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Abstract: Air traffic situation prediction is critical for traffic flow management and the optimal
allocation of airspace resources. In this study, the multi-sector airspace scenario is abstracted into
an undirected graph. A spatiotemporal graph convolutional network (STGCN) model is developed
to portray the spatiotemporal correlation between the sector operational situation changes. The
model can predict multi-sector operational situations using time series data such as sector operational
situation data and traffic volume within the sector. Experimenting on the air traffic situation dataset
of 30 area sectors in the Shanghai control area revealed that the STGCN model has a prediction
accuracy of above 90%, and it outperforms the benchmark method of traditional traffic prediction.
This proves the effectiveness of the proposed situation prediction model.

Keywords: graph convolutional network; gated recurrent unit; airspace air traffic situation prediction;
spatiotemporal correlation

1. Introduction

As flight traffic continues to increase, the traditional air traffic management methods
can no longer meet the current practical needs. Air traffic situation prediction can help air
traffic management departments anticipate the trend of future operation status to identify
congested airspace and formulate traffic balancing and management measures in advance.
Large-scale controlled airspace is usually divided into multiple controlled sectors. In the
actual operation process, the operation statuses of neighboring sectors are interrelated and
affect each other. If the traffic situation of each sector is predicted separately, the coupling
relationship between the sectors is ignored. Therefore, the traffic situation prediction
problem in large-scale airspace needs to consider the correlation between sectors.

Air traffic situation assessment is an objective representation of the airspace oper-
ational status, and its results are also the basis for air traffic situation prediction. The
mainstream assessment methods mainly represent the air traffic situation with the help of
the concept of air traffic complexity (also called airspace complexity or air traffic control
complexity) [1–3]. Since there is no precise definition of this concept and many factors
affect air traffic complexity, researchers can deconstruct air traffic complexity to represent
air traffic situations from multiple perspectives [4–6].

Air traffic complexity evaluation studies can be broadly divided into two categories,
and their representative studies are shown in Table 1. The first type of research evaluates air
traffic complexity by analyzing the operation process from a single evaluation perspective,
such as the number of potential flight conflicts and flight trajectory disorderliness. The
analytical formula can directly calculate complexity index. However, it is challenging to
represent the overall complexity of air traffic comprehensively because it only focuses
on one critical process or complex situation in the air traffic operation process. Another
type of study designs and selects multiple indicators affecting air traffic complexity from
multiple perspectives and tries to build an air traffic complexity evaluation index system
based on the concept of dynamic density. Linear regression and machine learning methods
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establish the mapping relationship between the indicators and the posture. However,
currently, the sample set is often obtained using controllers’ manual scoring, so the cost of
obtaining labeled samples is high. Moreover, a controller is often responsible for only one
specific sector, so only samples from that specific sector can be evaluated, which leads to
the fact that models trained using data from specific sectors can only be used on the specific
sectors involved in the training. The evaluation methods of semi-supervised learning and
migration learning require only a small number of labeled samples to train the model.
However, the labeled samples are challenging to apply to other sectors. The unsupervised
clustering approach does not require labeled samples but still requires air traffic controllers
to evaluate the model’s accuracy.

Table 1. Representative studies of air traffic complexity.

Research Type Researchers Assessment Perspectives and Indicators Assessment Methodology

Single Perspective

K. Lee [2] Analysis of traffic complexity based on aircraft
disturbance effects

Representation of airspace
complexity as a

complexity diagram

M. Prandini [7] Conflict risk estimation of flight trajectories

Compute the analytic
approximation of the

complexity measure for each
point in the airspace

D. Delahaye [1,5,8] Trajectory disorder metric based on
Lyapunov exponent

Representation of airspace
complexity as a

complexity diagram

Multi-Perspective

I.V. Laudeman [4]

The dynamic density model was constructed by
selecting eight indicators, including the number
of aircrafts, the number of conflicts, and the
number of course changes

