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Abstract: In this study, a new family of rational mapping functions gRM(ω;k,m,s) is introduced
for seventh-order WENO schemes. gRM is a more general family of mapping functions, which
includes other mapping functions such as gM and gIM as special cases. The mapped WENO scheme
WENO-IM(2,0.1), which uses gIM, performs excellently at fifth order but rather poorly at seventh
order. The reason for this loss of accuracy was found to be the over-amplification of very small
weights by the mapping process, which can be traced back to the large slope of gIM at ω = 0. For
m > 1, gRM can be designed to have a unit slope at ω = 0, which will preserve small weights with little
to no amplification. It has been demonstrated through several one-dimensional linear advection test
cases that the mapped WENO scheme WENO-RM(6,3,2 × 103), which uses the mapping function
gRM(ω;6,3,2× 103), outperforms both WENO-M and WENO-IM(2,0.1) at seventh order. The proposed
scheme also performs better at a number of one-dimensional inviscid gas flow problems compared to
other popular WENO schemes such as the WENO-Z scheme.

Keywords: hyperbolic problems; WENO schemes; mapping funections; Euler equations

1. Introduction

Hyperbolic problems arise in many scientific and engineering applications. The
Euler equations governing the dynamics of an inviscid fluid is a notable example of a
non-linear hyperbolic problem which admits discontinuities to develop and persist in
the solutions. These discontinuities, such as shock waves and contact surfaces, are key
features in high-speed flows and are regularly encountered in aerospace engineering
applications [1]. Needless to say, it is imperative to capture these discontinuities accurately.
In addition to capturing discontinuities, satisfactory accuracy remains a requirement for
smooth flow regions to resolve the finer-scale turbulence as well as pressure and velocity
fluctuations, which are essential for the prediction of unsteady aerodynamic behaviour
and aerodynamically generated noise [2]. As a result, the development of high-order
schemes has attracted significant attention from both aerospace research and engineering
communities over the past decade. Conventional high-order schemes, which perform
excellently in the smooth regions of the solution, tend to produce spurious oscillations
in the vicinity of discontinuities. Harten et al. [3] designed the essentially non-oscillatory
(ENO) schemes to overcome this problem by choosing the smoothest stencil to reconstruct
the solution, thereby effectively avoiding reconstruction across a discontinuity. Later, Liu
et al. [4] proposed the weighted ENO (WENO) scheme in which a weighted reconstruction
is obtained from all available stencils, with the weight assigned to each stencil being
inversely proportional to the smoothness of the reconstruction within that stencil. In
addition to remaining (essentially) non-oscillatory near discontinuities, the WENO method
on a (2r − 1)-cell stencil was able to attain the (r +1)th order of convergence in smooth
regions, one order higher than the approximations from the constituent r-cell stencils, each
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of which converge at rth order. Subsequently, Jiang and Shu [5] improved upon the WENO
scheme by proposing a new smoothness indicator which allowed the WENO method to
achieve the optimal (2r − 1)th order of convergence in smooth regions. This improved
scheme is commonly referred to as WENO-JS.

The WENO-JS method has since become a popular choice for solving hyperbolic
problems numerically due to its robustness and accuracy. However, a crucial detail re-
mained unnoticed until the work of Henrick et al. [6], which showed that the fifth-order
WENO-JS scheme fails to achieve the optimal fifth-order convergence near critical points
in the solution where the first derivative of the solution vanished. They explained that
the loss of accuracy was masked when a relatively large value such as 10−6 was used for
ε, a parameter that was thought to be inconsequential and introduced solely to prevent
division by zero (see Equation (10)). In addition, they proposed a mapping function gM
to modify the WENO-JS stencil weights to recover the optimal order of accuracy near
critical points. This scheme is referred to as WENO-M. More recently, it was shown that
gM actually belongs to a more general family of functions gIM [7]. Using a different set
of parameters, Feng et al. [7] showed that vastly superior results could be obtained for
fifth-order WENO. Interestingly, this improved scheme, referred to as WENO-IM(2,0.1),
was able to capture discontinuities with very little dissipation compared to WENO-M and
WENO-JS. However, when applied to a seventh-order WENO scheme, it was reported to
perform poorly [7]. There have been attempts to improve the performance of a WENO-JS
scheme that involves modifying the linear weights. Martín et al. [8], for instance, proposed
a bandwidth-optimised WENO scheme with a different set of linear weights for improved
spectral properties. However, it is likely that such methods also suffer from the same
pitfall as the WENO-JS scheme near critical points since the non-linear stencil weights
are computed in an identical manner. Mapped WENO methods can likely be applied in
conjunction with such methods as well to provide further improvements.

Indeed, high-order WENO schemes are considered appropriate for numerical simula-
tions of high-speed flow scenarios, which require both the ability to capture discontinuities
and resolve fine-scale turbulence [9]. Shen and Zha [10] developed a robust seventh-
order WENO for a transonic convergent–divergent nozzle and RAE aerofoils. Min [11]
implemented a hybrid numerical scheme based on seventh-order WENO for improv-
ing the numerical accuracy over a range of 2D and 3D unsteady aerodynamic problems.
Sun et al. [4] studied the blade–vortex interaction noise using a seventh-order WENO-Z
scheme and concluded that the higher-order scheme was computationally cheaperthan the
lower-order schemes with comparable solution accuracy. More recently, Han et al. [12] re-
solved the helicopter wake flow during hover flight using seventh-order WENO-K scheme
and obtained excellent agreement with the measured data at both subsonic and transonic
flow regimes. Clearly, high-order WENO schemes are constantly adopted and imple-
mented for improved solution accuracies in various flow problems relevant to aerospace
engineering applications.

In this study, the performances of the mapped methods near discontinuities are
analyzed for fifth- and seventh-order WENO schemes. In particular, the cause behind the
poor performance of the seventh-order WENO-IM(2,0.1) scheme is studied in detail. Based
on the insights gleaned, a new family of rational mapping functions is introduced, which,
incidentally, includes the mapping functions gIM as a special case.

This paper is organised as follows: In Section 2, a brief review of WENO-JS and
the mapped WENO schemes is provided. Next, in Section 3, the new family of rational
mapping functions gRM(ω;k,m,s) is introduced and a parametric study is performed to
determine suitable coefficients k, m and s. In Section 4, the proposed mapped WENO
method, WENO-RM(k,m,s), is compared with existing WENO schemes for several linear
advection and Euler cases to demonstrate the superior performance of the new method.
Finally, the concluding remarks are provided in Section 5.
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2. Numerical Methods
2.1. WENO-JS Scheme

To begin with, consider a one-dimensional domain x ∈ [a, b] discretized into N cells
of width ∆x = (b− a)/N. The center and interface locations of the ith cell are denoted
by xi and xi±1/2 = xi ± ∆x/2, respectively. In the finite volume methodology, the discrete
solution to a problem is determined in terms of cell averages. Given a function u(x), the
ith cell average is denoted by ui. In this section, the left-biased fifth- and seventh-order
WENO-JS approximations to the point value uL

i+1/2 = lim
x→x−i+1/2

u(x) are briefly outlined.

