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Abstract: The rapid analysis of thermal stress and deformation plays a pivotal role in the thermal
control measures and optimization of the structural design of satellites. For achieving real-time
thermal stress and thermal deformation analysis of satellite motherboards, this paper proposes a
novel Multi-Task Attention UNet (MTA-UNet) neural network which combines the advantages of
both Multi-Task Learning (MTL) and U-Net with an attention mechanism. Furthermore, a physics-
informed strategy is used in the training process, where partial differential equations (PDEs) are
integrated into the loss functions as residual terms. Finally, an uncertainty-based loss balancing
approach is applied to weight different loss functions of multiple training tasks. Experimental results
show that the proposed MTA-UNet effectively improves the prediction accuracy of multiple physics
tasks compared with Single-Task Learning (STL) models. In addition, the physics-informed method
brings less error in the prediction of each task, especially on small data sets.

Keywords: physics-informed surrogate model; multi-task learning; U-Net; thermal stress and deformation

1. Introduction

Satellites are important performers of space missions and play an indispensable role in
fields such as communication, remote sensing, navigation, and military reconnaissance [1].
Increasingly complicated aerospace missions pose greater challenges to the stability and
reliability of satellites [2]. The components installed on satellite motherboards inevitably
generate much heat during operation due to their high power density [3]. The heat
then leads to a raft of thermal responses such as thermal deformation, thermal buckling,
and thermally induced vibration, affecting the accuracy of the satellite mission [4,5]. A
ground-based simulation test and numerical analysis are two traditional methods com-
monly adopted in engineering to analyze thermo-mechanical coupling problems such as
thermal stress and thermal deformation of satellites [6–9]. However, these two methods are
usually costly and require a long computational time. As a result, in terms of optimization
of the design of thermal control measures and structural layout for satellites, the iterative
design by the above two methods is likely to face a significant cost and computational
burden or even fail to be completed in a given time [10–12]. It is urgent and necessary to
conduct a real-time analysis of the thermo-mechanical coupling problems of the satellite.
This paper aims to achieve fast and accurate predictions of thermal stress and thermal
deformation of satellite motherboards when given a temperature field.

A common method for the aforementioned engineering requirements is to build
a surrogate model, which implements a high-precision prediction quickly. Once iter-
ated in the optimization procedure, the surrogate model could achieve a compromise
between computational accuracy and computational cost, improving the efficiency of
prediction tasks [12–14]. At present, the mainstream surrogate model methods include
polynomial-based response surface [15], support vector machine regression [16], radial
basis function [17], and Kriging interpolation [18]. However, when dealing with ultra-high
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dimensional regression problems, these traditional surrogate modeling methods all face the
challenge of the “curse of dimensionality” (i.e., the difficulty in constructing surrogate mod-
els between high-dimensional variables). As artificial intelligence advances, many deep
learning-based surrogate model methods have been applied to the prediction of physics-
related problems, and neural networks such as fully connected neural networks [19], fully
convolutional neural networks [20], and conditional generative adversarial networks [21]
have been widely used. In particular, the U-Net, as an advanced neural network, is coming
into vogue. Rishi Sharma et al. [22] take different boundary conditions as input and applies
the U-Net to predict the temperature field in a two-dimensional plane. Cheng et al. [23]
analyze the two-dimensional velocity and pressure fields around arbitrary shapes in lami-
nar flow through the U-Net. In addition, Saurabh Deshpande et al. [24] use the U-Net to
predict the large deformation response of hyperelastic bodies under loading. These related
works prove the potential of U-Net in ultra-high dimensional regression problems.

The focus of the aforementioned deep learning-based surrogate models is to dig a
huge number of training data built by finite element or experiments. Nevertheless, these
models are driven by data loss only, and they often suffer from high costs of training data
or a small number of training data. The physics-informed neural network (PINN) [25] is an
effective way to alleviate this problem. In the face of the physics prediction tasks where
some existing experience has been accumulated in the real world, the PINN method enables
the integration of prior physical information with neural networks, so as to reduce the
dependence of neural networks on large amounts of training data. Raissi et al. [25] combine
the residual error of PDEs with the loss function of FCN and predict the velocity and
pressure fields around a cylinder, while Liu et al. [26] use PINN to solve the forward and
inverse problem of the temperature field. In addition, motivated by PINN, the PDE-based
loss function can also be explored for surrogate modeling. Bao et al. [27] and Zhao et al. [28]
discrete the heat conduction equation by finite difference, making it a loss function.

