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Abstract: The reverse design of solid propellant grain for a performance-matching goal, one of the
most challenging directions of the solid rocket motor designing work, is limited by the traditional
semi-empirical parameter-driven optimization methods based on some predefined grain configura-
tions. Grain designers call for a new method that can automatically provide brand-new grain shapes
beyond the traditional ones. In this work, a shape optimization method based on the evolutionary
neural network is proposed to achieve the reverse design of two-dimensional (2D) grains. Firstly, the
modified ellipse-form eikonal equation is solved by using the finite element method to realize the
burn-back analysis of 2D grains in any shape on a fixed unstructured mesh. Then, the neural network
is introduced to determine the spatial distribution of the propellant to define the grain shape. The hy-
perparameters of the network are continuously evolved with the aid of the genetic algorithm. Finally,
the optimal grain shape that matches the performance goal most is obtained. The method is verified
in different scenarios. The result shows that the design can precisely match the given pressure-time
curve of star grains and slotted-tube grains. Furthermore, the method can automatically evolve
a new dendritic-shaped grain that matches the given dual-thrust pressure-time curve. Since the
reverse design uses the concept of shape optimization, it does not require any pre-selection of the
grain shape, and the designers shall be free from defining different kinds of geometric parame-
ters for specific grain configurations. Consequently, the method has the potential to apply in the
reconstruction of an actual grain and the conceptual design of innovative grain configurations.

Keywords: solid rocket motor; grain design; reverse design; shape optimization; evolutionary neural
network; grain burn-back analysis; finite element method; genetic algorithm

1. Introduction

Propellant grain design is a significant stage of solid rocket motor designing work
and its major task is to match the given performance curves. The main internal ballistic
performance curves include the variations of combustion chamber pressure with time (pc~t
curve) and motor thrust with time (F~t curve). These curves are essential to the overall
design of the missile/rocket and even the guidance, navigation, and control (GNC) system.
Performance prediction, commonly used in grain design, calculates the performance curve
according to given grain configurations. However, this design method often falls into a trial-
and-error approach and fails to obtain the best solution matching the given performance
curve. In contrast, the reverse design, a concept rarely mentioned by previous scholars,
is an inversed problem of the performance prediction. It seeks the optimal grain shape
according to the given performance curve [1]. The relation between the performance
prediction and grain reverse design is shown in Figure 1.
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Figure 1. Relation between the performance prediction and grain reverse design.

The reverse design is an optimization problem of grain configuration essentially. It
is always a nonconvex nonlinear problem, and the objective function does not appear to
have a clear analytical formula. Therefore, it is hard to find the optimal global solution
via traditional line search methods or trust-region methods. Sforzini [2,3] is the first to
study reverse design. The developed solid rocket motor design and optimization (SRMDO)
code uses the pattern search method to optimize the 14 parameters of a 3D grain. The
objective function is to minimize the square sum of the gap between the designed thrust
curve and the given one. Since the 21st century, with the emergence and broad application
of heuristic optimization algorithms such as the particle swarm optimization (PSO) and
the genetic algorithm (GA), it has become possible to solve the reverse design practically.
Albarado [4] uses a hybrid optimizer combining pattern search and particle swarm to
minimize the square sum of the gap between the designed pressure curve and the given
one. Yücel [5] uses the GA to optimize a finocyl grain to ensure that the error of the thrust
curve is minimum. Recently, the reverse design effort is also denoted as the performance
matching by Wu [6] or predefined performance criteria by Hashish [7]. So far, the PSO and
GA has become a common method for grain optimization design [8–10].

Although researchers have developed all kinds of procedures to achieve reverse design,
these procedures all share the same pattern. Firstly, the geometry of the grain is strictly
determined by several parameters. Then, the selection of the grain shape, such as the star,
wagon wheel, and finocyl shape, is supposed to be consistent with historical experience.
After that, the global optimization algorithms are conducted to optimize the geometric
parameters so that the designed performance curve is as coherent as possible with the
goal. If it fails to find the optimal solution, reselection of the grain shape and redesign are
necessary. Consequently, these procedures are semi-empirical and parameter-driven.

The traditional semi-empirical parameter-driven optimization methods have signif-
icant shortcomings. Firstly, the design results are limited by the existing grain shapes
and historical experience. Although there have been attempts to use expert systems to
select grain configurations [11], it is still difficult to design new grain shapes with higher
loading fraction and higher performance. Secondly, to prevent interference between the
geometric features of the grain, there are numerous nonlinear constraints between the
geometric parameters. It is challenging to fully understand these constraints and add them
to the optimization algorithm. In addition, the number of optimized variables is equal to
the number of geometric parameters, so the degree of freedom of the design is relatively
low, making it frequently fail to meet the given performance curve. Finally, the geometric
parameters corresponding to different grain shapes are different, so it is not easy to develop
a unified optimization framework for multiple grain shapes.

To overcome the shortcomings of the traditional methods of the reverse design, it
is necessary to introduce the shape optimization technique. Shape optimization, also
considered as a special topology optimization, has been widely used in the mechanical
structure design. It is dedicated to finding the optimal distribution of materials instead of
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optimal geometric parameters [12–14]. The materials distribution, that is, the propellant
distribution, can be defined by the phase field. Conventionally, the phase field function
can be expressed by basis functions, such as finite element basis functions, radial basis
functions, and spectral parameterization [13]. With the help of machine learning, a simple
feedforward neural network (FNN) is also capable of expressing the phase field. Once FNN
parameterizes the phase field, one can easily define and manipulate an irregular grain.