The stencils for the fifth- and seventh-order reconstructions are shown in Figure 1.
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The WENO-JS procedure first computes the rth order approximations to uL
i+1/2 as:

uL
i+1/2 =

(
ûL,r

i+1/2

)
j
+ O(∆xr) j ∈ [0, r− 1]. (1)

For the fifth-order WENO-JS scheme (r = 3), three third order approximations are
obtained using the expressions:(

ûL,3
i+1/2

)
0
= 1

6 (2ui−2 − 7ui−1 + 11ui),(
ûL,3

i+1/2

)
1
= 1

6 (−ui−1 + 5ui + 2ui+1),(
ûL,3

i+1/2

)
2
= 1

6 (2ui + 5ui+1 − ui+2).

(2)

Similarly, for the seventh-order WENO-JS scheme (r = 4), four fourth-order approxi-
mations are obtained using the expressions:(

ûL,4
i+1/2

)
0
= 1

12 (−3ui−3 + 13ui−2 − 23ui−1 + 25ui),(
ûL,4

i+1/2

)
1
= 1

12 (ui−2 − 5ui−1 + 13ui + 3ui+1),(
ûL,4

i+1/2

)
2
= 1

12 (−ui−1 + 7ui + 7ui+1 − ui+2),(
ûL,4

i+1/2

)
3
= 1

12 (3ui−1 + 13ui − 5ui+1 + ui+2).

(3)
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By performing a weighted average of these rth order approximations using the optimal
weights d(r)j , it is possible to obtain the (2r – 1)th order upstream central approximation

uL,C(2r−1)
i+1/2 as:

uL,C(2r−1)
i+1/2 =

r−1

∑
j=0

d(r)j

(
ûL,r

i+1/2

)
j
. (4)

The optimal weights for fifth- and seventh-order WENO-JS schemes are given in
Equations (5) and (6), respectively.

d(3)0 =
1
10

, d(3)1 =
6

10
, d(3)2 =

3
10

(5)

d(4)0 =
1

35
, d(4)1 =

12
35

, d(4)2 =
18
35

, d(4)3 =
4

35
(6)

For each rth order approximation, a corresponding smoothness indicator is computed.
Following Ref. [5], the rth order smoothness indicator IS(r)

j is defined as:

IS(r)
j =

r−1

∑
l=1

∆x2l−1
∫ xi+1/2

xi−1/2

[
dl pj(x)

dxl

]2

dx, (7)

where pj(x) refers to the rth order polynomial reconstructed on the jth stencil, which

extends from cell (i + j – r +1) to cell (i + j). The explicit forms of IS(r)
j are given for r = 3

and r = 4 in Equations (8) and (9), respectively.

IS(3)
0 = 1

4 (ui−2 − 4ui−1 + 3ui)
2 + 13

12 (ui−2 − 2ui−1 + ui)
2

IS(3)
1 = 1

4 (ui−1 − ui+1)
2 + 13

12 (ui−1 − 2ui + ui+1)
2

IS(3)
2 = 1

4 (3ui − 4ui+1 + ui+2)
2 + 13

12 (ui − 2ui+1 + ui+2)
2

(8)

IS(4)
0 =

(
1
3 ui−3 − 3

2 ui−2 + 3ui−1 − 11
6 ui

)2
+ 13

12 (ui−3 − 4ui−2 + 5ui−1 − 2ui)
2

+ 781
720 (ui−3 − 3ui−2 + 3ui−1 − ui)

2

IS(4)
1 =

(
1
6 ui−2 − ui−1 +

1
2 ui +

1
3 ui+1

)2
+ 13

12 (ui−1 − 2ui + ui+1)
2

+ 781
720 (ui−2 − 3ui−1 + 3ui − ui+1)

2

IS(4)
2 =

(
1
3 ui−1 +

1
2 ui − ui+1 +

1
6 ui+2

)2
+ 13

12 (ui−1 − 2ui + ui+1)
2

+ 781
720 (ui−1 − 3ui + 3ui+1 − ui+2)

2

IS(4)
3 =

(
11
6 ui − 3ui+1 +

3
2 ui+2 − 1

3 ui+3

)2
+ 13

12 (2ui − 5ui+1 + 4ui+2 − ui+3)
2

+ 781
720 (ui − 3ui+1 + 3ui+2 − ui+3)

2

(9)

With the smoothness indicators computed, the non-linear WENO-JS stencil weights
ωj can be computed as

αj =
dj(

ISj + ε
)2 , ωj =

αj
r−1

∑
j=0

αj

. (10)

The superscript (r) will be dropped for the sake of conciseness. The value of ε is
taken to be 10−6 for WENO-JS scheme and 10−40 for all the mapped WENO schemes, as
recommended in Ref. [6]. Finally, the (2r −1)th order WENO-JS approximation uL,W

i+1/2 is
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obtained by taking a weighted average of the rth order approximations using ωj, as shown
in Equation (11).

uL,W
i+1/2 =

r−1

∑
j=0

ωj

(
ûL

i+1/2

)
j

(11)

2.2. Mapped WENO Schemes

In order for the WENO approximation in Equation (11) to converge at the optimal
(2r −1)th order in smooth regions, ωj has to satisfy the criterion

ωj − dj = O
(

∆xr−1
)

. (12)

This holds true for all values of r. However, the WENO-JS scheme does not satisfy
this criterion near critical points. A critical point is defined as a point where one or
more derivatives of the function u(x) vanish. At a critical point x = xc of order ncp (i.e.,
a critical point of nth order), the first ncp derivatives of the function u(x) vanish, i.e.,
u′(xc) = · · ·= u(ncp)(xc) = 0. It can be shown that the WENO-JS approximation exhibits
the convergence behaviour

ωj − dj = O
(

∆xr−1−ncp
)

, (13)

for ncp = 1, · · · , r − 1 instead of that in Equation (12) [7]. Thus, when no derivatives
vanish (ncp = 0), WENO-JS approximation converges at optimal order, whereas the order of
convergence deteriorates as ncp increases.

In order to restore the order of convergence, and, hence, the accuracy near criti-
cal points, Henrick et al. [6] suggested the use of a mapping function g(ω) with the
following properties:

(a) g(0) = 0, g(d) = d and g(1) = 1;
(b) Monotone increasing with finite slopes for ω ∈ [0, 1];
(c) g′(d) = · · · = g(k)(d) = 0 6= g(k+1)(d), i.e., the function flattens near ω = d.