It is noticed that all the physics prediction models mentioned above are only trained
in a Single-Task Learning (STL) manner (i.e., each task is trained separately). When faced
with multiple physics prediction tasks, the STL has two drawbacks. On the one hand,
the separate training for each sub task takes up much memory space and computational
time. On the other hand, if each sub task is modeled separately, the STL tends to ignore
the relationship between tasks, such as correlation, conflict, and constraint, making it hard
to achieve high precision for the prediction of multiple tasks. Multi-Task Learning (MTL)
shows more obvious advantages in dealing with such multiple tasks. In the MTL, multiple
tasks share one model, which reduces memory usage and improves inference speed. MTL
combines related tasks together and enables the tasks to complement each other by sharing
feature information between tasks, which can effectively reduce over-fitting and improve
prediction performance [29,30].

Existing MTL is divided into soft parameter sharing and hard parameter sharing.
In recent years, there has been a proliferation of research and successful practices in the
industrial community on soft parameter sharing, such as the Cross-Stitch [31], PLE [32],
ESMM [33] and SNR [34]. In particular, the MMOE [35] proposed by Google has gained
great success. It consists of expert networks shared by multiple tasks and task-specific
gate networks which can decide what to share. Such a flexible design allows the model
to automatically learn how to assign expert parameters based on the relationship of the
low-level tasks. The gate networks thus effectively improve the generalization performance
of the model and the prediction accuracy across tasks. The MTL has made remarkable
achievements in the field of computer vision and has been widely applied in engineering
problems such as recommendation systems. However, such MTL models have rarely been
used in high-dimensional regression problems with multiple physics tasks.

In this paper, the regression tasks of temperature fields to thermal deformation
and thermal stress of satellite motherboards are regarded as mappings between images.
To achieve accurate and fast prediction of these multiple physics tasks, three strategies
are adopted.
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(1) This paper integrates the advantages of the U-Net and MTL, and proposes the Multi-
Task Attention UNet network (MTA-UNet). This network not only shares feature
information between high-level layers and low-level layers, but also shares feature
information between different tasks. Specifically, it shares the parameters in a targeted
way through the attention mechanism. The MTA-UNet effectively reduces the training
time of the model and improves the accuracy of prediction compared with STL U-Net.

(2) A physics-informed approach is applied in training the deep learning-based surrogate
model, where the finite difference is applied to discrete thermoelastic and thermal
equilibrium equations. The equations are encoded into a loss function to fully exploit
the existing physics knowledge.

(3) Faced with multiple physics tasks, an uncertainty-based loss balancing strategy is
adopted to weigh the loss functions of different tasks during the training process. This
strategy solves the problem that the training speed and accuracy between different
tasks are difficult to balance if trained together, effectively reducing the phenomenon
of competition between tasks.

The rest of the paper is structured as follows. Section 2 presents the specific definition
of the mathematical model. Section 3 introduces the strategies applied in the construction
of deep learning-based MTA-UNet in detail. Section 4 shows the training steps and the
experimental results. Section 5 is the conclusion.

2. Mathematical Modeling of Thermal Stress and Deformation Prediction

In this paper, as previously defined in [3,11], a two-dimensional satellite motherboard
with partial openings is used as a study case. The objective is to realize a rapid prediction
of thermal stress and thermal deformation.

The satellite motherboard with four circular holes is shown in Figure 1, and the
holes represent screw holes in engineering assembly. There are n electronic components
installed on the motherboard, which generate a large amount of heat during operation
and can be regarded as internal heat sources. It is assumed that the temperature of the
satellite motherboard changes T under the joint action of the internal heat sources and
external environment. Due to the thermal expansion and contraction, the elastomer tends
to undergo thermal deformation, and the deformation trend is restricted to a certain extent
because of the external constraints and mutual constraints between various parts of the
body. With thermal stress generated inside the elastomer, the thermal stress in turn leads to
new additional tension and affects the thermal deformation.

Figure 1. Schematic diagram of a two-dimensional satellite motherboard.