Linear regression method

D. Gianazza [6,9,10]
Considering two dimensions of airspace
structure and traffic characteristics, a total of
28 indicators were selected

BP neural network model

M. Xiao [11]
Based on the original evaluation indicators
constructed by D. Gianazza, seven key indicators
were selected from them for the experiment

BP neural network model

X. Zhu [12] Complexity evaluation refers to the evaluation
index system constructed by M. Xiao

Semi-supervised learning
methods

X. Cao [13]
The evaluation system constructed by D.
Gianazza was chosen for the
complexity evaluation

Transfer learning methods

Z. Zhang [14] Based on the original evaluation index system
constructed by D. Gianazza

Unsupervised clustering
methods

For the problem of air traffic situation assessment, no standardized assessment method
has been formed yet. The reasons are mainly in two aspects: different scholars have
constructed various air traffic complexity evaluation index systems, but a recognized
evaluation system has not been formed; using machine learning methods to evaluate the
air traffic situation, the calibration process, and the validation process of control experts
for large sample sizes are costly, and it is not easy to eliminate the subjective influence of
control experts. Since the air traffic situation samples in different sectors are not universal,
the air traffic situation assessment process with controllers’ participation also limits the
assessment model’s use, which does not apply to the situation assessment process in other
sectors and large-scale airspace. Therefore, a more concise and objective way to evaluate the
traffic situation in large-scale airspace would be to eliminate the subjectivity and improve
the applicability and accuracy of the air traffic situation assessment model.
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Unlike the method of using sector operation status data (sector merging and splitting
operation information) to classify the operation of airspace into three states [10], this paper
fully applies the flight operation data and flow control information released by the air
traffic management department to define three types of sector operation states: free state,
saturation state, and intermediate state. Flow control information advises the restriction
of subsequent flight operations, issued by the controller after applying to the air traffic
flow management department voluntarily when their workload is too high; consequently,
it can reflect the controller’s workload more accurately than the sector operation status
data, and there is no data distortion. Compared with calculating indicators to assess the
air traffic situation, the flow control data represents the controller’s judgment of the air
traffic situation, so there is no need for further verification by control experts. In sample
acquisition, the method only needs to obtain the flow control and flight flow data from the
air traffic management department for the target area and target time range to calibrate
many samples. The sample acquisition process is fast and straightforward.

Most of the research on air traffic situations has focused on how to measure it, while
few studies have focused on the problem of predicting air traffic situations. Related
studies are also mainly focused on predicting traffic flow and the indicators related to
air traffic situations [15,16]. In the actual operation process, the operational status of
neighboring sectors is often interrelated due to the connection of the route network between
sectors. If we only focus on the individual sector’s situation, the interaction effect between
sectors will be ignored. The situation prediction results are difficult to apply to actual air
traffic management. Therefore, the interaction between sectors cannot be neglected when
predicting the traffic situation in large-scale airspace.

In recent years, spatiotemporal prediction models constructed using graphical convo-
lutional networks (GCN) and recurrent neural networks (RNN) have become a research
hotspot in traffic prediction. The related literature is summarized in Table 2. Among them,
different studies have also been introduced in the modeling process, such as the attention
mechanism [17,18], the sequence-to-sequence (Seq2Seq) model [19] and the Transformer
model [20]. The modeling approach of combining recurrent neural networks with GCN can
predict the sectoral situation in the time dimension. More importantly, it can integrate the
interaction effects between sectors in the spatial dimension, so this paper uses the modeling
framework of graphical convolutional networks combined with RNN to study large-scale
airspace operational situation prediction.

Table 2. Summary of spatiotemporal prediction modeling methods.