The mapping function g(ω) can be used to calculate the mapped weights ω̃j from
the WENO-JS weights ωj obtained from Equation (10), as shown in Equation (14). The
mapped WENO approximation of uL

i+1/2 is obtained by replacing ωj in Equation (11) with
the mapped weights

ω̃j =
g
(
ωj
)

r−1

∑
j=0

g
(
ωj
) . (14)

Following their analyses, the mapping function g(ω) can be expanded using Taylor
series about ωj = dj to demonstrate that the mapping process is indeed able to recover the
optimal order of accuracy near critical points.

g
(
ωj
)
= g

(
dj
)
+

k

∑
l=1

1
l!

g(l)
(
dj
)(

ωj − dj
)l
+

1
(k + 1)!

g(k+1)(dj
)(

ωj − dj
)k+1

+ · · · (15)

Equation (15) can be simplified using the properties of the mapping function men-
tioned earlier. From property (a), g(dj) = dj, and all the terms inside the summation vanish
due to property (c). Finally, substituting Equation (13) into the result and rearranging yields

g
(
ωj
)
= dj +

1
(k + 1)!

g(k+1)(dj
)(

ωj − dj
)k+1

+ · · · = dj + O
(

∆x(k+1)(r−1−ncp)
)

. (16)

Substituting Equation (16) into Equation (14) and using the fact that dj sum to unity,
results in

ω̃j − dj = O
(

∆x(k+1)(r−1−ncp)
)

. (17)
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Comparing Equation (17) with Equation (12), it can be concluded that as long as
(k + 1)

(
r− 1− ncp

)
≥ r − 1, the mapped weights ω̃j satisfy the required criterion. For

example, for fifth-order convergence at a critical point of order ncp = 1, k must be equal to
or greater than 1.

The mapping functions put forward by Henrick et al. [6] and Feng et al. [7] denoted
by gM(ω) and gIM(ω;k,A), respectively, are given in Equations (18) and (19) as a reference
prior to introducing the proposed mapping function in the present study.

gM(ω) =
ω
(
d + d2 − 3dω + ω2)
d2 + (1− 2d)ω

(18)

gIM(ω; k, A) = d +
A(ω− d)k+1

A(ω− d)k + ω(1−ω)
(19)

In the function gIM(ω;k,A), k is a positive even integer and A is a positive real number.
It can be shown directly that gM(ω) = gIM(ω; 2, 1), i.e., gM belongs to the gIM family
of functions. Moreover, the gIM family of functions satisfies all the properties (a)–(c)
mentioned earlier.

Feng et al. [7] showed that gIM(ω; 2, 0.1) vastly outperforms gM(ω) (i.e., gIM(ω; 2, 1))
for fifth-order WENO schemes. Both the mapping functions are shown in Figure 2 for
the smallest and largest values of the optimal weights d(r)j for r = 3 and r = 4. Notice that
gIM(ω; 2, 0.1) is much flatter than gM(ω) near ωj = dj, signifying that gIM(ω; 2, 0.1) attempts
to map a wider range of weights in the neighbourhood of ωj = dj to the optimal weight dj.
As a result, gIM(ω; 2, 0.1) is quicker to bring the mapped weights ω̃j close to the optimal
weights dj compared to gM(ω).
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3. A New Family of Mapping Functions
3.1. Motivation

Consider the one-dimensional linear advection problem

∂u
∂t

+
∂u
∂x

= 0, (20)

which represents one of the most straightforward hyperbolic problems. Given the initial
condition u(x, t = 0) = u0(x), its exact solution is simply u(x, t) = u0(x− t), which makes
it a suitable starting point for the assessment of numerical schemes. It must be remarked
that the Euler equations reduce to linear advection of density in the absence of velocity and
pressure gradients.

Averaging Equation (20) over the ith cell results in the ordinary differential equation
(ODE) for the cell average ui

dui
dt

= − 1
∆x

(
uL

i+1/2 − uL
i−1/2

)
. (21)

Notice that the right-hand side of Equation (21) involves the left-biased approximations
of u(x) at the cell interfaces, which can be obtained through the WENO schemes described
in the previous sections. In the present study, this ODE was solved in time using the explicit
third-order TVD Runge–Kutta time-marching scheme [13].

With the numerical schemes defined, consider the initial condition of two constant
states separated by discontinuities at x = 0 and x = ±0.5

Case A1 ui =

{
+1, −0.5 ≤ xi < 0
−1, 0 ≤ xi ≤ 0.5

. (22)

This problem was solved on the periodic domain x ∈ [−0.5, 0.5] discretized into
N = 100 uniform cells using fifth- and seventh-order WENO schemes until t = 100 s (100 cy-
cles) using CFL = 0.1. Note that the mapped WENO methods using gM(ω) and gIM(ω; 2, 0.1)
are denoted by WENO-M and WENO-IM(2,0.1), respectively. The final profiles are shown
in Figure 3.
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It can be observed from Figure 3a that at fifth order, the mapped WENO schemes
WENO-M and WENO-IM(2,0.1) are able to capture the discontinuities with lesser numerical
diffusion compared to the WENO-JS scheme. Recall that mapped WENO methods were
developed to achieve optimal accuracy near smooth critical points. Yet, they seem to be able
to capture sharper discontinuities than the original unmapped WENO-JS scheme. Between
the mapped WENO schemes, WENO-IM(2,0.1) performs better as it captures the flat regions
on both sides of the discontinuities more accurately. In contrast, WENO-M suffers a loss
of accuracy to the right of the discontinuities and performs similar to WENO-JS scheme.
On the other hand, the results become different at seventh order, as seen from Figure 3b.
Both the mapped WENO schemes deliver a similar, and at some regions even worse,
performance compared to WENO-JS scheme. This can be determinantal when simulating
the propagation of discontinuities and sharp gradients over long distances.

