
the error of the traditional SLAM method is 4 m, which obviously improves the accuracy.

In 2018, Yang studied UAVs landing in unknown areas based on monocular SLAM in
emergency situations [54]. The system proposes a new map representation method that
combines 3D features with intermediate processes to remove noise and build grid maps
with different heights, combines 3D point clouds with grid maps and computes each height
of the grid, which can be used to build a visible grid map. At the same time, in order to
improve the speed and accuracy of UAV landing area recognition, in accordance with image
segmentation based on the mean shift principle, the grid map is smoothed and divided.
At last, the height information and obstacle information of the ground are obtained. Then,
the shortest path algorithm is used for planning, and the UAV is navigated to the landing
destination. The effectiveness and robustness of the method have been demonstrated in
multiple real experimental scenarios. The disadvantage is that image processing and SLAM
are conducted at the ground station, which may have large signal interference and delay.

In 2020, Li used truncated sign function to model the landing area in real-time, generate
low noise depth images, and automatically analyze the terrain for landing. The depth
camera achieves noise reduction and meets the requirements of autonomous landing.

In order to facilitate the research and comparison of the detection methods adopted by
various research institutions, the literature related to static scenes has been sorted out and
summarized in Table 1.

Table 1. Comparison of different autonomous landing solutions in static scenes.

Target Type Method Precision Height Image
Resolution

Processing
Speed Speed

T [11]
1 Canny detection
2 Hough transform
3 Hu invariant moment

Pose 4.8◦ 2–10 m 737 × 575 25 Hz N/A

[12]

1 Adaptive threshold selection
method
2 Infrared images
3 Sobel method
4 Affine moments

Success rate 97.2% N/A N/A 58 Hz N/A

H [6] 1 Hu invariant moment,
2 Combines differential GPS

Position 4.2 cm
Pose 7◦

Landing < 40 cm
10 m 640 × 480 10 Hz 0.3–0.6 m/s

[13] 1 Images extract,
2 Zernike Moments

Position X 4.21 cm
Position Y 1.21 cm
Pose 0.56◦

6–20 m 640 × 480 >20 Hz N/A

[16]

1 Image registration,
2 Image segment,
3 Depth-first search
4 Adaptive threshold
selection method

Success rate 97.42% N/A 640 × 480 >16 Hz /N/A

Round
Rectangular [17] 1 Differential fitness

2 New geometric estimation scheme
Position 5 cm
Pose 5◦ N/A N/A N/A N/A

[18]

1 Optical flow sensor
2 Fixed threshold
3 Segmentation
4 Contour detection

Position 3.8 cm 0.7 m 640 × 480 70–100 Hz 0.9–1.3 m/s

[19] 1 Kalman filtering
2 Function ‘solvePnPRansac’

Position error less than
8% of the diameter of
the cooperative target.

2.5 m 640 × 480 30 Hz N/A

[20]

1 Robust and quick response
landing pattern
2 Optical flow sensors
3 Extended Kalman filter

Position 6.4 cm
pose 0.08◦ 20 m 1920 × 1080 7 Hz N/A
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Table 1. Cont.

Target Type Method Precision Height Image
Resolution

Processing
Speed Speed

Combination [21]
1 QR code digital coding system
2 Gradient-based clustering method
3 Quad detection

(<40 m)
Landing position
<0.5 m
Success rate > 97%

50 m 400 × 400 30 Hz N/A

[26]

1 Coding scheme
2 Tag boundary
segmentation method
3 Image gradients
4 Adaptive thresholding

Position < 0.2 m
Pose < 0.5◦ 0–20 m 640 × 480 45 Hz N/A

[27]

1 Projective geometry
2 Adaptive thresholding
3 Ellipse fitting
4 Image moments method

Position (2.4, 8.6) cm
Pose 6◦ 10 m 640 × 480 60 Hz N/A

[23]
1 AprilTags
2 HOG
3 NCC

Position < 1% 4 m N/A N/A 0.3 m/s

[28]
1 Profile-checker algorithm
2 Template matching
3 Kalman filtering

Position
(7.6, 1.4, 9.5) cm
pose
(1.8◦ 1.15◦ 1.09◦)