In this case, non-displacement boundary conditions are adopted at the edges of the
holes. The thermoelastic properties on the motherboard tend to be isotropic, with the
parameters consistent with the thermoelastic properties of aluminum. The linear elastic-
ity coefficient of the motherboard is considered to be around the reference temperature
T0 = 273 K and is assumed not to change with temperature. Non-stress and adiabatic
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boundary conditions are adopted on the outer boundary of the motherboard. The side
length of the rectangular computational domain is set to L = H = 20 cm. The radius
of the holes is r = 0.5 cm, and the thermal conductivity coefficient within the domain is
k = 1 W/(m × k). The coefficient of linear expansion is α = 1× 10−5/◦C, Young’s modulus
is E = 50× 103 MP, and Poisson’s ratio is µ = 0.2.

The thermoelasticity motherboard is a two-dimensional planar elastomer and its
thermal stress components and temperature satisfy the following equations:

σxx = E
1−µ2

(
∂ux
∂x + µ

∂uy
∂y

)
− EαT

1−µ

σyy = E
1−µ2

(
∂uy
∂y + µ ∂ux

∂x

)
− EαT

1−µ

σxy = E
2(1+µ)

(
∂uy
∂x + ∂ux

∂y

) (1)

where σxx means the x-directional thermal stress, σyy means the y-directional thermal stress,
and σxy denotes the tangential directional thermal stress. In addition, ux and uy represent
x-directional thermal displacement and y-directional thermal displacement, respectively.
According to the differential equation of thermal equilibrium, the ux and uy satisfy the
following set of equations:

∂2ux
∂x2 + 1−µ

2
∂2ux
∂y2 + 1+µ

2
∂2uy
∂x∂y − (1 + µ)α ∂T

∂x = 0
∂2uy
∂y2 + 1−µ

2
∂2uy
∂x2 + 1+µ

2
∂2ux
∂x∂y − (1 + µ)α ∂T

∂y = 0
(2)

and the boundary conditions further satisfy: l
(

∂ux
∂x + µ

∂uy
∂y

)
s
+ m 1−µ

2

(
∂ux
∂y +

∂uy
∂x

)
s
= l(1 + µ)α(T)s

m
(

∂uy
∂y + µ ∂ux

∂x

)
s
+ l 1−µ

2

(
∂uy
∂x + ∂ux

∂y

)
s
= m(1 + µ)α(T)s

(3)

Assuming that the direction of the outer normal to the elastic plane is N, then l and m can
be expressed as the directional cosine of N with the x axis and y axis, respectively.

Based on the above set of equations and the corresponding parameters, the thermal
stress components and the thermal displacement components can be calculated when given
an arbitrary temperature field T. However, the numerical methods are usually costly and
time-consuming. In this paper, a deep learning-based surrogate model is constructed to
quickly predict five physics components of satellite motherboard, ux, uy, σxx, σyy, and σxy.
The five multiple physics prediction tasks are divided into three multiple sub tasks, ux and
σxx in task 1, uy and σyy in task 2, and σxy in task 3. Three sub tasks are trained together
and the temperature field T is the input of the model.

3. Method

This section details the technical strategies proposed during the construction of the
deep learning surrogate model. Firstly, on account of multiple physics tasks, to reduce
the training cost and improve the prediction performance of the model, we design a
neural network structure MTA-UNet in Section 3.1. Subsequently, in Section 3.2, a physics-
informed approach is applied to reduce the sample size of training data. Lastly, Section 3.3
adopts an uncertainty-based loss balancing strategy to weight the loss function of multiple
tasks, adjusting the training speed and accuracy of multiple tasks. Figure 2 shows the frame
diagram of the main technical strategies.
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Figure 2. The frame diagram of the main technical strategy.

3.1. MTA-Unet Network Structure

This section describes the MTA-UNet in detail, and Figure 3 shows the actual structure.
This model takes the U-Net as the basic architecture, and the improvement is the sharing
method between different tasks. In MTA-UNet, multiple sub tasks are trained together and
can share feature parameters with other tasks. Different tasks share the coding layer and
each of them has its specific decoding layer. In addition, when the features of different layers
are concatenated, feature selection is carried out through the Attention Gate (AG). The AG
distinguishes which shared features are highly correlated with specific tasks and extracts
the relevant shared features from the shared coding layer. The MTA-UNet combines the
merits of U-Net and MTL, having the advantage of a “purposeful” combination of feature
parameters from different layers and physics tasks. This design fully learns information
from the training sets, reducing the training time of the model and memory space of
the system and also improving the prediction performance of the model. This section is
divided into the architecture of the MTA-UNet (Section 3.1.1), the sharing mechanism of
the MTA-UNet (Section 3.1.2), and the Attention Gate of the MTA-UNet (Section 3.1.3).