WENO-M and WENO-IM(2,0.1) both suffer a particularly significant loss in accuracy
at the flat regions slightly to the left of the discontinuities. To better understand this
loss in accuracy, the mapped weights were analysed in detail. The mapped weights ω̃j
of the leftmost and rightmost stencils, i.e., j = 0 and j = 2, at the end of the first cycle
(t = 1 s) are plotted for fifth-order WENO-M and WENO-IM(2,0.1) schemes in Figure 4.
Comparing Figure 4a,b, a common trend can be discerned—the leftmost stencil weight ω̃0
is larger than the rightmost stencil weight ω̃2 in the region to the left of the discontinuity
and vice versa to the right. Although the regions on either side of the discontinuity
appear smooth and uniform, they are in fact highly non-smooth in the sense that the
“flatness” of the profile changes vastly between one stencil to the next. This results in
the smoothness indicators ISj of adjacent stencils being an order of magnitude apart or
more. Since a single WENO reconstruction involves multiple stencils (three for fifth order,
four for seventh order), the resulting minimum and maximum values of ISj are several
orders of magnitudes apart. This explains the behaviour of the weights mentioned earlier.
Interestingly, across the discontinuity itself, the weights remain close to the optimal weights
dj since the discontinuity has been sufficiently “smoothened” by numerical diffusion.
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A close examination of the weights near discontinuities suggests that the fifth-order
WENO-IM(2,0.1) scheme allocates smaller weights to the non-smooth stencils (j = 2 and
j = 0 to the left and right of the discontinuity, respectively) than the fifth-order WENO-M
scheme at the end of first cycle, as shown in Figure 4a,b. This is quite unexpected since
WENO-IM(2,0.1) scheme generally allocates greater weights to non-smooth stencils than
WENO-M scheme, as evident from the shapes of their mapping functions shown in Figure 2.
The only conclusion is that WENO-M scheme produces a smoother, more diffused profile
close to and across the discontinuity compared to WENO-IM(2,0.1) scheme at the end of
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the first cycle. This poses the question as to why the fifth-order WENO-IM(2,0.1) scheme
captures a much sharper discontinuity compared to the fifth-order WENO-M scheme. It
could be related to the behaviour of the mapping process across the discontinuity itself.
Closer examination of the mapped weights across the discontinuity revealed that the
mapped weights from the fifth-order WENO-IM(2,0.1) remained very close to their optimal
values while those from the fifth-order WENO-M scheme deviated slightly. This is due
to gIM(ω; 2, 0.1) having a wider flat portion in the neighbourhood of ωj = dj than gM(ω)
(see Figure 2). As a result, gIM(ω; 2, 0.1) attempts to map a wider range of weights to the
optimal weights. Therefore, it is postulated that the fifth-order WENO-IM(2,0.1) scheme
captures a sharper discontinuity because it is quicker to revert to the upstream central
scheme at the smeared discontinuity and because it amplifies small weights

(
ωj < dj

)
to a

greater extent in general.
Moving on to seventh-order WENO schemes, the mapped WENO weights of the

leftmost (j = 0) and the rightmost (j = 3) stencils WENO-M and WENO-IM(2,0.1) schemes
at the end of the first cycle (t = 1 s) are similarly shown in Figure 5. The behaviour of the
seventh-order mapped weights is similar to the fifth-order ones across the discontinuity and
to its right. To the left of the discontinuity, however, the mapped weights ω̃3 are relatively
larger; for WENO-IM(2,0.1), they are even comparable to ω̃0 at some locations. This is
a crucial difference between the fifth- and seventh-order mapped WENO schemes. It is
believed that this difference is due to the small value of d(4)0 = 1

35 . Referring to the close-up
view in Figure 2c, it can be seen that both mapping functions gM(ω) and gIM(ω; 2, 0.1)
result in particularly severe amplifications to the small weights compared to the identity
map (WENO-JS). In fact, the slope of gIM(ω; k, A) at ω = 0

g′IM(0; k, A) = 1 +
1

Adk−1 , (23)

is strongly proportional to the inverse of d. Feng et al. [7] have pointed this out and
recommended the use of the WENO-M scheme instead of the WENO-IM(2,0.1) scheme for
seventh order since g′M(0) < g′IM(0; 2, 0.1). However, it is clear from Figures 3b and 5 that
the WENO-M scheme, while somewhat better than the WENO-IM(2,0.1) scheme, is still
inadequate in overcoming the amplification problem for seventh order.
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3.2. Proposed Solution

Based on the discussion in the previous section, it appears that limiting the amplifica-
tion of small weights is important for seventh-order mapped WENO schemes. This idea
was pursued in a couple of earlier studies [14,15] by ensuring that the slope of the mapping
function vanishes at ω = 0. This actively suppresses near-zero weights. In the present paper,
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a different, rather simpler approach is suggested to overcome the amplification problem.
Consider a general family of rational mapping functions gRM given as

gRM(ω; k, m, s) = d +
(ω− d)k+1

(ω− d)k + s[ω(1−ω)]m
, (24)

where k is a positive even integer, m is a positive integer and s is a positive scaling factor.
The corresponding mapped WENO scheme will be referred to as WENO-RM(k, m, s). gRM
includes gIM as a special case for m = 1 and s = A−1. Since ω is a positive real value less
than or equal to 1, ω(1 − ω) is a positive quantity with an upper bound of 1

4 . Therefore,
increasing the value of m allows the term [ω(1 − ω)]m in the denominator to diminish and,
therefore, causes the mapping function to move closer to the identity map g(ω) = ω. In fact,
for m > 1, g′RM(0; k, m, s) = 1, i.e., gRM functions are able to closely follow the identity map
near ω = 0 as shown in the inset plots in Figure 6. This means that, in contrast to previous
studies in which small weights were actively suppressed, small weights are preserved
with little or no amplification upon mapping with gRM functions. Therefore, for m > 1, the
proposed mapping function gRM is more suitable for mapped WENO schemes at seventh
order and above.
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Increasing the values of k and s have the opposite effect of increasing m. Increasing the
value of k causes more derivatives of gRM to vanish at ω = d. Similarly, increasing the value
of s would increase the denominator of the rational expression causing the constant term d
to dominate. In both cases, the flat portion of the mapping function in the neighbourhood of
ω = d is widened, thereby extending the range over which weights get mapped to optimal
weights. Feng et al. [7] did not investigate gIM(ω; k, A) mapping functions beyond k = 2
because increasing k severely amplifies the small weights (see Equation (23)). However,
the introduction of parameter m overcomes this restriction and, therefore, a greater range
of k values can be explored for mapping functions, which couple better with higher-order
WENO methods with m > 1.

Before assessing the performance of any mapping function, it is crucial to verify that it
satisfies all the three properties (a)–(c) mentioned earlier. It can be easily verified that gRM
satisfies properties (a) and (c). However, it does not satisfy property (b) unconditionally.
gRM can be non-monotone and determining the exact conditions for monotonicity is not
very straightforward. Nevertheless, it can be shown that k ≥ m − 1 is a sufficient condition
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for monotonicity regardless of the value of s and d (refer to Appendix A). Therefore, the
present discussion will be restricted to k≥m− 1. It is useful to mention that such restriction
is considered reasonable because there are valid values of k that satisfy the monotonicity
condition for every value of m.

3.3. Parametric Study

A parametric study was conducted to determine good combinations of parameters
(k,m,s) using a simple one-dimensional linear advection problem [Equation (20)] with the
initial condition given as

Case A2 ui =



1
6 [G(xi,+δ) + G(xi,−δ) + 4G(xi, 0)] −0.8 ≤ xi ≤ −0.6

1 −0.4 ≤ xi ≤ −0.2

1− |10(xi − 0.1)| 0 ≤ xi ≤ 0.2
1
6 [F(xi,+δ) + F(xi,−δ) + 4F(xi, 0)] 0.4 ≤ xi ≤ 0.6

0 otherwise

, (25)

where G(x, z) = exp
[
− log 2

36δ2 (x + 0.7− z)2
]
, F(x, a) =

√
max

[
0, 1− 100(x− 0.5− a)2

]
and

δ = 0.005. From left to right, the initial profile consists of a Gaussian, a square wave, a
triangle wave and half-ellipse. This initial condition was first used by Jiang and Shu [5]
in their classic paper on WENO schemes. Henceforth, it has become a popular choice for
benchmarking numerical methods for hyperbolic problems.