10 m 1280 × 720 40 Hz N/A

[29]
1 Canny
2 Adaptive thresholding
3 Levenberg–Marquardt (LM)

Position < 10 cm 3–10 m 640 × 480 30 Hz N/A

3. Autonomous Landing of UAVs in Dynamic Scenes

In the process of UAVs performing complex tasks, the target is generally moving. At
the same time, the realization of the technology of landing on moving targets also lays the
foundation for the autonomous landing of UAVs in complex scenarios. Compared with
static scenes, the complexity of dynamic scenes is much higher, which requires increasing
levels of the navigation system and control system of UAVs. Meanwhile, the mission
objectives of the two types of landing are almost the same, which means the autonomous
landing methods mentioned above in static scenes are also widely used in dynamic scenes.

Summarizing the previous research results, we found that the autonomous landing of
UAVs on moving platforms can be roughly divided into the following directions: external
auxiliary equipment guidance, vision-based navigation, multi-sensor data fusion, and
emerging learning-based control method, which has also been developed rapidly. Due
to the complexity of the moving platform, the current target detection and recognition
algorithms cannot reliably identify and track the characteristics of the landing platform
itself. Therefore, most of the existing research adds cooperative targets and achieves
autonomous navigation by identifying the cooperative targets with distinctive features.
Based on the different mission scenarios, the achievements will be divided into vehicle-
mounted platforms and ship-borne platforms for research.

3.1. Autonomous Landing on Vehicle-Based Platform

In 2013, Cheng et al. made use of the LED luminous circular markers on the vehicle
platform to guide the UAV to land [55]. In this system, the UAV sent the collected image
information to the ground station first, then the ground station instructions to the UAV after
image processing and pose calculation. Finally, the UAV controlled the position through
closed-loop PID to land. Experiments show that in 15 autonomous landing experiments,
the success rate is 88.24% when the landing platform moves at a speed of 1.2 m/s. The
error of the landing position is 5.79 cm and 3.44 cm in the x-axis and y-axis, respectively.
The team has successfully realized the functions of autonomous take-off, tracking and
landing, proving robustness in dealing with complex environments. The disadvantage of
this system is that the wireless image transmission is sometimes disturbed, resulting in
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misjudgment caused by image noise. The wireless transmission has a certain delay, which
means it is not conducive to high-speed autonomous landing.

In 2017, Baca et al. proposed a fast and robust visual localization method in the
International Robot Competition for UAV autonomous landing on the vehicle [9]. The
adaptive thresholds were used for image segmentation and detection and the detected
positions of the car were filtered using an unscented Kalman filter-based technique with an
assumed car-like model of the vehicle. The model predictive control was used to track the
vehicle and estimate its future trajectory. With the platform moving at 15 km/h the system
landed within 25.1 s and won the first place in the competition. The method was tested in a
variety of environments, such as grass, snow, and concrete surfaces. When it was tested at
a wind speed of 10 km/s, experimental results indicated the robustness.

To enhance the accuracy of UAV autonomous landing on a vehicle, Davide et al. esti-
mated relative position using circle detection and cross detection based on the cooperative
target designed by themselves in 2017. The Kalman filter algorithm was used for data filter-
ing, and the PnP algorithm and inertial measurement were used to assist in the calculation
of the UAV position. With these methods, the stable landing of the moving platform at a
speed of 1.5 km/h was realized.

Relying solely on vision-guided autonomous landing is limited by algorithms and com-
puting power; therefore, some studies focus on vision-led multi-sensor fusion technology
to guide the autonomous landing of UAVs.

In 2016, Chen et al. designed a tracking and landing of moving platforms algorithm
based on vision and laser ranging [56]. Cooperative targets were nested with rectangles
and circles of different colors, then detected by color threshold method. In the cooperative
objective-based landing process, the most difficult phase is the accurate altitude measure-
ment of the UAV when it is over the horizon or distance is too close. In this system, the
monocular vision system was used for detection and pose calculation, and the lidar ranging
sensor is used to measure the relative height of the UAV. The UAV successfully landed on a
platform with a moving speed of 1 m/s, and it could still accurately detect and estimate
the pose even when the cooperative target was largely occluded. The disadvantage is that
when the moving platform suddenly accelerates or decelerates, the UAV may have a large
overshoot, so it can only be applied to the slow speed of the moving platform.