Figure 3. Structure of MTA-UNet.
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3.1.1. Architecture of the Mta-Unet Network

To fully share feature information of different layers, MTA-UNet adopts the U-Net [36]
as its basic architecture. In recent years, the U-Net has exhibited good performance when
dealing with various ultra-high dimensional regression problems. According to Figure 4,
U-Net has a U-shaped symmetric structure that combines feature parameters of different
layers. Owing to this characteristic, the U-Net network is suitable for image-to-image
regression tasks as it takes multi-scale feature fusion into account and increases the amount
of information.

Figure 4. Structure of U-Net.

The MTA-UNet network built in this paper fully retains the advantages of the U-Net
network. The first half of MTA-UNet is a classical downsampling process, which is the
feature extraction part similar to the coding process, capable of learning multi-scale features
of an image through pooling and convolution operations. The second half is an upsampling
process similar to the decoding part, capable of restoring the size of the image layer by layer
through deconvolution operations. These feature maps are effectively used in subsequent
calculations through skip connections.

In MTA-UNet, the downsampling layers are shared layers and the upsampling layers
are exclusive to multiple tasks, respectively. The MTA-UNet consists of two repetitive
applications of 3 × 3 convolutions (padding = 1), and each convolution is followed by a
BatchNorm2d normalized activation function layer and a 2 × 2 max-pooling operation
with a stride of 2. We double the number of feature channels in each step of the shared
downsampling and, in contrast, halve the number of feature channels in each step of the
exclusive upsampling. After the feature selection through the AG, feature parameters
of upsampling are skip-connected to downsampling with the corresponding scale of the
feature map. In the last layer, each component feature vector is mapped to its corresponding
class by a 1 × 1 convolution.

In terms of model training, AdamDelda [37] is selected as the optimizer and the
MTA-UNet model is implemented by PyTorch 1.8. The training batch size is set to 16.

3.1.2. Feature Sharing Mechanism of Mta-Unet

To enable the sharing of feature parameters across multiple physics tasks, the MTA-
UNet uses a partially shared coding layer to enable simultaneous learning of multiple tasks.
During the downsampling process, multiple tasks share the coding layer, each having
an independent decoding layer. This information concatenation operation of shared and
specific feature parameters realizes the deep sharing of multi-task feature parameters.

For the task k in the given K tasks, k = 1, 2, . . . , K. The model consists of the shared
downsampling function f , the exclusive upsampling gk , and k task networks hk. The shared
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layer follows the input layer, and the task networks are built upon the output of the shared
bottom. The yk is the output of the task k and follows the corresponding task-specific tower.
Assuming that for the task k, the mth downsampling layer of the model is f m, and its
corresponding upsampling layer is gm

k , the output of the task k is:

yk = hk(SkipConnect(AGm
k ( f m, gm

k ), gm
k )) (4)

where AGm
k denotes the AG operation for the mth layer of the task k.

3.1.3. Attention Gate of MTA-Unet

Inspired by CNN-based MTL models such as MMOE [35] and PLE [32], the AG
operation is added to the MTA-UNet model to realize the selection of shared features.
In this way, shared features that are highly relevant to specific tasks are extracted from the
shared network layer.

Figure 5 illustrates the AG operation of task k, where a series of operations such as
Relu, Sigmoid, and resampler are performed to evaluate the similarity between f m and
gm

k . The mth upsampling layer f m and its corresponding downsampling layer gm
k are input

of AGm
k . Since the underlay network gm

k is generally more accurate, when the similarity
between f m and gm

k is calculated, the features in f m with higher similarity with gm
k are

given higher weights, equals chosen of feature parameters of f m. The selection is reflected
in the calculation of the weight coefficient, and the operation is presented as:

AGm
k ( f m, gm

k ) =
Lx

∑
i=1

Similarity( f m, gm
k )× f m (5)

Figure 5. Attention Gate operation.

3.2. A Physics-Informed Training Strategy

To make full use of the prior physical laws among the physical quantities being
predicted, reducing the size of the training sample, a physics-informed strategy is used
in the training process. The existing physics knowledge (Equations (1)–(3)) is discretized
by the Finite Difference Method (FDM) and integrated into a loss function to construct a
physics-informed surrogate model. The FDM is a numerical solution method that expresses
basic equations and boundary conditions in the form of function approximation.