The problem was solved on the domain x ∈ [−1, 1] at two resolutions, N = 400 and
800 cells. The simulation was run until t = 200 s (100 cycles) using CFL = 0.1. The parameter
combinations tested are listed in Table 1. The corresponding L1 error norms are plotted in
Figures 7 and 8 for N = 400 and 800 cells, respectively.

Table 1. Parameter combinations used in parametric study.

K m s

2 2, 3
1, 2, 5, 10, 20, 50, 100, 200, 500, 1 × 103, 2 × 103, 5 × 103, 1 × 104,

2 × 104, 5 × 104, 1 × 1054 2, 3, 4, 5

6 2, 3, 4, 5, 6

A consistent trend can be observed in all cases. For any given combination of k and m,
the errors tend to be large for small values of s. Then, the errors reduce with increasing s
before increasing slightly at very large values of s. The explanation for this trend is quite
intuitive—increasing the value of s extends the range of weights which are mapped to
their optimal values. Too small a value of s would not map the weights to optimal weights
‘rapidly’ enough resulting in greater numerical diffusion (see discussion in Section 3.1). On
the other hand, too large a value would cause the weights to be mapped to optimal weights
over-aggressively producing spurious oscillations. This effect is illustrated in Figure 9 for
k = 4 and m = 2 at three different values of s. When s = 2, all four profiles suffer distortions.
Upon increasing s to 200, the distortions are nearly completely eliminated, and all four
profiles are captured well. A small spurious oscillation occurs at the foot of the half-ellipse
at x ≈ 0.6. When increased further to s = 2 × 104, prominent spurious oscillations form at
the square wave and at the foot of the triangle wave.
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Another notable trend is that increasing the value of m almost always results in larger
errors at lower values of s. Increasing m causes the mapping function to follow the identity
map more closely and decreases the range over which weights are mapped to optimal
weights. As such, a large value of s is required to counteract its effect and widen the range
before the errors start to reduce. Finally, increasing the value of k tends to have a favourable
effect, suggesting that a wide flat region about ωj = dj is crucial with the only exception
taking place when k is increased from 4 to 6 with m = 2.

Among the various combinations of parameters k, m and s tested, k = 6 and m = 3
consistently results in very low errors over the entire range of s values at both resolutions.
However, a suitable value for s appears to be dependent on the problem and resolution.
For instance, among the values of s tested, s = 2 × 103 results in the smallest L1 error norm
when using N = 400 cells. It reduces to s = 2 when using N = 800 cells. However, the choice
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of the value of s may not be too critical since it is evident from Figures 7 and 8 that the error
norms remain small over a wide range of values of s when k = 6 and m = 3.

To conclude this section, let us return to linear advection of sharp discontinuities,
which motivated the development of this new family of mapping functions. Figure 10a,b
show the mapped weights for this problem at t = 1 s (1 cycle) for two different values of s
with k = 6 and m = 3. Notice that in both cases, the mapped weights behave in the desired
manner without any severe amplification in the flat regions on either side of the smeared
discontinuity. It can also be seen that the mapped weights for the non-smooth stencils
(j = 0 to the left of the discontinuity and j = 3 to its right) reduce when s is increased. This
indicates that the discontinuity is captured with less dissipation when using s = 2 × 103.
The final profiles at t = 100 s (100 cycles) using both values of s are shown in Figure 10c. In
contrast to the results shown in Figure 3b, the discontinuities are captured well without
any distortions for both values of s even at relatively long output times. The close-up view
shows that using s = 2 × 103 indeed results in a slightly sharper discontinuity compared to
s = 2. The value of s was chosen to be 2 × 103 for all the test cases reported in the following
section with the exception of the double-Mach reflection Euler problem for which a value
of s = 2 was chosen to ensure a stable run.
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4. Results

In this section, the proposed schemes are compared with other WENO schemes such
as WENO-JS, WENO-M, WENO-IM(2,0.1), WENO-RM(260) [15] and WENO-Z [16]. The
value of ε was set to 10−40 for all schemes except for WENO-JS and WENO-RM(260) for
which it was set to 10−6 and 10−99 [15], respectively. The values of parameters k and
m were fixed at 6 and 3, respectively, for all cases. Parameter s was set to 2 × 103 or 2
corresponding to the WENO-RM(6,3,2 × 103) or WENO-RM(6,3,2) schemes, respectively.
The CFL number was fixed at 0.1 and 0.5 when solving the advection equation and the
Euler equations, respectively.

4.1. Approximate Dispersion Relation

The dispersion relation of a numerical scheme can be used to assess the scheme’s
ability to resolve Fourier modes of different wavelengths on a uniform grid. Given a
Fourier mode with a wavelength l, its associated wavenumber on a grid with cell spacing
∆x is ϕ = 2π∆x/l. Numerical schemes with finite stencils invariably introduce errors
in resolving the mode, which results in a modified wavenumber number Φ. However,
it is not possible to derive the exact dispersion relations of non-linear schemes. Instead,
Pirozzoli [17] proposed an empirical method to compute approximate dispersion relations
of non-linear shock-capturing schemes. The approximate dispersion relations can be
used to assess the resolution of the reconstruction scheme in wavenumber space. A
uniform N-point mesh supports wavenumbers ϕk = 2πk/N where k ∈ [0, N/2]. For each
ϕk, the one-dimensional linear advection equation Equation (20) is initialized with the
sinusoidal mode

uj(0) = cos(ϕk j∆x), (26)

for j ∈ [0, N − 1] and advanced up to a small-time step ∆t using the first-order Euler
scheme. Next, Fourier transforms are applied to the initial and advanced profiles, and the
complex amplitudes ûk(0) and ûk(∆t) associated with the kth wavenumber ϕk are used to
compute the kth modified wavenumber Φk as:

Φk = −
∆x
i∆t

log
(

ûk(∆t)
ûk(0)

)
. (27)

The real and imaginary parts of Φk pertain to the dispersion and diffusion properties
of the numerical scheme, respectively. The approximate dispersion relations for the various
seventh-order schemes are plotted in Figure 11. The seventh-order upstream central scheme
is the linear scheme whereby one simply takes the sub-stencil weights to be the optimal
weights, i.e., ωj = dj. It represents the optimal resolution that one could achieve from a
WENO scheme that relies on the same optimal weights. Hence, it is more meaningful to
compare the WENO schemes with the upstream central scheme rather than with spectral
methods. The results show that the unmapped WENO-JS scheme has the most devia-
tion from the upstream central scheme and, therefore, the poorest resolution among all
schemes. While all mapped WENO schemes and WENO-Z scheme bring about significant
improvement over the WENO-JS scheme, the WENO-RM(6,3,2 × 103) scheme comes the
closest to the upstream central scheme in terms of both dispersion and diffusion properties,
making it ideal for resolving small-scale flow structures, their convective effects and the
induced wave propagation in a high-fidelity simulation of compressible flows where shock
waves may also be present. Though the WENO7-IM(2,0.1) scheme follows close behind the
WENO7-RM(6,3,2 × 103) scheme, one must bear in mind that it performs poorly for cases
with discontinuities, as demonstrated earlier in Section 3.1.