In 2017, Araar et al. combined landing markers of different sizes to achieve accurate
identification and detection of cooperative targets at different heights [57]. To remove
image noise, they proposed to fuse extended Kalman filter and extended H∞ to improve
the efficiency and accuracy of detection. They fused inertial measurements and pose
estimation from vision to improve the sampling rate and adaptability in the case of short-
time interference. Verified by simulation and real scenarios, the UAV was capable of landing
on a moving platform of 50 km/h with the error of 8 cm.

In 2018, Yang et al. proposed a relative position estimation method based on binocular
vision [58]. Meanwhile, based on the improved Yolov3 algorithm, the real-time detection
and tracking of the target was realized. Compared with the results of the traditional
algorithm, the accuracy and real-time performance were improved, and the robustness and
stability of the system in the complex surrounding environment also took a giant leap.

In 2019, Alejandro Rodriguez-Ramos et al. designed a visual landing system based on
a deep learning algorithm [59]. The system is based on deep learning algorithm DDPG,
which represents a success in the application of neural networks in reinforcement learning.
The algorithm was a policy-based deep reinforcement learning algorithm designed for
continuous state space and action space. The team conducted experiments on artificial
noise, and the experiments showed that the maximum landing time is 17.67 s, and the
maximum axial error is about 6 cm, maintaining good accuracy, which can prove the
anti-interference and robustness of the system positioning.

In 2020, Cai et al. researched on the adaptive moving target landing of UAVs based on
the AprilTag cooperative target system. The team proposed a monocular vision algorithm
and depth estimation strategy based on deep learning. In the case of medium and long
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distances, UAVs used YOLOv3-Tiny to identify and judge small targets and track their
three-dimensional positions [60]. An algorithm integrating YOLOv3-Tiny and TLD was
proposed for tracking, which solves the problem of real-time and long-term tracking
accuracy decline of classical algorithms through CPU and GPU hybrid processing. When
approaching the UAV, the AprilTag cooperative target was used to locate and land, and
the UAV’s flight trajectory was output by adopting the measure of Kalman filtering and
altitude estimation.

3.2. Autonomous Landing on Ship-Based Platforms

The movement of the vehicle platform can be abstracted into two-dimensional move-
ment in some way. However, on the more complex and changeable sea, the ship is affected
by the environment with the three-dimensional movement characteristics. Therefore, it
requires the UAV to resolve the six degrees of freedom relative position information of the
ship and the UAV itself in real-time, and that requires extremely high speed and accuracy
of the UAV system. Furthermore, the water mist and weather phenomena that occur on the
sea surface have a great impact on the imaging quality of the visual sensor as well, which
greatly increases the difficulty of autonomous landing on carrier-based platforms.

In 2003, Qiu conducted autonomous landing of unmanned helicopters based on the
binocular stereo vision system, which initially met the practical requirements. Since the
vision system was easily disturbed in the maritime environment, it cannot complete tasks
around the clock. In 2009, Xu installed a heating module on the “T” logo, which can
overcome the influence of water mist to a certain extent [12]. Using infrared cameras to
achieve autonomous landing at night, the recognition speed of the UAV can reach 17.2 ms,
and an accuracy rate of 97.2%. Aiming at the influence of the environment and waves
during the landing process, in 2014, Sanchez-Lopez proposed to use Hu invariant moment
features and decision tree discriminant units, including multi-layer perceptrons, and other
geometric properties to detect international common landing signs [61]. The experiment
showed that the method can well recognize the target at different heights and under certain
occlusion, and it was not sensitive to illumination.

In 2015, Portuguese researchers proposed a method based on airborne cameras to
realize the landing of UAV on ships at sea during the movement process [62]. The UAV
detected the guidance signs on the ship through an on-board RGB camera. The relative
position, velocity and attitude of the UAV and the visual guidance signs on the ship were
estimated by Kalman filter and efficient perspective-n-point method. By combining the
information, the flight trajectory of the UAV during the landing process was generated
at last. The deficiency lies in the misjudgment caused by reflections on the water and
other situations.