It was assumed that an arbitrary two-dimensional elastomer is divided into a uniform
grid as shown in Figure 6, in which the intersections of the lines are the nodes.
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Figure 6. Grid diagram of finite differences.

Let f = f (x, y) be a continuous physical quantity, which can be expressed as a stress
component, displacement component, temperature, etc. Assuming that the grid spacing is
sufficiently small, then |x− x0| = h. The central difference formulas of the first and second
derivatives of x at node 0 can be obtained:(

∂ f
∂x

)
0
≈ f1 − f3

2h
,
(

∂2 f
∂x2

)
0
≈ f1 + f3 − 2 f0

h2 (6)

Similarly, the central difference formulas for the first and second derivatives at node 0
in the y direction are: (

∂ f
∂y

)
0
≈ f2 − f4

2h
,
(

∂2 f
∂y2

)
0
≈ f2 + f4 − 2 f0

h2 (7)

According to the above equations, the central difference formulas for mixed second
derivatives are:

(
∂2 f

∂x∂y

)
0
=

[
∂

∂x

(
∂ f
∂y

)]
0
=

(
∂ f
∂y

)
1
−
(

∂ f
∂y

)
3

2h
≈ 1

4h2 [( f6 + f8)− ( f5 + f7)]
(8)

For boundary points where central difference cannot be used, forward difference or
backward difference are used for discretization:(

∂ f
∂x

)
0
≈ −3 f0 + 4 f1 − f9

2h
≈ 3 f0 − 4 f3 + f11

2h
, (9)

(
∂ f
∂y

)
0
≈ −3 f0 + 4 f2 − f10

2h
≈ 3 f0 − 4 f4 + f12

2h
(10)

To deal with the prediction tasks of thermal stress and thermal displacement, a neural
network Ŷ(x, θ) is constructed, where θ =

{
W`, b`

}
1≤`≤D

, and W` is the weight matrix, b`

is the deviation vector in the neural network, and the physics-informed loss function of the
neural network is defined as:

LPINN(θ) = Ldata + Lpde (11)

where Ldata is the data loss obtained from labeled data with the loss function of Mean
Square Error (MSE), and the data loss of the task k is defined as:
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Ldatak
=

1∣∣∣P f

∣∣∣ ∑
(xk ,yk)∈P f

(
Yk − Ŷk

)2
(12)

where P f denotes the size of the data set, Ŷk represents the prediction of the model, and Yk
is the ground truth.

The aforementioned finite difference equations (Equations (6)–(10)) are used to dis-
cretize the thermoelasticity and the thermal equilibrium equations, with the central differ-
ence method for interior points and a forward/backward difference method for boundary
points. The discretized PDEs are encoded into a loss function Lpde (Lpde denotes the
physical losses of K tasks), which is defined as:

Lpde =
1∣∣∣P f

∣∣∣ ∑
(x,y)∈P f

(
Lσxx− pde + Lσyy− pde + Lσxy− pde + Lux− pde + Luy− pde

)
(13)

whereLux− pde,Luy− pde,Lσxx− pde,Lσxy− pde,Lσyy− pde mean the PDE loss of Equations (1) and (2),
respectively.The boundary loss Lbc is added to the physical loss function matrix Lpde in the
form of the matrix mask. A convolution operation can also realize the physics-informed strategy.

By training the neural network and minimizing the loss function until the best pa-
rameter θ∗ is found, we construct a physics-informed surrogate model of the thermal
deformation and thermal stress of satellite motherboards.

3.3. Uncertainty-Based Multi-Task Loss Balancing Strategy

The training goal of the MTA-UNet model is to minimize the difference between the
prediction results and the labels. For MTL, however, errors between multiple task features
cause competition between multiple tasks. To overcome this seesaw phenomenon, it is an
integral part of MTL to balance the training speed and accuracy of multiple tasks through
some loss balancing strategies.

Since the loss functions of different tasks tend to have different magnitudes, this paper
first normalized their inputs. Subsequently, to solve the problem of competition between
different tasks, the most direct approach is to use the weight coefficient wi to adjust the
proportions of the loss functions of different tasks, as shown in the following equation.

Loss =
K

∑
k

wk × Lossk (14)

However, this loss balancing method of fixed weights may not be applicable in some
cases as different tasks are very sensitive to the setting of wi, and different settings of wi
vary greatly in terms of performance.