Number Model Year Spatial Dimension Time Dimension External Influences

1 A3T-GCN [17] 2020 GCN GRU + Attention —
2 ASTGCN [18] 2019 GCN + Attention CNN + Attention —
3 DCRNN [19] 2018 GCN GRU + Seq2Seq —
4 STGNN [20] 2020 GCN GRU + Transformer —
5 T-GCN [21] 2019 GCN GRU —
6 AST-GCN [22] 2021 GCN GRU POIs, Weather
7 AGCRN [23] 2020 GCN GRU —
8 DGCRN [24] 2021 GCN GRU + Seq2Seq —
9 ST-GCN [25] 2018 GCN CNN —

10 Graph-WaveNet [26] 2019 GCN CNN —
11 STSGCN [27] 2020 GCN GCN —
12 STFGNN [28] 2021 GCN CNN —

In this paper, by utilizing the ability of a graph neural network to analyze graph data,
the sectors are abstracted as nodes, the spatial connections between sectors are edges, and
multiple sectors are represented as undirected graphs. The spatial correlation between
airspace sectors is learned using GCN modeling and combined with an RNN to predict the
future airspace operational situation.
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The objective of this paper is to make full use of the traffic control data and sector traffic
data to complete the rapid calibration of the air traffic situation and use the spatiotem-
poral graph convolutional network (STGCN) model to realize the situation prediction
in large-scale airspace. This will provide auxiliary decision-making information for air
traffic management departments when formulating traffic management strategies and
implementing traffic management measures.

This study makes the following novel contributions to the literature:

1. A type of operational data that more accurately reflects the controller’s workload,
i.e., flow control data, was used to accomplish a rapid calibration of air traffic situations.

2. Considering the spatial and temporal correlation between sectors, the scope of the
study is not limited to a single sector. A large-scale airspace operational situation
prediction model is established based on the GCN. The prediction results can reflect
the characteristics of the changes in the operational status of large-scale airspace,
which can provide a decision basis for optimizing the traffic flow and sector resource
allocation.

The rest of the paper is organized as follows: Section 2 describes the problem of
assessing and predicting the traffic situation in large-scale airspace. Section 3 describes
the framework and construction process of the STGCN model. Section 4 presents the
experimental dataset of the model, parameter settings, and experimental results. Section 5
concludes the paper.

2. Air Traffic Situation Assessment and Prediction
2.1. Air Traffic Situational Assessment Method

Air traffic situations can be understood as the operational status in a specific airspace
environment (sector structure and meteorological conditions). Different scholars have
proposed various methods to characterize the airspace operational situation [1,4,6]. As
mentioned above, for large-scale airspace, an objective and concise way must be designed
to solve the air traffic situation assessment problem, while avoiding the construction of
a complicated air traffic complexity evaluation index system and the sample calibration
process by air traffic control experts.

This paper uses flow control information combined with flight flow information to
determine the operational status of a sector. Flow control information is a kind of instruction
issued by air traffic management to restrict flight flow at a specific time and in a particular
area. It is only given when controllers are overloaded with work or encounter specific
circumstances so that it can indicate the operational status of the restricted airspace. The
spatial and temporal accuracy of the flow control information also provides the conditions
to count the operating situation of the airspace under a specific period.

In this study, we use the sector operational saturation degree to characterize the
operational status and define three airspace operational states: free state, saturation state,
and intermediate state based on the real traffic statistics and flow control information, as
shown in Figure 1. When high traffic volume or bad weather causes an excessive controller
load, the air traffic control department issues flow control instructions to ensure operational
safety. In this study, we consider the operational state of the sector during the flow control
period as a saturation state with a saturation degree of 100%.

The free state is defined as the operational state of the sector during the hours of
extremely low traffic. According to the sector hourly flight volume statistics, as shown in
Figure 2, the flight volume is the lowest from 00:00 to 06:00 daily. Thus, the sector is defined
to be in a free state from 00:00 to 06:00 daily. Due to the low number of flights in the free
state, the operating pressure is low. The sector saturation value is set to 0 in this state. The
intermediate state is the operational state other than the free state and saturation state with
a saturation degree value between 0 and 100%.
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Figure 1. The air traffic situation of the four control sectors in the Shanghai control area at differ-
ent times.