Unlike mechanical structure optimization, the challenging part of grain shape opti-
mization lies in the burn-back analysis of the irregular grain shape defined by the phase
field. As the proceeding of combustion, the burning surface of the grain changes, which
is known as surface regression. The motor’s internal ballistic characteristics can only be
obtained by accurately calculating the burning surface area. There are two types of burn-
back analysis methods: the non-meshing and meshing methods. Non-meshing methods
include the analytical method [15,16], general coordinate method [17,18], and CAD mod-
eling method [19,20]. Meshing methods include the minimum distance method [21,22],
moving grid method [23,24], level-set method [9,25,26], and fast marching method [27].
On the one hand, the non-meshing methods are accurate, computationally efficient, and
reliable. However, they can hardly adapt to the grains with irregular geometry or complex
distribution of burning rate. Thus, the non-meshing methods are unfit to apply in shape
optimization tasks. On the other hand, the meshing methods possess great generality,
but they need a lot of pre-processing and post-processing work. Therefore, they are not
yet widely used in engineering. To achieve shape optimization, designers urgently need
a new meshing method that is easy to implement on any irregular grain shape—this will be
one of the focuses in this work.

This work proposes the shape optimization method based on the evolutionary neural
network to achieve the reverse design of two-dimensional (2D) grain. Given the pressure-
time curve, the GA is used to optimize the hyperparameters of the neural network which
can fully define the grain shape to minimize the gap between the designed results and
the goal. As the method uses the concept of shape optimization, it does not need to
pre-select any grain shape, and the designers can be free from defining different kinds
of geometric parameters for specific grain shapes. Furthermore, the degree of freedom
in the evolutionary neural network is controllable, so it will obtain much more optimal
and suboptimal solutions than the traditional methods. The method has the potential
to apply in many new application scenarios, such as the conceptual design of creative
grain shapes, the reconstruction of an actual grain, and the shape design of the additive
manufactured grain.

The structure of this work is as follows. The second chapter begins with the steps of
grain reverse design. It will continue with a modified PEF method to realize the gas-solid
unified burn-back analysis based on the phase field. Then, it will discuss the definition
of the phase field by introducing the neural network. Finally, the chapter ends with the
genetic algorithm framework of reverse design. The third chapter will provide some test
results of the method in detail, and the fourth chapter will give the conclusions.

2. Methods
2.1. Steps of the Grain Reverse Design

The performance prediction of solid rocket motor can be divided into two steps in
practice, as shown on the left side of Figure 2. The first step is the burn-back analysis
and the second step is the internal ballistic calculation. Similarly, the grain reverse design,
essentially an inversed problem of the performance prediction, can also be divided into
two steps, as shown on the right side of Figure 2. The first step, denoted as reverse internal
ballistic calculation, converts the performance curve (pc~t curve) into variation of burning
surface area with burned web thickness (Ab~w curve), and the given variables are listed in
Table 1. The second step, denoted as grain reconstruction, is an optimization process that
finds the grain shape matches the Ab~w curve most. This division strategy decomposes the
reverse design, which can effectively reduce the complexity.



Aerospace 2022, 9, 552 4 of 27

Figure 2. Steps of performance prediction and grain reverse design.

Table 1. Given variables for reverse internal ballistic calculation.

Symbol Notation

N Number of geometry units (half an angle)
R Outer radius
ρp Propellant density
c* Propellant characteristic velocity
a Burning rate coefficient
n Pressure index

pc~t curve Pressure-time curve

2.1.1. Step1: Reverse Internal Ballistic Calculation

To solve the reverse internal ballistic calculation, the following three assumptions
are proposed:

Assumption 1: The nozzle throat to grain port area ratio of the motor is small enough
so that the gas flow speed is low, and there is no erosive combustion phenomenon.

Assumption 2: The combustion chamber pressure does not change drastically during
the whole working process, which makes the equilibrium pressure formula reasonable.

Assumption 3: The characteristic velocity and density of the propellant do not vary
with the combustion chamber pressure.

For brevity, the concept of similar grains is proposed. As shown in Figure 3, two 2D
grains are admitted being similar if all their sides are proportional. The dimensionless burn
perimeter l̂b is defined as Equation (1):

l̂b =
lb
R

(1)

where R is the outer radius of the grain. For 2D grains, the burn perimeter lb is defined as
Equation (2):

lb =
Ab
NL

(2)

where Ab is the burning surface area of the grain, and L is the length of the grain. It is worth
noting that the grain shape can often be divided into the several minor geometry units that
can repeat themselves by rotational and mirror transformations. Therefore, concentrating
on one single unit provides much more efficiency than the whole grain. The number of
units (half an angle) is denoted as N. For example, in Figure 3, one geometric unit has half
a slot, yielding N = 12.
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Figure 3. Illustration of the similar grains.

The dimensionless burned web thickness ŵ is also defined as Equation (3):

ŵ =
w
R

(3)

For 2D grains, the reverse internal ballistic calculation needs to convert the known
pc~t curve into the unknown l̂b ∼ ŵ curve. As shown in Figure 3, although the grain in
the physical space may be much smaller (or greater) than the one in the cyber space, they
are still similar grains and sharing the same l̂b ∼ ŵ curve.

The advantage of nondimensionalization is that it can significantly simplify the
second step of reverse design, denoted as grain reconstruction. Any grain in physical
space can be transformed into a standard grain (outer radius R0 is 1 m) in the cyber
space through scaling transformation, so the burn-back analysis can be performed within
a unified standard framework. The designers only need to focus on optimizing the internal
profile without considering a mutable outer radius. As soon as the grain in the cyber space
meets the requirements, it can be directly returned to the physical space through simple
scaling transformation.