We would like to use a dynamic weight method to balance the loss functions of
different tasks. The mainstream methods include GradNorm [38], DWA [39], DTP [40],
and Uncertainty [41,42], among which GradNorm consumes a longer computational time
as it requires gradient computation, while DWA and DTP need additional weighting opera-
tions. This paper adopts the uncertainty-based method to dynamically adjust the weight
coefficients for the loss functions of different tasks. The model in this study is constructed
based on task-dependent and homoscedastic uncertainty in aleatoric uncertainty [41].

For a certain task k, the model predicts both a prediction yk and the homoscedastic
uncertainty σk of the model. Thus, the loss function for MTL is defined as:

L(W, σ1, σ2, . . . , σk) = ∑
k

1
2σ2

k
Lk(W) + log σ2

k (15)

where W means the weight matrix, Lk(W) is the loss function of task k. σk means noise of
the model of task k, 1

2σ2
k

is the weight coefficient of the corresponding task, and logσ2
k is the
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regularization item to prevent σk from learning too large. In this way, higher weights can
be given to simple tasks, and the learning of other tasks is driven by them.

For the total of K regression tasks driven by physics, the overall loss function is
defined as:

L =
K

∑
k=1

(
1

2σ2
k
Ldatak

(W) + log σ2
k

)
+

1
2σ2

pde
Lpde(W) + log σ2

pde (16)

4. Experiment Results

In this section, the training details and the results of experiments are shown. Section 4.1
introduces the data set and training metrics. Section 4.2 discusses the effect of dynamic loss
balancing strategy, MTA-UNet, and the physics-informed method in detail, respectively.

4.1. Training Steps

Data set: In MTA-UNet , the input is a two-dimensional planar temperature field
on a 200× 200 uniform grid and the output is five corresponding thermal stress matrices
and thermal deformation matrices, including x-directional displacement ux, y-directional
displacement uy, x-directional thermal stress σxx, y-directional thermal stress σyy, and tan-
gential thermal stress σxy. The OpenFOAM software is applied to build the data sets,
and the computational domain is a uniform grid. Figure 7 shows one of the data set
samples.

Figure 7. A sample of data set.

The input temperature field is a Gaussian Random Field (GRF) [43], and the roughness
of the temperature field matrix changes when the mean and covariance of GRF are adjusted.
This paper generates training sets with sample sizes of 100, 200, 500, 1000, 2000, 5000,
and 10,000. Firstly, the prediction of the STL model U-Net and the MTL model MTA-UNet
are compared in the training set with a sufficient number of 10,000 samples to confirm
the superiority of our model. Subsequently, the MTA-UNet model is trained in training
sets with sample sizes of 100, 200, 500, 1000, 2000, and 5000, respectively, to verify the
effectiveness of the physics-informed approach. The trained models are tested in a general
test set with a sample size of 500.

Metrics: The prediction performance of different models for task k is measured by
metrics MAE and MRE, defined as:

MAEk =
1∣∣∣P f

∣∣∣ ∑
(xk ,yk)∈P f

∣∣Yk − Ŷk
∣∣

(17)
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MREk =
1∣∣∣P f

∣∣∣ ∑
(xk ,yk)∈P f

∣∣Yk − Ŷk
∣∣

Ŷk
(18)

4.2. Performance of Multiple Strategies

As mentioned in Section 3, the loss balancing technique, the MTA-UNet network and
the physics-informed training strategy are applied in the construction of the deep learning
surrogate model. In this section, we verify the effectiveness of these three techniques
separately.

4.2.1. Effectiveness of Dynamic Loss Balancing Strategies

To verify the necessity and effectiveness of the dynamic loss balancing strategy in
our MTL regression model, training is carried out with the fixed-weighted loss balancing
strategy and uncertainty-based dynamic loss balancing strategy, respectively. Figure 8
shows the training curves. The training curves of the fixed weighted strategy shock in a
certain range, making it difficult for training among multiple tasks. While the training
curves of dynamic uncertainty-based loss balancing strategy decrease at a stable speed,
enabling good prediction for multiple tasks simultaneously. The results indicate that if the
loss function of MTL is balanced by fixed weight, multiple tasks will deviate in different
directions due to different task objectives.

In this way, the better learning of one task decreases the accuracy of another. Unlike
fixed weight, the loss functions of multiple tasks simultaneously decrease at a stable speed
with the uncertainty-based dynamic balancing strategy. The dynamic strategy avoids the
phenomenon of competition and enables multiple tasks to achieve good performance si-
multaneously.