In this paper, the state labels of free state, intermediate state and saturated state
are represented by three rank values of 1, 2, and 3, respectively. Considering that the
three predicted statuses are ordered variables with a size relationship, the loss value
calculation is not accurate enough when the prediction accuracy is directly measured by
the classification method. Therefore, this paper takes the state labels (1, 2, and 3) set for
a free state, intermediate state, and saturated state as anchor points and measures the
prediction accuracy by regression prediction, after which the nearest state anchor point is
selected as its final air traffic situation prediction result, according to the prediction value
of the sample.

2.2. Air Traffic Situation Prediction Problem

In order to reasonably allocate the workload of air traffic controllers, the airspace
is divided into sectors according to the distribution of routes and waypoints, and each
sector is assigned its corresponding controller to ensure operational safety. Sectors are the
fundamental units of airspace operation, and the coordinated operation of multiple sectors
results in seamless air traffic service. To represent the interrelations between sectors, this
study abstracts the controlled airspace as an undirected graph with sectors as nodes v and
the connection relationship between sectors as edges e. Taking Figure 1 as an example, the
four sectors in the graph are abstracted as nodes. The existence of an airway connection
between sectors determines whether or not the sectors are connected by edges. Finally, as
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shown in Figure 3, the undirected graph G with four nodes (v1, v2, v3, v4) and five edges
(e1, e2, e3, e4, e5) is obtained.
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Multi-sector airspace operational situation prediction aims to predict the operational
situation in future periods based on the air traffic situation in past periods. The traditional
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time series forecasting method can only predict the trend of the operational situation from
the time dimension; however, it cannot analyze the interrelation between sectors from the
spatial dimension. In this study, the airspace network is first abstracted into the form of an
undirected graph for analysis. As shown in Figure 3, the undirected graph G is an irregular
graph data structure that does not apply to the traditional convolutional neural network
model. GCN can handle graph data in non-Euclidean space and is currently beneficial in
predicting road traffic parameter issues [21,22,29,30]. Thus, we use the GCN for modeling.

The prediction process is based on the time series data X ∈ Rn×t generated by air traffic
situation features, where n denotes the number of nodes and t denotes the number of time
slices. The spatial features among the nodes are first studied using a graphical convolutional
network, which is further combined with an RNN for the long-term prediction of air traffic
situations. The goal of multi-sector operational situation prediction is to develop a function
f (•) capable of mapping the situation characteristics of the past T′ time slices to those of
the future T time slices. For a given airspace network graph G, the situation prediction
problem can be represented by Equation (1).

[X(t−T′+1), · · · , X(t); G]
f (•)−−−−−−→ [X(t+1), · · · , X(t+T′)] (1)

3. Air Traffic Situation Prediction Model Based on GCN

STGCN, a combination of GCN and RNN, is established to study the spatiotemporal
correlation between the nodes on the graph by considering the spatiotemporal situation
characteristics of each sector in the past as the input of the prediction model. The overall
model framework is shown in Figure 4, which primarily consists of three parts: the input
module, the spatiotemporal prediction module, and the output module.
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The traffic volume, the most intuitive dynamic influencing factor, is closely related to
changes in the air traffic situation. The higher the traffic volume, the more frequently the
aircraft status changes, and the more complex the operational situation becomes. In this
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study, real-time traffic volume is used as the dynamic feature and air traffic situation data
are integrated as the model input.

The airspace is divided into n sectors. The situation feature matrix is s ∈ Rn×t, and the
traffic volume matrix is D ∈ Rn×t in time period 1 ∼ t. The new feature matrix X = [S, D]
is obtained by merging S and D as the model input. The feature matrix is merged as shown
in Equation (2). The final input of the model is X ∈ Rn×2t.

x11 x12 x13 · · · x1t
x21 x22 x23 · · · x2t
x31 x32 x33 · · · x3t

...
...