The calculation formula of the burn rate rb can usually be expressed as Equation (4) [28]:

rb = apn
c (4)

where a and n are the burn rate coefficient and pressure index, respectively. Derived from
the steady-state continuity equation, the equilibrium pressure of the combustion chamber
is Equation (5):

pc(t) =
(

ρpc∗a
NLlb

At

) 1
1−n

(5)

where ρp, c∗ and At are the propellant density, characteristic velocity, and nozzle throat
area, respectively. According to Equations (4) and (5), the expression for l̂b and ŵ over time
is as Equation (6): 

l̂b,T(t)CT = pc
1−n(t)

Nρpc∗a

ŵT(t) =
∫ t

0 apc
n(τ)dτ
R

, (0 ≤ t ≤ ta) (6)

where ta is the action time, and the subscript T in the formula represents the design target,
which is the requirement of designers. The CT is a dimensionless variable expressed as
Equation (7):

CT = LR/At (7)

Since the designers are uncertain about the L and At from the beginning, the CT is
also a quantity that needs to be designed. l̂b,T(t)CT is the product of l̂b,T(t) and CT. It is
an independent variable and can also be regarded as a dimensionless burn perimeter. It is
important to emphasize that N is unknown in practice, but to reduce the computation cost,
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N is considered to be a given integer in this work. Since N is a finite integer, the optimal N
can be found by enumeration.

Given the variables in Table 1, the
(

l̂b,TCT

)
∼ ŵT curve will be obtained via Equation (6).

So far, the reverse internal ballistic calculation is completed.

2.1.2. Step2: Grain Reconstruction

Given the
(

l̂b,TCT

)
∼ ŵT curve, grain reconstruction refers to finding a 2D grain that

satisfies this curve. The following three requirements are proposed:
Requirement 1: The burning starts from the internal port surface of the grain. This

kind of grain is known as internal burning grain.
Requirement 2: The solid region for one geometric unit shall be connected without holes.
Requirement 3: The gas-solid interface can be an irregular curve.
Using the subscript D to represent the design result, the grain reconstruction is to

optimize the internal profile in the cyber space so that the l̂b,D ∼ ŵD curve obtained by
the burn-back analysis matches the l̂b,T ∼ ŵT curve. In practice, a method based on linear
regression can evaluate the matching degree quantitatively according to the l̂b,D ∼ ŵD

curve and
(

l̂b,TCT

)
∼ ŵT curve calculated from Equation (6) (see Section 2.4.2 for details).

Figure 4 is an example of matching the performance. The design result in Figure 4a has
a higher matching degree than Figure 4b. The average value of the ratio l̂b,TCT/l̂b,D,
denoted as CD, can be used as the design result of LR/At.

Figure 4. Illustration of matching the performance (a) acceptable and (b) unacceptable.

So far, the procedure of the reverse design is clear. The specific methods will be
described further in the next sections.

2.2. Burn-Back Analysis of Irregular Grain Shapes
2.2.1. PEF Method (Poisson Equation—Eikonal Equation—Finite Element Method)

Since the method for burn-back analysis in this work uses the Poisson equation, the
eikonal equation, and the finite element method, it is called the PEF method. Similar to the
propagation of light [29], burning surface regression of complex grains can be described
by the eikonal equation. In the grain with uniform burning rate, it can be written as
Equation (8):

∇W · ∇W = 1 (8)

where W, in meters, is the field of burned web thickness w, which gives the thickness of
the burned web corresponding to any spatial coordinate. Any isosurface of the W field
represents the burning surface. The meaning of Equation (8) is that the gradient of the W
field is 1 everywhere, which is consistent with the assumption of parallel-layer combustion
widely adopted in solid rocket motor design.

There are two kinds of boundary conditions, that is, the Dirichlet boundary condition
W = 0 at the initial burning surface and the zero-flux boundary condition ∂W/∂n = 0
at the flame-retardant surface or symmetry surface. However, for the grain with the
non-convex gas cavity, as the burning surface moves, the W field is no longer derivable
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at the intersection of burning surfaces (see Figure 5). One possible way to ensure that
the burning surface keeps smooth numerically is to introduce a burning rate that varies
with the curvature. The essence is to add a diffusion term based on Equation (8). Then,
Equation (9) is obtained [30]:

α∇2W = ∇W · ∇W − 1 (9)

where α is the diffusion term coefficient, a positive number in meters.

Figure 5. Illustration of burning surface regression.

If the diffusion term coefficient is too large, the calculation accuracy will decrease.
On the other hand, if it is too small, the convergence of the finite element method will
deteriorate. The recommended value range is:

α = (0.1 ∼ 0.2)δl (10)

where δl is the local element size. Figure 6 shows the results of burning surface regression
for a typical star grain (R = 0.5 m, N = 12) with different meshes. Figure 7 shows that with
the refinement of the element size, compared with the analytic solution, the accuracy of
PEF method will continue improving.

Figure 6. Results of burning surface regression for the typical star grain with different meshes.

Compared to the traditional method of burn-back analysis, the advantages of the PEF
method are significant. It can perform the burn-back analysis of 3D grain with irregular
geometry robustly. In addition, since the PEF method converts the burn-back analysis into
an analogous steady heat conduction problem, it can be directly modeled and solved using
COMSOL, ANSYS, ABAQUS, and other commercial finite element software, which are
relatively easy to implement.
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Figure 7. Results of burn perimeter for the typical star grain with different meshes: (a) Relation
between the burn perimeter and the web thickness and (b) Relation between the relative error of
burn perimeter and the web thickness.