In 2016, the British company Roke Manor developed AutoLand Technology in partner-
ship with the Defense Science and Technology Laboratory. The system can autonomously
identify obstacles on board for autonomous landing without GPS system guidance. At the
same time, the company tested it in different scenarios and sea conditions, and the system
performed well.

In 2017, Polvara proposed an autonomous landing scheme for the case where the
landing scene is the deck of a ship [63]. The scheme used the cooperative target to obtain
the relative pose of the UAV as a six-degree-of-freedom, which combined extended Kalman
filtering techniques, inertial navigation data and used the position of the target platform at
one moment to estimate the current position. It can obtain a stable and accurate cooperative
target, tracking results and detection results. However, the scheme was not tested in real
environment, so its availability is unknown. In the following year, the team designed a
vision-based system for autonomous landing of a quadrotor UAV on a disturbed deck, and
simulated experiments were carried out in complex environments, such as adverse weather.
The system performed well and was robust in the simulated environment.

In 2019, the Huazhong University of Science and Technology team realized the au-
tonomous take-off and landing of the UAV on the autonomous unmanned boat HUSTER-68
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during the navigation. The cooperation target adopted a multi-circle nesting method, which
can ensure that the UAV can identify targets accurately and efficiently at various heights.

In 2020, Li et al. proposed a new feature extraction structure for the problems of small
field of view and large image scale changes in unmanned helicopters [64]. The algorithm
used the mutual correction of SSD algorithm and KCF algorithm and took the advantages
of deep learning algorithm into account. With the advantages of high precision and strong
real-time filtering algorithms together, the proposed method has a detection success rate of
91.1% and an average processing speed of 9 ms, which meets the mission requirements of
UAV autonomous landing.

At present, in the field of autonomous landing in dynamic scenes, researchers mainly
focus on overcoming the three-dimensional motion characteristics of the moving platform
and the cooperative target recognition caused by the environment. They have made
significant progress in detection accuracy and real-time performance. However, most of
the research is aimed at the cooperative target rather than the platform structure, and it is
difficult for the current vision algorithm to efficiently solve the relative pose without relying
on the cooperative target. Extending the algorithm to the detection of the whole platform
will effectively improve the detection distance and effectively enhance the adaptability and
robustness of the vision algorithm.

We summarize the various research results of autonomous landing of UAVs in dynamic
scenes, as shown in Table 2.

Table 2. Comparison of different autonomous landing solutions in dynamic scenes.

Type Method Precision Hight Image Resolution Processing Speed Platform Speed

Vehicle-based [55]

1 Hough transform
2 Adaptive thresholding
3 Erosion and dilation
4 Visual–Inertial Data Fusion

Position (5.79, 3.44) cm
Successful rate 88.24% 1.2 m 640 × 480 25 Hz <1.2 m/s

[9]
1 Model predictive controller
2 Nonlinear feedback controller
3 Linear Kalman filter

Landing in 25 s
Position error < 10 cm N/A 752 × 480 30 Hz 4.2 m/s

[65] 1 Visual–inertial odometry
2 Extended Kalman filter N/A 3 m 752 × 480 80 Hz <1.2 m/s

[56]
1 LiDAR scanning
2 PnP
3 Adaptive thresholding

Landing in 60 s
Have larger overshoot
when backward

3 m N/A N/A 1 m/s

[57]

1 Extended Kalman filter
2 Extended H∞
3 AprilTag Landing Pad
4 PnP
5 Visual–Inertial Data Fusion

Position < 13 cm 2 m N/A N/A 1.8 m/s

[58]

1 State estimation algorithm
2 Nonlinear controllers
3 Convolutional neural network
4 Velocity observer
5 Nonlinear controller

Position < (10, 10) cm 1.5 m–8 m 512 × 512 N/A 1.5 m/s

[59]

1 Gazebo-based reinforcement
learning framework
2 Deep deterministic
policy gradients

Landing in 17.67 s
Position error < 6 cm
The action space does
not include altitude

N/A N/A 20 Hz 1.2 m/s

Ship-based [12]

1 Afine Invariants moment
2 Infrared radiation images
3 Otsu method and
iterative method
4 Adaptive thresholding

Success rate 97.2% N/A N/A 58 Hz N/A

[61]