Aerospace 2022, 9, 623 17 of 25

Aerospace 2022, 9, x FOR PEER REVIEW 18 of 27 
 

 

( )
( )

ˆ
log .

ˆ 0
k

k
k

u tx
i t u

 ΔΔΦ = −   Δ  
 (27)

The real and imaginary parts of kΦ  pertain to the dispersion and diffusion proper-
ties of the numerical scheme, respectively. The approximate dispersion relations for the 
various seventh-order schemes are plotted in Figure 11. The seventh-order upstream cen-
tral scheme is the linear scheme whereby one simply takes the sub-stencil weights to be 

the optimal weights, i.e., j jdω = . It represents the optimal resolution that one could 
achieve from a WENO scheme that relies on the same optimal weights. Hence, it is more 
meaningful to compare the WENO schemes with the upstream central scheme rather than 
with spectral methods. The results show that the unmapped WENO-JS scheme has the 
most deviation from the upstream central scheme and, therefore, the poorest resolution 
among all schemes. While all mapped WENO schemes and WENO-Z scheme bring about 
significant improvement over the WENO-JS scheme, the WENO-RM(6,3,2×103) scheme 
comes the closest to the upstream central scheme in terms of both dispersion and diffusion 
properties, making it ideal for resolving small-scale flow structures, their convective ef-
fects and the induced wave propagation in a high-fidelity simulation of compressible 
flows where shock waves may also be present. Though the WENO7-IM(2,0.1) scheme fol-
lows close behind the WENO7-RM(6,3,2×103) scheme, one must bear in mind that it per-
forms poorly for cases with discontinuities, as demonstrated earlier in Section 3.1. 

 
Figure 11. Approximate dispersion relations for various seventh-order schemes. 

4.2. Linear Advection 
The one-dimensional linear advection problem [Equation (20)] was solved on the pe-

riodic domain [ ]0.5, 0.5x∈ −  with the smooth initial condition 

Case A3 ( )9sin 2 ,iiu xπ=  (28)

at three different resolutions 1 0 0N = , 2 0 0  and 4 0 0  cells. The 1L  error norms at 
100t s=  (100 cycles) are listed in Table 2. 

  

Figure 11. Approximate dispersion relations for various seventh-order schemes.

4.2. Linear Advection

The one-dimensional linear advection problem [Equation (20)] was solved on the
periodic domain x ∈ [−0.5, 0.5] with the smooth initial condition

Case A3 ui = sin9(2πxi), (28)

at three different resolutions N = 100, 200 and 400 cells. The L1 error norms at t = 100 s
(100 cycles) are listed in Table 2.

Table 2. Error norms for linear advection case A3 at t = 100 s (100 cycles).

Schemes
N

100 200 400

WENO-JS 5.1352 × 10−3 7.1533 × 10−5 6.4335 × 10−6

WENO-M 7.7547 × 10−3 2.6823 × 10−4 7.9258 × 10−6

WENO-IM(2,0.1) 9.7562 × 10−3 8.9693 × 10−4 7.8301 × 10−4

WENO-Z 1.6348 × 10−3 6.0435 × 10−5 6.4376 × 10−6

WENO-RM(260) 1.4095 × 10−3 5.7145 × 10−5 6.4227 × 10−6

WENO-RM(6,3,2 × 103) 1.5083 × 10−3 5.7983 × 10−5 6.4225 × 10−6

It can be seen that WENO-JS scheme performs better than both WENO-M and
WENO-IM(2,0.1) schemes at all three resolutions. At N = 400 cells, it even surpasses
WENO-Z. This is mainly because the relatively large value of ε = 10−6 overpowers
the much smaller values of the smoothness indicators ISj in the nearly flat regions. As
a result, the WENO-JS scheme behaves essentially like the upstream central scheme
(ωj ≈ dj). Both WENO-M and WENO-IM(2,0.1) schemes perform poorly for this prob-
lem, which shows that they are not suitable at seventh order and higher. The proposed
scheme WENO-RM(6,3,2 × 103) delivers a better performance than all other schemes
except WENO-RM(260). Nevertheless, its performance improves with increasing reso-
lution, such that at the finest resolution of N = 400 cells, it performs nearly identical
to WENO-RM(260).
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For the next advection problem, the initial condition

Case A4 ui =


[1− sin(4πxi)]/2 1/8 < xi ≤ 1/2
1/2 1/2 < xi ≤ 7/8
0 otherwise

, (29)

was obtained from Ref. [18]. It consists of discontinuities in u at x = 7/8, u′ at x = 1/2 and
u′′ at x = 1/8. It also possesses a smooth maximum at x = 3/8. Once again, the problem
was solved on the periodic domain x ∈ [0, 1] at three different resolutions N = 100, 200 and
400 cells. The L1 error norms at t = 100 s (100 cycles) are listed in Table 3. The final profiles
for N = 100 cells are plotted in Figure 12.

Table 3. Error norms for linear advection case A4 at t = 100 s (100 cycles).

Schemes
N

100 200 400

WENO-JS 1.6364 × 10−2 7.7120 × 10−3 5.4452 × 10−3

WENO-M 1.5900 × 10−2 1.0101 × 10−2 5.2535 × 10−3

WENO-IM(2,0.1) 1.5687 × 10−2 9.4957 × 10−3 4.1429 × 10−3

WENO-Z 1.0286 × 10−2 5.1822 × 10−3 2.7195 × 10−3

WENO-RM(260) 1.0898 × 10−2 5.1936 × 10−3 2.7181 × 10−3

WENO-RM(6,3,2 × 103) 1.0106 × 10−2 5.0941 × 10−3 2.6748 × 10−3
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Figure 12. Performance of seventh-order WENO schemes for linear advection case A4 using N = 100
cells at t = 100 s (100 cycles).