(a) Fixed weighted loss balancing strategy (b) Uncertainty-based loss balancing strategy

Figure 8. Training curves of different loss balancing strategies.

4.2.2. Performances of Models

We train the MTA-UNet model and the U-Net model in the training set of 10,000
samples and test them in the general test set, respectively. The MAE and MRE errors
obtained from the training are shown in Tables 1 and 2. The σMAE and σMRE mean the
standard deviations of MAE and MRE, respectively, and the data in bold represent the
result of MTA-UNet.
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Table 1. The MAE of different networks.

Task
MAE σMAE

U-Net MTA-UNet U-Net MTA-UNet

ux 1.9754 × 10−6 1.1556 × 10−6 ±8.2727 × 10−7 ±1.9903 × 10−7

uy 2.0947 × 10−6 1.0721 × 10−6 ±8.3263 × 10−7 ±2.2980 × 10−7

σxx 0.0945 0.0713 ±0.01 ±0.0097
σyy 0.0924 0.0728 ±0.01 ±0.0098
σxy 0.0474 0.0402 ±0.01 ±0.0087

Table 2. The MRE of different networks.

Task
MRE/% σMRE

U-Net MTA-UNet U-Net MTA-UNet

ux 2.23 1.30 ±0.0056 ±0.0044
uy 2.39 1.21 ±0.0058 ±0.0039
σxx 1.27 0.96 ±0.0036 ±0.0027
σyy 1.29 0.98 ±0.0039 ±0.0027
σxy 1.36 1.03 ±0.0038 ±0.0030

As for the comparison between the STL U-Net and the MTL MTA-UNet model pro-
posed, it can be seen in Table 1 that the MTA-UNet exhibits better prediction performance
on each physical prediction task by fully sharing feature information between different
tasks. Especially in ux, the proposed MTL MTA-UNet model reduces the MAE by at least
41% lower than the STL U-Net model in our task. Since different tasks have different noise,
the sharing of feature parameters between tasks by MTA-UNet cancels part of the noise
in different directions to a certain extent, improving the prediction accuracy. According
to variances of MAE and MRE in Table 2 for different models, the MTA-UNet model is
more robust than U-Net. The sharing mechanism in MTA-UNet plays the role of data
enhancement. Moreover, some parameters required in a single task are better trained by
other tasks, and the sharing of features between different tasks make sense in this respect.
The effectiveness of the MTA-UNet can be attributed to three reasons. Firstly, implicit data
augmentation. The simultaneous training of multiple tasks effectively increases the number
of training instances. As different tasks have different noise patterns, a model that learns
several tasks simultaneously is able to learn more general representations. Secondly, the
eavesdropping mechanism. With the sharing in MTA-UNet, we can allow the model to
eavesdrop features that are hard to learn from other tasks. Thirdly, the regularization mech-
anism. In MTA-UNet, Multi-Task Learning plays the role of regularization by introducing
an inductive bias, which reduces the risk of overfitting.

In addition, we investigated the prediction performance. According to Table 2, the min-
imum per-pixel MRE of the proposed MTA-UNet model is only 0.96%, and the model shows
good performance in predicting thermal stress and thermal deformation of satellite mother-
boards. Figure 9 shows the prediction result of MTA-UNet. The mean per-pixel error is
calculated with high precision according to the ground truth, demonstrating the feasibility
of using the MTA-UNet model for regression between ultra-high dimensional variables.

Then, the training cost was discussed. This deep learning surrogate model can reduce
the prediction time of thermal stress and thermal deformation from 2 min to 0.23 s, effec-
tively saving the time cost, which also verifies the effectiveness of the deep learning-based
thermal stress and thermal deformation surrogate model.

4.2.3. Effects of the Physics-Informed Strategy

To verify the contributions of the physics-informed strategy to the accuracy of the
model and sample size, the MTA-UNet surrogate model is trained in data sets with different
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sample sizes and tested in a general test set, and the comparison of MRE between data-
driven only and the physics-informed is shown in Table 3. The σMRE means the standard
deviation of MRE, and the data in bold represent the result of the physics-informed strategy.

According to the experimental results, the physics-informed surrogate model exhibits
better performance than the data-driven only in data sets with different sample sizes.
Relatively speaking, the physics-informed strategy improves more significantly in the case
of small samples, and the gap between the data-driven strategy and the physics-informed
strategy gradually narrows as the number of samples increases, which demonstrates the
potential of the physics-informed strategy in cases with small sample size.