2.2.2. Modified PEF Method (ϕ—PEF)

It is worth noting that the solution domain of the PEF method is only the solid-phase
region, excluding the gas-phase region. Therefore, the gas-solid unified burn-back analysis
cannot be accomplished. Since the exact shape of the solid-phase region is unsure in the
current reverse design, the PEF method must be modified.

The gas-solid unified burn-back analysis can be established by introducing the virtual
burning rate and the source term factor. Rewrite the governing equation as Equation (11):

αr∇2W =
(

r2∇W · ∇W − 1
)

s (11)

where r is the dimensionless virtual burning rate, and s is the dimensionless source
term factor.

Inspired by the level-set method [31] and phase field method [32] of structural topology
optimization, the concept of phase field is then introduced to clearly describe the gas-phase
region, solid-phase region, and their interfaces. A dimensionless scalar ϕ(x, y) is defined
as Equation (12):

Phase =


Solid, ϕ(x, y) > 0
Interface, ϕ(x, y) = 0
Gas, ϕ(x, y) < 0

, (−1 ≤ ϕ(x, y) ≤ 1) (12)

The distribution of ϕ(x, y) in the whole domain constitutes the phase field. As long as
this distribution is obtained, it is equivalent to obtain a 2D grain shape. The initial burning
surface is given by the zero level ϕ(x, y) = 0.

Based on the phase field, the virtual burning rate field r can be constructed, subse-
quently, which is defined as Equation (13):

r =
{

1, ϕ > 0,
1 + Kϕ2, ϕ ≤ 0

(13)

where K is a constant much larger than 1. The physical meaning of the virtual burning
rate r is that the burning rate in the gas region is so large that the web thickness field W is
approximately equal at any position.

Unfortunately, when the virtual burning rate r presents in the gas-phase region, the
source term near the gas-solid interface has a great jump. The iteration of finite element
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method (FEM) is difficult to converge due to its nonlinearity. Therefore, the source term
factor s is then introduced, which is defined as Equation (14):

s =
{

1, ϕ > 0
0, ϕ ≤ 0

(14)

The physical meaning of the source term factor is as follows. In the solid-phase region,
the original governing equation is still maintained. While in the gas-phase region, the source
term of the governing equation is set to 0, and the governing equation degenerates into
a steady-state heat conduction equation without any internal heat source, also known as the
Laplace equation. Solving the Laplace equation in the gas-phase region will significantly
improve the convergence of the FEM.

Since the method uses phase field, it is called the ϕ—PEF method in this work. It
has many advantages. Firstly, the burn-back analysis can be completed by using a fixed
mesh without any extra work to track the moving interface. It avoids remeshing after
changing the grain shape, which is quite useful in the shape optimization. Secondly, since
the mesh is fixed, setting up and defining Dirichlet boundary conditions are simplified.
Finally, inheriting the advantages of the PEF method, it can be directly modeled and solved
in the commercial finite element software, which is relatively easy to implement.

To compare the difference between the PEF method and ϕ—PEF method, the calcula-
tion results for the same grain are illustrated in Figure 8. The solid-region of the grain is
formed by the intersection of a square with a side length of 2 m and a circle with a radius
of
√

5/2 m. The workflow of the PEF method is as follows. Firstly, the geometry is drawn
using CAD software. The right-hand-side boundary condition is set to the flame-retardant
layer and the rest of the boundary are set to the Dirichlet boundary condition. Then with
the help of unstructured mesh, Equation (9) is discretized into an algebraic equation to
solve the W field, while, the ϕ—PEF method uses the phase field to describe the shape of
the solid region of the grain in a fixed square region, and the phase field for this problem
has an analytical expression as Equation (15):

ϕ(x, y) = 1− 2
5

(
(x− 1)2 + y2

)
(15)

Figure 8. Illustration of burn-back analysis methods: (a) PEF method and (b) ϕ—PEF method.

The W field is obtained by solving the algebraic equation derived from Equation (11).
It can be seen from Figure 8 that the results obtained by both methods are identical.

Once the W field is obtained, the burning surfaces can be obtained by extracting the
isosurfaces of the W field, and the burn perimeter lb can be calculated from these burning
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surfaces. Since the ϕ—PEF method is much more flexible, we chose it to achieve the
burn-back analysis of the irregular grain shape.

2.3. Defining the Phase Field Using Neural Network
2.3.1. The Direct Method to Solve the Optimization Problem

In Section 2.2, the grain design problem is transformed into the design work of a con-
tinuous two-dimensional function ϕ(x, y), and this function will become the optimization
variable. The corresponding optimal solution can be obtained by using indirect methods
(IM) such as optimal control theory [33]. Although the IM can effectively guarantee opti-
mality and high accuracy, there are still great difficulties in deriving the first-order optimal
conditions and solving two-point boundary value problems [34]. Therefore, this work
will focus on the more practical method denoted as the direct method (DM) to solve the
optimization problem.

The DM, approximating the function to be solved as a nonlinear combination of finite
parameters, transforms the design problem of the function into a multi-parameter optimiza-
tion problem [35]. Finally, the infinite-dimensional optimization problem is transformed
into a finite-dimensional one, as shown in the Equation (16):

ϕ(x, y)→ ϕ̂(p, x, y) (16)

where p is the independent vector of the optimization problem, ϕ̂ is a predetermined
function and is often selected as a linear combination of basis functions. However, its
accuracy is generally insufficient especially for nonlinear problems, which cannot meet the
demands for an engineering application, so the neural network is proposed next.