...
. . .

...
xn1 xn2 xn3 · · · xnt

 =


s11 s12 s13 · · · s1t
s21 s22 s23 · · · s2t
s31 s32 s33 · · · s3t
...

...
...

. . .
...

sn1 sn2 sn3 · · · snt

d11 d12 d13 · · · d1t
d21 d22 d23 · · · d2t
d31 d32 d33 · · · d3t

...
...

...
. . .

...
dn1 dn2 dn3 · · · dnt

 (2)

The spatiotemporal prediction module combines GCNs and gated recurrent units
(GRUs) to model and analyze the spatiotemporal correlation between sectors. The spatial
structure characteristics of the sectors are understood based on GCN, which is based on the
graph Fourier transform and the convolution theorem, first converting the data from the
spatial domain to the spectral domain for processing, and then back to the spatial domain
after processing.

Assume that the airspace has n sectors, and the node feature matrix is X. Considering
the airspace operational situation feature x ∈ Rn at time t as the graph signal, the convolu-
tion of x with filter g on the spectral domain is defined as shown in Equation (3) according
to the convolution theorem:

x ∗ g = U(UTx�UT g) = UgθUTx (3)

where gθ is the parameterizable convolution kernel. U is the Fourier basis obtained by
performing an eigenvalue decomposition L = UΛUT of the Laplacian matrix L of the graph.
Λ = diag([λ0, · · · , λN−1]) ∈ Rn×n is the diagonal matrix composed of the eigenvalues
of L. In spectral graph theory, the graph structure is represented by L with the formula
L = D− A, where D is the degree matrix and A is the adjacency matrix. The features of
the graph structure are extracted by performing an eigenvalue decomposition of L. The
convolution of each layer of the graph in the GCN can be defined as Equation (4):

Hl+1 = f (Hl , A) = σ(ÂHlW l) (4)

where Hl denotes the node vector of layer l and W l denotes the parameters of the corre-
sponding layer. Â = D̃−

1
2 ÃD̃−

1
2 , Ã = A + IN , and D̃ii = ∑j Ãij. In this study, a two-layer

GCN is designed to study the spatial structural features between sectors in the airspace,
and the model expression is given in Equation (5). The model structure is shown in Figure 5.
The adjacency matrix A and the merged feature matrix X are used as model inputs. ReLU
is used as the activation function to study the new airspace operational situation features,
denoted as Z = ÂReLU(ÂXW0)W l .

f (X, A) = σ(ÂReLU(ÂXW0)W1) (5)

Using Z as the input, GRU for time-dependent modeling sets two gate functions: the
update gate ut and the reset gate rt. The network structure is shown in Figure 6. Due to
the gating mechanism, GRU retains the changing trend of historical situation information
when predicting air traffic situations and studies the dynamic time-varying characteristics
from the situation data. GRU predicts the future air traffic situation taking the airspace
operational situation characteristics zt of the current moment and the hidden state of the
previous moment ht−1 as the input ht. h̃t is the candidate state of the current moment. The
state update of the GRU network is shown in Equations (6)–(9). The whole spatiotemporal
prediction process is shown in Figure 4.
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ut = σ(Wuzt + Uuht−1 + bu) (6)

h̃t = tanh(Whzt + Uh(rt � ht−1) + bh) (7)

rt = σ(Wrzt + Urht−1 + br) (8)

ht = ut � ht−1 + (1− ut)� h̃t (9)

STGCN is trained using the Adam optimizer. The model training goal is to get the
predicted value as close to the true value as possible, thus obtaining the loss function of the
model training as shown in Equation (10):

Loss = ‖yt − ŷt‖+ λLreg (10)

where Lreg denotes the L2 regularization, and λ is the hyperparameter controlling the
regularization rate.
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4. Experiment
4.1. Dataset

Thirty sectors in the Shanghai control area were selected for the experiment. The
experimental dataset included the adjacency matrix of the 30 sectors, the air traffic situation
data of the sectors, and the traffic volume statistics.