1 Kalman filter
2 feature matching
3 Image threshold
4 Artificial neural networks
5 Hu moments

Position error
(4.33, 1.42) cm 1.5 m 640 × 480 20 Hz N/A

[62]
1 Kalman filter
2 Efficient perspective-n-
point (EPnP)

N/A N/A N/A N/A N/A

[63] 1 Extended Kalman filter
2 Visual–Inertial Data Fusion Landing in 40 s 3 m 320 × 240 N/A N/A
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4. Autonomous Landing in Complex Scenes

The static scene and the dynamic scene can be collectively concluded as the simple
scene, which is characterized by a clear autonomous landing task objective, and each sensor
works well in the experiment under ideal conditions. Although dynamic scenes are more
complex, they still rely too much on the method of setting up manual calibration of the
exact location of the landing, which cannot meet the task goal of autonomous landing on
complex surfaces, such as post-earthquake disaster areas, complex mountains, and hills.
These target areas often require UAVs to arrive before people and detect or release loads in
the area. Moreover, due to the limited passage of people, it is impossible to accurately place
cooperative targets to guide the landing. The complex scene is defined as the scene that
is mentioned above, with multiple tasks or complex landing environments. Autonomous
landing in a complex scene refers to the use of limited sensors to achieve autonomous
landing in a designated non-flat or moving with unpredictable speed area to complete the
target task. It can be seen that the concept of the landing area is different from a landing
target point. It requires the UAV to have the ability to autonomously identify and select a
landing area, and it also puts forward high demands for the fusion of UAV sensor data and
the accuracy together with adaptability of the algorithm. At present, there is relatively little
research on autonomous landing of UAVs in complex scenarios. This chapter will briefly
illustrate the existing achievements.

Garcia-Pardo pointed out that the key problem of visual aided UAV landing in an
unknown area is how to find a safe area suitable for landing [66]. The safe area needs
to satisfy two conditions: one is to meet the size of the UAV landing area, the other
is no obstacles in the landing area. In addition, an important assumption is that the
edges of obstacles in the image have higher contrast than that of flat areas. Based on this
assumption, a fixed threshold was set for the aerial landing area image for segmentation
in the experiment. The part with the contrast above the threshold was regarded as an
obstacle area, or it was seen as a flat area. Then, a circular area suitable for the landing of
the UAV was selected from the area lower than the set threshold. Finally, the feasibility
of the scheme was verified by the UAV flight experiment. The disadvantage is that it has
not been tested in a complex textured environment, and the landing center point is easy to
shift. In addition, the influence of ground physical properties on landing is not considered,
and the identification of landing relies on the setting of thresholds, which is not robust.

Fitzgeral and Mejias adopted a UAV emergency landing area selection method based
on a monocular camera combined with a digital elevation model [67,68]. The steps of
autonomous landing of UAV were primary selection of landing area, identification of
landing candidate area, flatness analysis using DEM, and comprehensive decision-making.
Although this method performs well in the designed scene, it only relies on the Canny op-
erator for edge extraction, which means the algorithm has limitations. In the flat estimation
stage, it only relies on DEM calculation, lacking robustness.

Multi-sensor fusion technology adds a variety of data information compared with
visual algorithm, such as depth, pose, etc. Moreover, the stability and accuracy of the
technology are stronger. Among them, the combination of vision algorithm and depth cam-
era is used mostly. The three-dimensional information of the environment is constructed
through depth information, so as to accurately search and determine the area that can be
landed. The combination of vision algorithm and lidar also constructs a complete dense
three-dimensional map that is applied to complete the landing.

Scherer proposed a method to select the unknown landing zone using lidar combined
with monocular camera. The method is mainly divided into two steps: rough assessment of
the landing zone and fine assessment of the landing zone. First, the entire landing area was
divided into several units according to the size of the landing area required by the UAV.
Then, the height, mean, and variance were obtained from the point cloud data measured by
lidar in each unit. After that, the appropriate landing candidate area was selected by setting
the threshold. Then, it was assumed to perform surface fitting on the cloud point map
of the candidate area to obtain a more accurate terrain and finally complete the landing.
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The method has been tested on a variety of terrains, and it has good performance and
robustness. However, the cloud point data obtained by lidar are prone to interference,
resulting in noise, which affects the accuracy of the cloud point map.