2.3.2. Design of Feedforward Neural Network

Artificial neural network (ANN) refers to a series of mathematical models inspired
by biology and neuroscience. These models can simulate the biological neural network
by mathematically abstracting the biological nervous system. After decades of develop-
ment, ANN, the backbone of artificial intelligence technology, has been widely used in
mathematical and engineering fields such as fitting, classification, and clustering.

Feedforward neural network (FNN) is the first ANN invented. In each layer, neuron
units can receive signals from units in the previous layer and generate signals to transmit
to the next layer. According to the Universal Approximation Theorem, for an FNN with
a linear output layer and at least one hidden layer using a nonlinear activation function,
as long as the number of neurons in the hidden layer is large enough, the FNN can
approximate any bounded closed set function defined in the real number space with any
accuracy [36,37].

After considering the computational cost and fitting accuracy, we designed an FNN of
one single hidden layer to construct the function ϕ̂(p, x, y). The input layer is denoted as
layer 0, the hidden layer is denoted as layer 1, and the output layer is denoted as layer 2.
Table 2 gives the relevant notation of the FNN used in this work.

Table 2. Notation of the symbols in the FNN.

Symbol Notation

Ml Number of units in layer l

fl(·) Activation function of the units in layer l

W(l) ∈ RMl×Ml−1 Weight matrix from layer l-1 to layer l

b(l) ∈ RMl Bias vector from layer l-1 to layer l

z(l) ∈ RMl Net input (net activation) of units in layer l

a(l) ∈ RMl Output (activation) of units in layer l
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If a(0) = (x, y)T, the FNN can propagate information by iterating Equation (17):

z(l) = W(l)a(l−1) + b(l),
a(l) = fl(z(l))

(l = 1, 2) (17)

First, the net activation of layer l is calculated according to the activation of layer
l-1 and the weight matrix and bias vector of layer l. Then, the activation of layer l is
calculated according to the nonlinear activation function. Equation (17) can be written in
a compact form:

a(l) = fl(W
(l)a(l−1) + b(l)) (18)

According to several tests, setting M1 = 20 can provide enough design freedom without
significantly increasing the computational burden of the optimization. The parameters of
the FNN structure used in this study are shown in Table 3. So far, the specific structure of
the FNN has been determined, as shown in Figure 9.

Table 3. Parameters of the FNN structure.

Items Value

M0 2

M1 20

M2 1

f1(z
(1)
i ) 2

1+e−2z(1)i

− 1

f2(z
(2)
i ) 2

1+e−2z(2)i

− 1

Figure 9. Structure diagram of the FNN.

The total number of tunable hyperparameters of the neural network can be found in
Equation (19):

Nhp = (M0 + 1)M1 + (M1 + 1)M2 (19)

Substituting the data in Table 3 yields Nhp = 81. After comparing with Equation (16),
it can be seen that the vector p is an 81-dimensional vector, and its elements are composed
of all the elements in the matrices W(1), W(2) and the vectors b(1), b(2).
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2.3.3. Pre-Training Based on Supervised Learning

To obtain faster optimization speed, an appropriate initial guess of vector p0 needs to
be selected according to specific prior knowledge to transform the problem into optimizing
correction ∆p, as shown in Equation (20):

ϕ̂(p, x, y)→ ϕ̃(p0, ∆p, x, y), p = p0 + ∆p (20)

where the range of ∆p is chosen to be [−1, 1] to avoid holes in the grain. This technique
is denoted as pre-training in this work. In the rest of this section, p0 will be obtained via
supervised learning from a typical tube grain shape.

The phase field of a typical tube grain shape can be written in analytical form. Then,
the position coordinates and phase field of the grain are taken as training samples, which
can be expressed as Equation (21):

sample set =
{[

(x(n), y(n)), ϕ
(n)
0

]}M

n=1
(21)

where M is the total number of the samples and ϕ
(n)
0 is the phase field of the typical tube

grain shape.
The loss function in the form of mean square error (MSE) is defined as follows:

σMSE =

M
∑

n=1

[
ϕ
(n)
0 − ϕ̂

(
p, x(n), y(n)

)]2

M
(22)

where ϕ̂
(

p, x(n), y(n)
)

represents the estimated value of the phase field.
This work obtains the corresponding parameter vectors using the Bayesian regulariza-

tion training method [38]. This method effectively avoids overfitting and has an excellent
fitting effect for complex problems. The variation curve of the loss function with the
training epoch is shown in Figure 10. The output error of the neural network is shown in
Figure 11. The mapped phase field of the tube grain is shown in Figure 12.

Figure 10. Relation between the MSE and the training epoch.
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Figure 11. Error distribution of the neural network output.

Figure 12. Mapped phase field of the tube grain using the pre-training neural network.

As shown in Figure 10, the MSE decreases monotonically with the training epoch.
When the training epoch reached 1000, the MSE reached the minimum value 5.8844× 10−8.
In addition, the variation of MSE between the training set and the test set is relatively
small, indicating that no overfitting has occurred in the training process. It can be seen
from Figure 11 that the output error of the network is at a small level. In summary, the
pre-training can obtain relatively accurate initial parameter values p0.

2.4. Optimizing the Neural Network Using the Genetic Algorithm
2.4.1. Genetic Algorithm Framework

The genetic algorithm (GA) uses neither sensitivity derivatives nor reasonable starting
points. As a direct search-based method, it can solve the global optimization problems with
a non-analytical objective function, which is suitable for optimizing hyperparameters of
neural networks. Therefore, in this work, GA is used to optimize the neural network to
achieve a phase field matching the performance best. The neural network combined with
GA is also known as the evolutionary neural network.