For this case, WENO-RM(6,3,2 × 103) scheme consistently delivers the best perfor-
mance at all three resolutions. Once again, both mapped WENO schemes WENO-M and
WENO-IM(2,0.1) deliver poor performances especially near the discontinuity in u at x = 7/8
and the discontinuity in u′′ at x = 1/8, as shown in Figure 12. The WENO-JS scheme is
unable to capture the smooth maximum at the coarse resolution of N = 100 cells, but it is
able to do so at the finer resolutions. WENO-Z and WENO-RM(260) schemes deliver similar
performances except at the coarsest resolution of N = 100 cell, whereby the WENO-RM(260)
scheme results in a small overshoot on the left side of the discontinuity at x = 7/8. This is
quite surprising since WENO-RM(260) is a mapped WENO scheme that actively suppresses
small weights. The overshoot does not occur at the finer resolutions though.
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4.3. Euler Equations

The system of one-dimensional Euler equations for an ideal gas is given as

∂t

 ρ
ρu
ρe

+ ∂x

 ρu
ρu2 + p

ρhu

 = 0, (30)

where ρ, u and p refer to the gas density, velocity and pressure, respectively. The specific to-
tal energy is given by e = p/(γ− 1)ρ + u2/2 and the specific total enthalpy by h = e + p/ρ.
γ is the ratio of specific heats with a value of 1.4. The system was solved using a hybrid
method coupling a MUSCL-type flux approach and HLL-based characteristic flux approach
using a shock sensor [19].

The first case Is a shock tube problem proposed by Lax [20]. The initial condition

Case E1 (ρ, u, p) =
{
(0.445, 0.698, 3.528) x < 0
(0.500, 0.000, 0.571) x ≥ 0

, (31)

consists of two constant states separated by a discontinuity at x = 0. The problem was
solved on the domain x ∈ [−0.5, 0.5] until t = 0.13 s. The final density profiles are shown
in Figure 13.
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Figure 13. Performance of seventh-order WENO schemes for Lax shock tube problem (case E1) using
N = 100 cells at t = 0.13 s.

For this case, all the improved WENO schemes capture a sharper contact discon-
tinuity at x = 0.2 and a sharper shock at x = 0.32 compared to the WENO-JS scheme.
WENO-RM(6,3,2×103) scheme captures the sharpest discontinuities among all schemes.
All the schemes, including the WENO-JS scheme, result in spurious oscillations to the right
of the contact discontinuity to some extent, but WENO-Z is the only scheme to cause a
large overshoot and a small undershoot to left and right of the shock, respectively. It must
be mentioned that the WENO-RM(260) scheme results in the smallest spurious oscillation
among the improved WENO schemes.

The next two test cases are shock-entropy wave interaction problems proposed by Shu
and Osher [21] and Titarev and Toro [22]. The corresponding initial conditions are given in
Equations (32) and (33), respectively.

Case E2 (ρ, u, p) =
{
(3.857143, 2.629369, 10.33333) x < −4

(1 + 0.2 sin(5x), 0, 1) x ≥ −4
(32)
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Case E3 (ρ, u, p)0 =

{
(1.515695, 0.523346, 1.80500) x < −4.5

(1 + 0.1 sin(20x), 0, 1) x ≥ −4.5
(33)

The interaction of the shock with the entropy wave results in short-wavelength struc-
tures whose amplitudes are a good measure of the numerical viscosity of the numerical
scheme. These structures are representative of the large-scale eddies encountered, for
instance, in the wake of an airfoil undergoing flow separation. Case E3 is a more se-
vere version of case E2 as it results in structures of much shorter-wavelength structures
compared to the latter case, potentially more representative of the finer-scale turbulent
structures and their fluctuations in the flow. Case E2 was solved on the domain x ∈ [−5, 5]
discretized into N = 200 uniform cells until t = 1.8 s. Case E3 was solved on the same
domain discretized into N = 1000 cells until t = 5 s. The reference solutions for both cases
were obtained on a fine grid with ten times the resolution. The final density profiles are
shown in Figures 14 and 15.
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The performance trends are similar for both cases. Once again, WENO-JS results in
the smallest amplitudes for the short-wavelength structures among all schemes. The best
performance is delivered by the WENO-RM(6,3,2×103) scheme, which is closely followed
by WENO-IM(2,0.1) and WENO-RM(260). Surprisingly, WENO-Z does not perform as well
as in the advection cases; its performance is only slightly better than that of WENO-M.

For the last case, we consider the two-dimensional double Mach reflection (DMR)
problem proposed by Woodward and Colella [23], in which a strong Mach 10 shock wave
impinges obliquely onto a ramp and undergoes a complex reflection producing intricate
flow features. The WENO schemes were extended to higher dimensions by applying
the one-dimensional schemes along the local face-normal direction. This approach is
significantly cheaper and more robust compared to a fully multi-dimensional formula-
tion. The DMR problem was computed using one of the alternative setups suggested by
U S Vevek et al. [24], whereby the shock wave makes an angle of θ = tan−1( 7

4
)
≈ 60.26◦

with the ramp. This enables exact tracking of the shock wave along the top boundary on a
uniform structured mesh. The problem was computed on the domain x× y ∈ [0, 4]× [0, 1]
discretized into the uniform cells of width ∆x = ∆y = 1/240. The ramp extends along
the bottom boundary from x = 1 to the right. Reflective boundary conditions are applied
along the ramp and Neumann boundary conditions are applied along the remainder of the
bottom boundary from x = 0. The exact pre- and post-shock conditions

Case E4
(ρ, u, v, p)pre = (1.4, 0, 0, 1),

(ρ, u, v, p)post = (8,−8.25 cos θ, 8.25θ, 116.5),
(34)

were prescribed at the right and left boundaries, respectively. The terms u and v denote the
horizontal and vertical velocity components, respectively. The shock wave was initialized
to intersect the bottom boundary at x = 0.1 and the simulation was computed until t = 0.27 s
with a re-initialization at an intermediate time t = 0.08 s to prevent undesirable numerical
artefacts. The final results are plotted in Figure 16, using 41 equally spaced density contours
in the range ρ ∈ [1.4, 21.4].

The WENO-IM(2,0.1), WENO-Z and WENO-RM(6,3,2× 103) schemes became unstable
for this problem within the first few time steps. These schemes are most likely too aggressive
near the shock wave in that they do not introduce sufficient numerical diffusion. It must
be recalled from the previous section that both s = 2 and s = 2 × 103 led to distortion-free
results for the linear advection of the discontinuities problem (see Figure 10), and the latter
was chosen on the grounds that it produced a slightly sharper discontinuity. However,
since this leads to an unstable scheme for the DMR problem, the value of parameter s was
chosen to be 2 for this problem alone for a stable computation. It can be seen from Figure 16
that there are not many notable differences in the results computed using the different
schemes except some minor differences along the slip line. The lack of roll-ups along the
slip line may be surprising to some, but it has been demonstrated in [19] that the choice of
reconstructed variables and flux scheme has an effect on the extent of the details captured
along the slip lines and that the usual notion of more roll-ups being indicative of a better,
less diffusive scheme need not necessarily hold true in all cases.