• Adjacency matrix The Shanghai control area contains 30 sectors. The adjacency matrix
was constructed based on whether there was a route connection between the sectors. If
there was a route connection between sector i and sector j, Aij = 1; otherwise, Aij = 0.
The adjacency matrix A ∈ R30×30 was obtained through statistics.

• Airspace traffic situation data First, based on the daily traffic volume statistics and
flow control information of each sector in Shanghai from 4 August 2018 to 31 October
2018, the free state periods and saturation state periods of each sector were determined.
Second, the remaining unmarked periods were used as intermediate states. Third,
the sample states of each sector were marked in 15-min time slices. The reason for
marking the sector traffic situation in 15-min time slices is that air traffic management
departments often use 15-min time slices to measure the sector’s operational status
and develop and implement traffic control strategies. Furthermore, this paper focuses
on the air traffic situation in the sector rather than the operational status changes of
specific aircrafts, so a shorter time unit is not chosen. The obtained state dataset of
each sector contained a total of 8544 data for 89 days (96 × 89). The data of all sectors
were further combined to obtain the feature matrix S ∈ R30×8544.

• Sector traffic volume data Based on the radar trajectory data from 4 August 2018 to 31
October 2018, the sector traffic volume information was counted in 15-min time slices.
The traffic volume dataset of each sector contained a total of 8544 (96 × 89) data for
89 days, and the dynamic feature matrix D ∈ R30×8544 for 30 sectors was obtained.

4.2. Parameter Setting

The model was compiled based on TensorFlow. Root-mean-square error (RMSE),
mean absolute error (MAE), and accuracy were used as model evaluation metrics. The
formulae are shown in Equations (11)–(13), where yt denotes the true label value, ŷt denotes
the predicted value, and n denotes the number of predicted samples.

RMSE =

√√√√1/n
n

∑
i=1

(yt − ŷt)
2

(11)

MAE = 1/n
n

∑
i=1
|yt − ŷt| (12)

Accuracy = 1− ‖yt − ŷt‖F
‖y‖ (13)

The average precision and recall of each class of samples were used to measure the
model’s classification performance after the training was completed. Precisioni and Recalli
denote the precision and recall of the samples of class i. true positivei indicates the case
where the model correctly predicts the samples of that class; f alse positivei is the case
where the model incorrectly predicts the samples of that class; and f alse negativei is the
case where the samples of that class are predicted as samples of other classes and are
incorrectly predicted.

The parameters used in the model training process included learning rate, training set
ratio, sequence length, model training step, number of GRU units, and number of model
training epochs. The learning rate was set to 0.001, and the training set ratio was set to
0.8. The model training step length, the number of GRU units, and the number of model
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training epochs were determined by parameter experiments and were finally set to 16, 100,
and 3000, respectively. The experimental results are shown in Figure 7.

Precisioni =
true positivei

true positivei + f alse positivei
(14)

Recalli =
true positivei

true positivei + f alse negativei
(15)
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Figure 7. Parametric experimental results. (a). Effect of different training steps on STGCN perfor-
mance with 100 GRU units and 500 model training epochs. (b). Effect of the different numbers
of GRU units on STGCN performance with 500 training epochs and 16 training steps. (c). Effect
of the different number of training epochs on STGCN performance with 100 GRU units and 16
training steps.

Model training was performed using five-fold cross validation. The training and
testing data were randomly selected from the total dataset. The data size ratio of the
training set to the testing set was 4:1.

The model batch size was set to (8, 16, 32, 64, 100, 128), and the optimal batch size was
discovered under the conditions of 100 GRU units and 500 model training epochs. The
experimental results are shown in Figure 7a. The experimental results revealed that the
model training effect was the best when the model training batch size was 16.