Figure 13 illustrates the framework of the GA, where the optimized variable is the ∆p
in Equation (20), containing a total number of 81 hyperparameters. The next section will
focus on the computation of the objective function of GA.
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Figure 13. Genetic algorithm framework.

2.4.2. Objective Function

Determining a suitable objective function is one of the most challenging tasks in the
reverse design. Using different objective functions will lead to different results. The objec-
tive function shall compare the similarity between l̂b,D ∼ ŵD curve and

(
l̂b,TCT

)
∼ ŵT

curve, and output the performance-matching degree (see Figure 4).
To evaluate the similarity between curves, a method based on linear interpolation

combined with linear regression is proposed. For the convenience of writing, the function
obtained by linear interpolation of l̂b,D ∼ ŵD is denoted as f 1, and the function obtained

by linear interpolation of
(

l̂b,TCT

)
∼ ŵT is denoted as f 2. Take n nodes at equal intervals

within the value range of the independent variable to form a vector x:

x = [x1, x2, · · · , xn]
T (23)

The vectors y1 and y2 is calculated using f 1 and f 2, and the formula is as follows:

y1 = [ f1(x1), f1(x2), · · · , f1(xn)]
T,

y2 = [ f2(x1), f2(x2), · · · , f2(xn)]
T

(24)

If f 1 and f 2 are approximately proportional, then there is:

y1CD = y2 (25)

Equation (25) contains one unknown variable CD and n equations. Since the number of
equations is much larger than the number of unknowns, it is overdetermined and generally
has no solution. However, the linear regression method can be used to find the solution in
the presence of the smallest residual error, that is, the least squared solution. The unknown
variable CD is approached using Equation (26):

CD =
yT

1 y2

yT
1 y1

(26)
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According to the discussion in Section 2.1.2, CD can be used as the design result of
LR/At. In order to quantitatively evaluate the similarity between f 1 and f 2, the coefficient
of determination (COD) can be calculated as Equation (27):

COD = 1− (y2 − CDy1)
T(y2 − CDy1)

(y2 − y2)
T(y2 − y2)

(27)

where y2 is an n-dimensional vector consisting of the mean value of y2. The COD is
a number never greater than 1. The closer it is to 1, the more similar are the f 1 and f 2. When
COD is equal to 1, Equation (25) will be strictly satisfied. Since the GA algorithm always
seeks the smallest objective function, we have Equation (28):

FV = 1− COD (28)

where FV is the abbreviation of Fitness Value. In summary, the goal of the GA algorithm is
to minimize Equation (28).

2.4.3. Consideration of Constraints

Constraints can be added to GA in the form of penalty functions. The specific imple-
mentation is to add a very large number to the objective function if the current solution
violates the constraints, shown as Equation (29):

FV = 1− COD + P (29)

where P is the penalty functions. There are two types of constraints that need to
be emphasized.

1. Rationality of the grain structure.

As shown in Figure 14, if the grain is completely separated from the chamber wall or
there are holes in the grain, it is unacceptable. In practice, holes can be basically eliminated
by choosing the range of ∆p to be [−1, 1]. If for every x ∈ wall there is ϕ < 0, then it is
known that the grain is completely separated from the chamber wall, and the objective
function should be penalized for these cases.

Figure 14. Possible grain structure generated by the neural network.

2. Loading fraction constraints.

CD in Equation (26) is the design result of LR/At. It can qualitatively describe the
loading fraction. The loading fraction decreases with the increase of CD. In order to obtain
a more reasonable loading fraction in engineering, CD range should be selected according
to the actual needs. The objective function should be penalized for cases that violate
the range.

So far, the method of grain reconstruction is established. The reverse design can
be achieved via two separate steps, including reverse internal ballistic calculation and
grain reconstruction.
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3. Results and Discussion

This chapter will give three examples of shape optimization. Sections 3.1 and 3.2
are the reconstruction of given grains, excluding the reverse internal ballistic calculation.
Starting from the

(
l̂b,TCT

)
∼ ŵT curves of given grains, they are dedicated to finding

results most matching the given grains. Based on Sections 3.1 and 3.2, a complete reverse
design, including two steps denoted as the reverse internal ballistic calculation and the
grain reconstruction, is conducted in Section 3.3. The purpose is to find the grains most
matching the given pc ∼ t curve without any additional prior knowledge.

3.1. Reconstruction of a Star Grain
3.1.1. Design Target

Star shape is one of the most fundamental grain shapes. In this section, starting
from the

(
l̂b,TCT

)
∼ ŵT curve of a provided star grain, the reconstruction of the grain

is conducted with the evolutionary neural network. The geometry of the provided star
grain is shown in Figure 15. The number of the geometry units is 12, and the throat area is
5× 10−2 m.

Figure 15. Geometry of the given star grain.

The PEF method is used to obtain the l̂b,T ∼ ŵT curve. Considering Equation (7),
there is Equation (30):

CT =
LR
At

= 30 (30)

Then the
(

l̂b,TCT

)
∼ ŵT curve is calculated and plotted in Figure 16.

Figure 16. Relation between the dimensionless burn perimeter and the dimensionless web thickness
of the given star grain.
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3.1.2. Design Result

Firstly, the computational domain is restricted to a fan shape which is 1/N of a whole
circle with an inner radius of 0.2R and an outer radius of R. The initial combustion surface is
set to be a circular arc at the inner radius, and the rest of the boundaries are flame retardant.
Then, the computational domain is divided into 1000 s-order quadrilateral elements, as
shown in Figure 17.

Figure 17. Mesh of the computational domain.