The results obtained using the WENO-RM(6,3,2) scheme for the other Euler cases were
similar to those obtained using the WENO-RM(260) scheme, but the former scheme was
computationally more efficient. For instance, for the DMR problem, the WENO-RM(6,3,2)
scheme was 16% slower than the unmapped WENO-JS scheme, whereas the WENO-RM(260)
scheme was 83% slower.
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5. Conclusions

This paper was motivated by the poor performance of the mapped WENO schemes
WENO-M and WENO-IM(2,0.1) in capturing discontinuities accurately over long output
times. While WENO-M performed poorly at both fifth and seventh orders, WENO-IM(2,0.1)
performed poorly only at seventh order. By observing the mapped stencil weights ω̃j
near the discontinuities, it was argued that the superior performance of the fifth-order
WENO-IM(2,0.1) scheme was attributed to the wider flat portion of gIM(ω; 2, 0.1) in the
neighbourhood ωj = dj. The fifth-order WENO-M scheme, on the other hand, had a
narrower flat portion at about ωj = dj, which resulted in increased numerical diffusion since
it did not bring the weights close to their optimal values as quickly.

At seventh order, both WENO-M and WENO-IM(2,0.1) schemes performed poorly
due to severe amplification of small weights. While such amplification also occurred at
fifth order, it was not as severe due to the relatively larger numerical values of dj at fifth
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order compared to the seventh order. A simple solution was suggested in the form of a
more general family of mapping functions gRM(ω; k, m, s) which includes gIM(ω; k, A) as a
special case. For m > 1, these mapping functions have a unit slope at ω = 0 regardless of the
values of dj. This prevents the over-amplification of small weights, making it particularly
suitable for seventh order and above. The values of parameters k, m and s were determined
to be 6, 3 and 2 × 103, respectively, based on a parametric study. The resulting mapped
WENO scheme is referred to as WENO-RM(6,3,2 × 103).

It was shown through a number of one-dimensional linear advection problems that
the WENO-RM(6,3,2× 103) scheme outperformed both the WENO-M and WENO-IM(2,0.1)
schemes. It was able to deliver similar or even superior performances compared to other
popular WENO schemes such as WENO-RM(260) and WENO-Z. It was also shown that
the proposed scheme performed the best among all the schemes tested, for a number of
one-dimensional inviscid gas flow problems. It was able to capture the sharpest discontinu-
ities in the shock tube problem and greatest amplitudes for the short wavelength structured
in shock-entropy wave interaction problems. It should also be quickly remarked that these
conclusions are equally applicable to the finite difference method as the finite difference and
finite volume methods are equivalent in one dimension. The WENO-RM(6,3,2) scheme was
used for the two-dimensional DMR problem alone because the WENO-RM(6,3,2 × 103)
scheme was unstable for this problem. The key lesson from the DMR problem is that the
value of parameter s is case dependent. In fact, even for a single case, it would be better to
allow parameter s to vary locally based on the solution.

The insights gleaned from this study were the basis for the successful development of
the adaptive mapped WENO scheme [25]. The adaptive scheme relies on the gRM family of
mapping functions introduced in the present paper but, instead of using a constant value
for s, it uses an adaptive value calculated based on the local smoothness of the solution.
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Appendix A

The mapping function gRM(ω; k, m, s) [Equation (24)] would be monotone increasing
if its first derivative g′RM ≥ 0. g′RM can be written as:

g′RM(ω; k, m, s) =
(ω− d)kh(ω){

(ω− d)k + s[ω(1−ω)]m
}2 , (A1)

where h(ω) is given by

h(ω) = (ω− d)k︸ ︷︷ ︸
I

+ s[ω(1−ω)]m︸ ︷︷ ︸
II

[
(2m− k− 1)ω2 + (k + 1−m− 2md)ω + md

]
︸ ︷︷ ︸

III

. (A2)

Since ω ∈ [0, 1] and k is an even integer, all the terms in Equation (A1) are positive
except for h(ω), which may become negative. Deriving the conditions for the positivity
of h(ω) is non-trivial. Therefore, it is broken into three parts, as shown in Equation (A2).
Terms I and II are always positive, but term III can be non-positive. Let term III be denoted
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by f (ω). Deriving the conditions for the positivity of f (ω) is simpler and will be pursued
next. If f (ω) is positive, it directly follows that gRM(ω; k, m, s) is monotone.

f (ω) is a quadratic function in ω passing through f (0) = md > 0 and f (1) = m(1− d) > 0.
There are three cases to consider:

Case 1: k > 2m− 1

In this case, the coefficient of ω2 in f (ω) is negative and f (ω) is a parabola with a maxi-
mum point. A parabola with a maximum point has the property that, given any interval
[a,b], the function within that interval always lies above the minimum of the endpoints
of the interval, i.e., f (ω) ≥ min[ f (a), f (b)]. Hence, f (ω) ≥ min[md, m(1− d)] ≥ 0 in the
interval ω ∈ [0, 1].

Case 2: k = 2m− 1

In this case, the coefficient of ω2 vanishes and f (ω) becomes a linear function, which
is always positive. However, this case does not occur since k is an even integer and so,
k 6= 2m− 1.

Case 3: k < 2m− 1

In this case, the coefficient of ω2 in f (ω) is positive. Hence, f (ω) is a parabola with a
minimum point, which may dip below zero. The coordinates of the minimum point, found
by solving f ′(ω) = 0, are:

ωmin =
m(1 + 2d)− k− 1

2(2m− k− 1)
, fmin = f (ωmin) = md− [m(1 + 2d)− k− 1]2

4(2m− k− 1)
. (A3)

The expression for fmin given in Equation (A3) is a quadratic polynomial in d with a
negative coefficient for d2. Therefore, it is a parabola with a maximum point and, thus,
fmin(d) ≥ min[ fmin(a), fmin(b)].

If ωmin lies outside the interval [0,1], f (ω) is monotone within the interval. Since the
endpoints of f (ω) lie above zero, the function also lies above zero in the interval [0,1].
However, if ωmin lies within the interval [0,1], one must ensure that fmin ≥ 0. Substituting
the expression for ωmin from Equation (A3) into the inequality 0 ≤ ωmin ≤ 1 results in the
following inequality for d.

− 1
2
+

k + 1
2m

≤ d ≤ 3
2
− k + 1

2m
(A4)

Substituting the maximum and minimum values of d from Equation (A4) into the
expression for fmin in Equation (A3) yields the following results.

d = − 1
2 + k+1

2m ⇒ fmin = k+1−m
2

d = 3
2 −

k+1
2m ⇒ fmin = k+1−m

2
(A5)

Interestingly, both values of d lead to the same result for fmin. So, if the minimum
point were to occur within the interval ω ∈ [0, 1], for fmin ≥ 0, k ≥ m − 1. Therefore, for
k ≥ m − 1, f (ω) ≥ 0.
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