• The range of the number of GRU units is generally chosen as an exponent of 2. The
range of the number of GRU units was set to (8, 16, 32, 64, 100, 128) in the experiments
of this study. The experimental effects of different numbers of GRU units were tested
by fixing the number of model training epochs to 500 and the training step size to
16, as shown in Figure 7b. The experimental results revealed that the model training
effect tended to be stable when the number of GRU units was 100; thus, the number of
model training GRU units was set to 100.
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• The range of model training epochs was set to (500, 1000, 1500, 2000, 3000, 3500). The
experimental effect of different training epochs was tested when the training step
was 16 and the number of GRU units was 100, and the results are shown in Figure 7c.
The experimental results revealed that the model training results tended to be stable
when the number of model training rounds reached 3000; thus, the number of model
training epochs was set to 3000.

4.3. Experimental Results

The data of 12 historical time slices were used to predict the data of 1–4 future time
slices, i.e., the prediction of the future 15/30/45/60 min of the situation characteristics.
This section evaluates the prediction effectiveness of the STGCN model along with several
benchmark models on the multi-sector air traffic situation based on the following three
evaluation metrics: RMSE, MAE, and Accuracy. The benchmark comparison models
include the History Average Model (HA), Autoregressive Integrated Moving Average
Model (ARIMA), SVR, LSTM, and GRU models. The STGCN-nef model has the same
structure as the STGCN model, consisting of a two-layer GCN and a one-layer GRU
network; however, the dynamic feature of traffic volume is not incorporated in the model’s
input. The comparison of the experimental results of the above models is shown in Table 3.

Table 3. Comparing the regression prediction performance of different models on the dataset of air
traffic situation in 30 Shanghai control sectors.

Prediction
Range Metrics HA ARIMA SVR LSTM GRU STGCN-

Nef STGCN

15-min
RMSE 0.120 1.302 0.257 0.241 0.203 0.185 0.153
MSE 0.056 1.230 0.191 0.152 0.128 0.099 0.084

Accuracy 81.20% 27.70% 86.60% 87.50% 89.40% 90.40% 92.00%

30-min
RMSE 0.120 1.301 0.275 0.262 0.241 0.217 0.165
MSE 0.056 1.229 0.213 0.168 0.159 0.119 0.087

Accuracy 81.20% 27.80% 85.70% 86.40% 87.50% 88.70% 91.40%

45-min
RMSE 0.120 1.300 0.298 0.282 0.280 0.247 0.168
MSE 0.056 1.228 0.230 0.193 0.197 0.138 0.085

Accuracy 81.20% 27.80% 84.40% 85.40% 85.40% 87.10% 91.30%

60-min
RMSE 0.120 1.301 0.313 0.300 0.291 0.265 0.179
MSE 0.056 1.230 0.243 0.202 0.202 0.150 0.090

Accuracy 81.20% 27.80% 83.70% 84.40% 84.90% 86.20% 90.70%

Based on the experimental results in Table 3, a comparative analysis was conducted to
obtain the following four conclusions:

1. The STGCN model has a high prediction accuracy. The prediction accuracy of the
STGCN model for the future 15 min, 30 min, 45 min, and 60 min is above 90%;
the prediction accuracy of benchmark models such as HA, SVR, LSTM, and GRU
is above 80%; and the prediction accuracy of the ARIMA model is relatively low,
i.e., approximately 27%. The experimental results fully demonstrate the predictive
advantages of the STGCN model.

2. The STGCN model has an excellent long-term predictive ability. Further analysis of
the STGCN model prediction accuracy for the future 15 min, 30 min, 45 min, and
60 min revealed that the model prediction accuracy is the highest when the prediction
time step is 15-min (92.00%). The model prediction accuracy decreases slightly when
the model prediction time step is 60-min (90.70%). However, the overall model
prediction accuracy is above 90%.