Secondly, a phase field is defined using the typical tube grain. According to this phase
field, the pre-training of the neural network is completed, as shown in Figure 12.

Thirdly, taking Equation (29) as the objective function, setting the population to 200
and generations to 50, the neural network is evolved via the GA algorithm. If the reduction
rate of the objective function is negligible, it can be considered that the optimal shape of
the grain is obtained.

The evolutionary process in Figure 18 shows that the shape of the grain changes as
the GA algorithm proceeds. The figure presents the best individuals in populations during
generations. As the result of pre-training, G0 is a typical tube grain. After one generation
of reproduction, G1 tends to be a star grain. However, the shape of G5 appears to be highly
irregular. After G10, the irregular shape vanishes, and a continuous and smooth star grain
is gradually formed.

Figure 18. Evolution of the designed star grain.

Using G50 as the final design result, linear regression is used to evaluate the gap
between the design result and the goal, as shown in Figure 19.
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Figure 19. Linear regression to evaluate the performance-matching degree of the star grain.

The linear regression is indicated in Equation (31):

l̂b,TCT ≈ l̂b,DCD, CD = 29.6521 (31)

Comparing CD with CT, given in Equation (30), the relative error is calculated in
Equation (32):

ε =
CD − CT

CT
= −1.16% (32)

Since R = 0.5 m, the designed grain must satisfy Equation (33):

LD

At,D
= 59.3042 m−1 (33)

Equation (33) indicates that the length of the grain strictly corresponds to the throat
area. Particularly, when At,D = 5× 10−2, the designed grain replicates the given one
precisely. Furthermore, the dimensionless burn perimeter is plotted in Figure 20 as
a function of dimensionless web thickness. Although the tail-off stage has few com-
putational points, the linear interpolation in Equation (24) can ensure the accuracy of the
objective function.

Figure 20. Relation between the dimensionless burn perimeter and dimensionless web thickness of
the designed grain.
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After considering the combustion characteristics of the propellant in Table 4, the
combustion chamber pressure is plotted in Figure 21 as a function of time. If the nozzle
area ratio and ambient pressure are known, the thrust-time curve can also be obtained.

Table 4. Combustion characteristics of the star grain propellant.

Symbol Name Value Unit

ρp Propellant density 1700 kg/m3

c* Propellant characteristic velocity 1400 m/s

a Burning rate coefficient 2× 10−4 m/(s-Pa0.3)

n Pressure index 0.3 —

Figure 21. Relation between the combustion chamber pressure and the burning time of the
designed grain.

It can be seen from the figures that the design result has matched the target curve well.
Consequently, the shape optimization method can precisely reconstruct a given star grain.

3.2. Reconstruction of a Slotted-Tube Grain
3.2.1. Design Target

Theoretically, the GA algorithm can easily find the global optimal solution of the
hyperparameters in the neural network. However, designers often need to consider several
constraints such as loading fraction, grain length, and throat to port area. To obtain more
candidates, the designers always wish to find a series of suboptimal feasible solutions
instead of a single optimal solution.

In this section, taking a given typical slotted-tube grain as the design target, several
suboptimal feasible solutions satisfying the burning surface area requirements are found
by setting suitable criteria for CD. On one hand, a larger CD criteria will return grains with
a lower loading fraction. On the other hand, a smaller CD criteria will return grains with
a higher loading fraction.

The geometry of the provided slotted-tube grain is shown in Figure 22. The number of
the geometry units is 12, and the throat area is 5× 10−2 m. Then, the

(
l̂b,TCT

)
∼ ŵT curve

is calculated from this grain.
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Figure 22. Geometry of the given slotted-tube grain.

3.2.2. Design Result

The meshing technique and the pre-training of the neural network are not repeated
here. By appropriately constraining the range of CD, four suboptimal solutions with
different loading fractions can be obtained, as shown in Figure 23. The dimensionless burn
perimeter of these schemes is shown in Figure 24.

Figure 23. Different schemes sharing identical burning surface areas.

Figure 24. Dimensionless burn perimeter of the schemes.
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The design result reveals that although the grain shapes of the schemes are quite
different, they all share identical burning surface areas or identical performance. The
significant difference between them is the loading fraction. The loading fraction of Scheme
A is 66.26%, which means the grain length must be long enough to satisfy the performance
of the given slotted-tube grain. Contrarily, the loading fraction of Scheme D is 86.5%, which
means the grain length can be much shorter. Since the loading fraction of Scheme C and
Scheme D are higher than the given one, the method successfully obtains several solutions
even better than the original one. Consequently, these schemes could provide designers
with more options.

3.3. Reverse Design for a Dual-Thrust Goal
3.3.1. Design Target

Dual-thrust motors are widely used in tactical missiles to increase the flight range
significantly. The booster stage provides a high but short-term thrust, followed by the
cruising stage with low and long-term thrust. Some 2D grain shapes, such as wagon wheel,
dendrite, and dog bone [15], might produce dual-thrust internal ballistics. However, there
are still questions about whether these grain shapes are the best options. Therefore, it is
necessary to design a more suitable grain shape using shape optimization.

The dual-thrust performance curve is given with the aid of a piecewise function shown
as Equation (34):

pc(t) =


10MPa, if 0 ≤ t ≤ 2 s
(−5t + 20)MPa, if 2 s <t ≤ 3 s
5MPa, if 3 s <t ≤ 10 s
(−5t + 55)MPa, if 10 s <t ≤ 11 s
0MPa, if t> 11 s

(34)

The parameters of the dual-thrust grain are given in Table 5. According to
Equations (6) and (34), and Table 5, the

(
l̂b,TCT

)
∼ ŵT curve can be derived from the pc~t

curve, as shown in Figure 25.