Fan et al. of the Chinese Academy of Sciences completed the three-dimensional
reconstruction through vision algorithm and used statistical algorithms to find the safe
landing area from the reconstructed point cloud image. The method was based on 3D
scene recognition with high accuracy and reliability. It can be seen that the method based
on 3D scene reconstruction will definitely become the mainstream of research in this field.
However, its disadvantage is that its large amount of calculation is not conducive to the
real-time understanding of the scene by the UAV. Therefore, Huang proposed a fast point
cloud segmentation and flat area recognition method based on the geometric features of the
point cloud. This method filters the point cloud, and then uses the improved RANSAC to
fit the point cloud surface to screen out the flat area suitable for landing. After experimental
verification, the terrain relief error identified by this method is less than 0.125 m, which
satisfies the requirements of the autonomous landing requirements of the aircraft.

In addition, Yang studied the unstructured emergency autonomous landing of UAVs
based on SLAM in the case of missing GPS signals in 2018 [54]. In this system, monocular
vision SLAM was used to construct cloud point maps and locate the UAV. Then, they used
a new map based on 3D features and mid-pass filter to denoise and build grids at different
heights, and finally divided the grid to calculate a safe landing area. The experimental
data showed that the landing starts at a height of 20 m, and it takes 52 s. The experimental
verification has been carried out in various complex scenes, which proved the robustness of
the system. At the same time, the sparse point cloud can be divided into different heights
to meet the needs of autonomous landing.

Li built a system that can land on complex and rough surfaces. Using a binocular
RGB-D depth camera as a depth sensor and a truncated signed distance function to conduct
real-time 3D modeling of the landing area, they successfully achieved the low noise image
which meets the needs of landing. At the same time, in order to meet the landing planning
under the condition of limited computing power, the team designed a landing search
algorithm consisting of coarse screening, layering, scoring, mapping, search and decision-
making. The simulation and real flight test were conducted with satisfactory results. After
calculating the landing point, the actual landing error is 7.4 cm at most. The disadvantage
is that they did not operate more experiments under different environmental conditions to
verify the robustness of the system.

5. Summary and Suggestion

Vision-based navigation has attracted wide attention due to its advantages of rich
scene information, strong anti-interference ability, high accuracy, and low cost. Vision-based
autonomous landing for UAV uses the real-time target and environmental information as
the basic data, which are then processed by onboard computer, and provide the position
and attitude for the decision-making and control system, so as to guide the UAV to land
autonomously in static scenes, dynamic scenes and complex unknown environments.
Therefore, vision-based autonomous landing has become one of the research hotspots for
decades, and it has been widely utilized in military and commercial fields. However, there
are still several key problems to be solved in vision-based autonomous landing technology:

Marker design and detection in complex scenes. In complex landing environments,
the target maker may be disturbed by other objects, or it would be hard to detect the
marker. Therefore, how to design the target landing marker to be easy to find, and the
robust target detection algorithms adaptable to the complex environment will be a future
research field. Color feature is an alternative solution used as a cooperative target marker.
It is more recognizable than shape feature, especially in complex landing scenes where
many disturbance objects exist, and it would be hard to find the landing marker without
color features.
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The ability of anti-interfence environment perception. In complex tasks, such as rescue,
battlefield environment perception, explosive removal, etc., which may be performed
together with autonomous landing task, visual perception faces the challenge of smoke
and fire, and the UAV needs to locate explosion source, a person, or damaged equipment
with huge appearance changes in color, texture, and shape. Autonomous landing in
post-earthquake ruins, in dense forest rescue or other challenging environments is also
necessary. In these situations, it would be a great challenge to identify the landing area
and guide the UAV to land. Anti-interfence environment perception is an important but
difficult ability for the UAV autonomous landing. Fortunately, the further improvement
of artificial intelligence technology and machine learning technology provides a feasible
solution for the functional demand. The improvement of the image processing capability
of the hardware makes it possible for real-time and robust computation of the artificial
intelligence related perception algorithms.
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