3. The STGCN model has excellent spatiotemporal prediction performance. The predic-
tion performance of two benchmark models, LSTM and GRU, were compared with
STGCN. The highest prediction accuracies of the LSTM, GRU, and STGCN models
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are 87.5%, 89.40%, and 92.00%, respectively. The prediction performance of the GRU
model is better than that of the LSTM model; however, the overall prediction accuracy
of both the GRU and LSTM models is lower than that of the STGCN model. This
indicates that compared with the traditional time series prediction models, the STGCN
model effectively learns the spatial structural features between sectors through the
GCN to achieve more accurate situation prediction results.

4. The STGCN model effectively improves the model prediction accuracy by merging
dynamic features. Comparing the prediction accuracy of the STGCN model and the
STGCN-nef model for the future 15 min, 30 min, 45 min, and 60 min changes in
the situation revealed that the STGCN model outperforms the STGCN-nef model
for multiple time steps. This shows that the STGCN model effectively improves the
prediction by merging the dynamic features of traffic volume.

The classification accuracy and recall results of the STGCN model and the baseline
model in predicting different time steps are shown in Table 4, in which the classification
performance of STGCN outperformed the other five baseline models and STGCN-nef in all
four types of time steps. Although the classification precision of STGCN decreased when
the prediction step was gradually increased, the overall classification precision and recall
remained above 94%, further indicating that STGCN has better prediction precision and
long-term prediction ability.

Table 4. Comparing the classification performance of different models on the dataset of air traffic
situations in 30 Shanghai control sectors.

Prediction
Range Metrics HA ARIMA SVR LSTM GRU STGCN-

nef STGCN

15-min
Precision 80.98% 38.61% 91.82% 95.85% 96.28% 96.32% 97.91%

Recall 79.17% 49.08% 91.81% 92.75% 94.52% 95.05% 97.71%

30-min
Precision 80.98% 38.53% 90.25% 93.47% 94.06% 94.70% 97.15%

Recall 79.17% 49.22% 90.22% 90.86% 91.22% 93.64% 96.02%

45-min
Precision 80.98% 38.47% 89.68% 91.38% 93.40% 92.57% 96.64%

Recall 79.17% 49.51% 89.64% 88.53% 89.81% 91.27% 95.95%

60-min
Precision 80.98% 38.35% 87.09% 90.09% 91.86% 92.15% 95.89%

Recall 79.17% 49.52% 88.73% 86.77% 87.09% 90.04% 94.33%

5. Conclusions

The main contributions of this paper include:

1. Rapid calibration of the air traffic situation using flow control data accurately reflects
the controller’s workload. Three sector operational states—a free state, saturated
state, and intermediate state—were defined by combining traffic statistics and flow
control information. This effectively solves the difficulty of obtaining a large number
of labeled samples. However, the intermediate state samples are currently not defined
with a specific saturation degree. In the future, we will continue to refine the saturation
degree of the intermediate state to increase the accuracy of the airspace operation
status prediction results.

2. By abstracting the airspace network as an undirected graph, the STGCN is constructed
to predict the changing characteristics of the air traffic situation in large-scale airspace.
The experimental results in 30 sectors within the Shanghai control area show that
the prediction effect of the STGCN model is significantly better than that of the
traditional temporal prediction model. It proves that the GCN can effectively capture
the interaction relationships between sectors and achieve more accurate situational
predictions. In the future, we will continue to refine the construction of a large-scale
airspace network and try to abstract it as a directed graph. We will also attempt to
introduce an attention mechanism in STGCN to improve its prediction performance.
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3. The STGCN model has an average prediction accuracy of more than 90% for the
future situation within 1 h, which indicates a good long-term predictive ability. In
comparison with other benchmark methods, the STGCN model has significant advan-
tages and can be applied to the prediction of multi-sector airspace operations in large
regional control centers.
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