Table 5. Parameters of the dual-thrust grain.

Symbol Name Value Unit

N Number of units 12 —

R Outer radius 0.5 m

ρp Propellant density 1700 kg/m3

c* Propellant characteristic velocity 1400 m/s

a Burning rate coefficient 1× 10−4 m/(s-Pa0.3)

n Pressure index 0.3 —

Figure 25. Reverse internal ballistic calculations of the dual-thrust grain.
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3.3.2. Design Result

The evolution process of the dual-thrust grain is illustrated in Figure 26. The figure
presents the best individuals in populations during generations. G0 is a typical tube
grain whose performance fails to match the given one. After the random population
initialization, one individual denoted as G1 among the whole population, appears to match
the performance most. Interestingly, the grain shape of G1 seems to be a combination
of two different star grains. After 50 generations, the grain shape gradually stabilizes
and becomes a star-wagon-wheel combination. After several generations, the results are
almost identical, and it is reasonable to believe that a globally optimal solution is obtained.
Coincidentally, the design result is similar to a new type of combined dendrite grain
proposed by Jiang [1,39] through a traditional approach.

Figure 26. Evolution of the designed dual-thrust grain.

Taking G50 as the final design result, as shown in Figure 27, linear regression is used
to evaluate the gap between the design result and the target. The result of linear regression
is Equation (35):

l̂b,TCT ≈ l̂b,DCD, CD = 31.7668 (35)

Figure 27. Linear regression to evaluate the performance-matching degree of the dual-thrust grain.
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The coefficient of determination (COD) is 0.95162, proving the proportional relation-
ship between the two curves. As R = 0.5 m, the designed grain must satisfy Equation (36):

LD

At,D
= 63.5336 m−1 (36)

If the outer radius of the grain is fixed to 0.5 m, the length of the grain will strictly
correspond to the throat area.

The dimensionless burn perimeter is plotted in Figure 28 as a function of the dimen-
sionless web thickness. Similarly, the combustion chamber pressure is plotted in Figure 29
as a function of time. It can be found that the designed pressure of the booster stage
and the cruising stage is stable, which are 10 MPa and 5 MPa, respectively, so the design
results have well-matched the expected dual-thrust performance. However, due to the slow
burning rate of the residual propellant, the tail-off stage lasts up to 5 s. In order to eliminate
the tail-off impulse, it is necessary to replace the residual propellant with a non-flammable
filler in further consideration.

Figure 28. Relation between the dimensionless burn perimeter and dimensionless web thickness of
the designed grain.

Figure 29. Relation between the chamber pressure and the burning time of the designed grain.

It should be noticed that the current results are obtained under the condition of
N = 12. However, N is not a given integer in practice, so it is worth investigating the design
result with different N, as shown in Figure 30. The relation between the chamber pressure
and the burning time with different N is shown in Figure 31.
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Figure 30. Reverse design results with different N.

Figure 31. Relation between the chamber pressure and the burning time with different N.

As can be seen from the above figure, the reverse design result is related to N. When N
is small (8 and 10), the results are similar to the dog bone grain. When N is 12 and 16, the
results turn into the combined dendrite grain as mentioned before. When N is large (greater
than 20), the results turn into the wagon wheel grain. As the outer radius of the grain limits
the length of the dendritic wheel arm, and if N is sufficiently small, the combined dendrite
grain will no longer maintain the performance curve, and the design result will turn into
a dog bone. It can also be found that with the increase of N, the residual propellant becomes
smaller, and results with a higher performance-matching degree can be obtained.

In conclusion, the shape optimization method based on the evolutionary neural
network can realize the reverse design through an example of a dual-thrust propellant
grain. The brand-new grain shape will better match the performance curve and provide
designers with numerous innovative ideas.

4. Conclusions

The reverse design of solid propellant grain for a performance-matching goal is
investigated, and the conclusions are as follows:

1. The major contribution of this work is to propose a shape optimization method based
on the evolutionary neural network to achieve grain reverse design. It does not require
any pre-selection of the grain shape and the designers shall be free from defining
different kinds of geometric parameters for specific grain configurations.
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2. Burn-back analysis method (ϕ—PEF) of irregular grain shape on a fixed unstruc-
tured mesh is proposed. The method can be directly solved by the steady-state heat
conduction modules in commercial finite element platforms.

3. The neural network is designed to determine and manipulate the phase field of the
grain. Since the degree of freedom is controllable (much higher), it will form much
more grain shapes and gives designers more options.

4. The genetic algorithm framework is established to optimize the hyperparameters in
the neural network. The objective function that evaluates the performance-matching
degree is the coefficient of determination (COD) derived from the linear regression.

5. The computation results show that the method can precisely match the performance
of the given star grain and slotted-tube grain. By adding constraints, it can achieve
other performance requirements, such as higher loading fraction.

6. The method can automatically evolve a new dendritic-shaped grain that matches
the given dual-thrust pressure-time curve. Consequently, the method has the po-
tential to apply to the conceptual design of innovative grain shapes through the
reverse design procedure, which can hardly be predefined and achieved by the
traditional approaches.

Future work will focus on extending the method to three-dimensional (3D) grains. Due
to the heavy computational burden of 3D problems, the difficulties will lie in improving the
time efficiency of the burn-back analysis, introducing a well-designed deep neural network,
and adopting a parallel genetic algorithm. In addition, manufacturability, mechanical
performance, and new ‘pre-set’ parameters of grains should also be carefully considered.
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