(a) Sample 1

(b) Sample 2

Figure 9. Prediction of the MTA-UNet model.

Table 3. MRE of training strategies on dataset with different scales.

Scale Method MRE/% σMRE
ux uy σxx σyy σxy ux uy σxx σyy σxy

200 Data 6.46 6.42 4.43 4.55 5.52 ±0.0421 ±0.0396 ±0.0145 ±0.0143 ±0.0200
PDE 6.07 6.02 4.02 4.17 5.11 ±0.0305 ±0.0297 ±0.0103 ±0.0102 ±0.0142

500 Data 3.72 3.76 2.77 2.78 2.93 ±0.0185 ±0.0193 ±0.0083 ±0.0088 ±0.0104
PDE 3.48 3.50 2.37 2.45 2.66 ±0.0095 ±0.0096 ±0.0065 ±0.0056 ±0.0093

1000 Data 3.11 3.19 1.99 2.01 2.29 ±0.0114 ±0.0115 ±0.0056 ±0.0057 ±0.0086
PDE 2.96 2.98 1.82 1.78 2.09 ±0.0073 ±0.0073 ±0.0046 ±0.0044 ±0.0071

2000 Data 2.62 2.65 1.55 1.61 1.72 ±0.0089 ±0.0092 ±0.0049 ±0.0052 ±0.0065
PDE 2.49 2.51 1.41 1.40 1.53 ±0.0063 ±0.0062 ±0.0044 ±0.0042 ±0.0044

5000 Data 2.28 2.41 1.19 1.25 1.41 ±0.0057 ±0.0069 ±0.0039 ±0.0040 ±0.0046
PDE 2.17 2.30 1.11 1.12 1.22 ±0.0048 ±0.0052 ±0.0029 ±0.0030 ±0.0031

In addition, we conducted training on a smaller size of samples. Figure 10 shows
the prediction obtained by the data-driven strategy and the physics-informed strategy,
respectively, for 100 samples. For the data-driven results in Figure 10, we can find a clear
difference compared to the label, but the physics-informed results are closer, especially
in the near-boundary domain. The comparison shows that physics-informed strategy
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obtains predictions that are more in line with the practical meaning of physics and realistic
working conditions.

Through the physics-informed loss function, the prediction results are guided in the
direction that conforms to the physical law, which provides the possibility of being con-
sistent with physical laws, reducing the search space of deep learning surrogate models.
What’s more, compared with the data-driven model, the deep learning model that fol-
lows the physical characteristics is more likely to be generalized to the case outside the
sample distribution.

Figure 10. Predictions of the data-driven strategy and the physics-informed strategy.

5. Conclusions

To solve the regression problems of multiple physical quantities in thermal-mechanical
coupled fields, this paper proposes a novel MTL network MTA-UNet. The MTA-UNet
integrates the strengths of U-Net and MTL, having the advantage of selective sharing pa-
rameters of different tasks and layers. With shared encoding layers, task-specific decoding
layers, and AG feature filtering operations of MTA-UNet, the correlation between different
tasks is fully learned. The performance of the deep learning-based surrogate model is
greatly enhanced, and the training time and system memory are also effectively decreased.
In our problem, the proposed MTL MTA-UNet model reduces the MAE by at least 41%
lower than the STL U-Net. Subsequently, an uncertainty-based dynamic loss-weighted
strategy is used among loss functions of different tasks. With this strategy, the training
speed and accuracy of each sub task are well balanced. In addition, a physics-informed
method is applied during training to rapidly predict the thermal stress and thermal de-
formation of satellite motherboards. In the process, a set of PDEs is encoded into a loss
function, making full use of the prior physics knowledge. Compared with the data-driven
only strategy, the physics-informed method exhibits better performance in training sets
with different sample sizes and obtains solutions more consistent with the laws of physics.
Experiments demonstrate the framework we used reduces the MRE by at least 11% in
our problem.

Despite the MTA-UNet neural network we constructed for the regression problems of
multiple physical quantities, further research is still required. As our model structure is
strongly general, it is worth exploring strategies to enhance the balance between multiple
tasks further. Extension to more complex boundaries and more complicated nonlinear
problems is also valuable. Furthermore, embedding physics knowledge into the network
structure remains a challenging work.
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