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Abstract: The space debris problem poses a huge threat to operational satellites and has to be
addressed. Multiple removal methods have been proposed to keep Earth’s orbit stable. Flexible
connection capturing methods, such as the harpoon system, tether–gripper system and the net system,
are potential candidate methods for space debris removal in the future. However, the tethered system
is usually assumed as a dumbbell model where two end masses are connected by a rigid bar. This
traditional model is not accurate enough to predict the motion of the target, neither the whole system.
In this paper, three models, namely the modified dumbbell model, lumped-mass model and the
ANCF model, to describe a tethered post-capture system for space debris removal are described and
compared. Moreover, modal analysis of the tethered system is performed, and an analytical solution
of the system’s natural frequency is derived. In addition, two configurations of the tethered system,
namely the single tether configuration and the sub-tether configuration are simulated and compared
based on three models, respectively. Finally, the influence on the chaser satellite by the initial angular
velocity of the target is analyzed.

Keywords: space debris removal; tethered system; dumbbell model; lumped-mass model; ANCF

1. Introduction

With the development of space technology, the number of yearly launches is dramati-
cally increasing, which brings the side-effect of the space debris problem. Based on the data
from the United States Space Surveillance Network (US-SSN), the number of space debris
objects that larger than 10 cm is over 29,000 as of November 2021 [1]. Collisions between
space debris and operational satellites, or even between satellites, have been reported every
year since 2009. In the first half of the year 2021, two breakups were detected by the 18th
Space Control Squadron (18 SPCS) of the U.S. Space Force. Both breakups are associated
with meteorological satellites, one is the NOAA 17 from the US, and the other is the YunHai
1-02 from China. The 18 SPCS has identified and tracked 102 and 43 fragments from the
two events, respectively [1]. Two months later, the International Space Station (ISS) was
struck by a space debris object and its robotic Canadarm2 was punctured and a small hole
created (see Figure 1) [2]. Fortunately, the damage is not serious enough to stop the robotic
arm from functioning. Nevertheless, the space debris problem already poses a huge threat
to any operational satellite and has to be addressed.

To remove a space debris object from orbit, multiple methods have been proposed by
researchers, including robotic arm, net capturing, harpoon, tentacle capture, etc. [3]. The
flexible connection capture method is defined as a method that the end-effector and the
satellite are connected by a flexible medium, a tether in most cases. The net, harpoon and
tethered-gripper capture method are all examples of the flexible connection method by
definition (see Figure 2).
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Figure 1. Damage on Canadarm2 [2].

(a) (b) (c)

Figure 2. Flexible connection capture methods. (a) Harpoon method [4], (b) net method [5], (c) tether–
gripper method [5].

A wide range of research, discussions and experiments associated with the flexible
connection method have been performed. For example, a harpoon capture system has been
designed and demonstrated to be capable of penetrating real satellite panels by Reed and
Barraclough [4]. Tamaki and Tanaka have investigated the penetration characteristics of a
harpoon with various shapes of the tip by simulation [6]. Sizov and Aslanov proposed an
optimization algorithm that is able to provide small amplitudes of the tether and debris
oscillations during towing with harpoon assistance [7]. To study the controllability of a
harpoon system using the elastic tether after capture, Cleary and O’Connor have applied
the wave-based control method to prevent a tether entanglement and provide a controlled
deorbit [8]. For the net capture method, it has in total three phases to deorbit a space debris
object, that is the deployment, capture and post-capture phases. Numerous research studies
focused on the first two phases, e.g., the sensitivity analysis [9], simulator design [9–12],
parabolic flight experiments [12–14], and even on-orbit experiments [15]. Shan et al. have
analyzed the initial conditions, such as the bullet mass, shooting velocity and the shoot-
ing angle’s influence on the output parameters, the net opening area, the deployment
time and the travelling distance during the net deployment phase [9]. Benvenuto et al.
have compared the planar and conical net deployment process based on a mass–spring
model [11,16]. Botta et al. have applied a commercial software, Vortex, to establish a model
of a net and investigated the contact dynamics during capturing [17]. A novel space robot
system called the maneuverable tethered space net robot with four Cubesats equipped
at four corners of the net was developed by Zhang and Huang [18–20]. Pang et al. have
used the one-dimensional Melnikov method to analyze the chaotic behavior of the tethered
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spacecraft [21]. Golebiowski et al. have developed a simulator based on the Cossrat rod
theory and validated their model using a zero-gravity parabolic flight experiment [12].
Another parabolic flight experiment has been carried out by the GMV company in Spain,
where the mass–spring model has been verified [13]. The University of Surrey performed
an on-orbit experiment in 2018 and successfully tested the feasibility of both the net capture
method and harpoon system [22,23].

Many exciting results have been achieved for the first two phases of capturing a space
debris object; therefore, the recent research focus has switched to the dynamics analysis
of a tethered post-capture system. O’Connor has applied a modified dumbbell model
to describe a tethered system and proposed a wave-based control method to detumble
a spinning target [24]. The authors of this paper have used a series of mass–spring–
damper elements to model the flexibility of the main tether [25]. Stadnyk and Ulrich
have introduced the ANCF model for the dynamics analysis of a tethered system and
experimentally validated it [26]. In this paper, we summarize those three models and
provide the detailed formulation of each model for both harpoon and tethered-net system.
Moreover, a systematic comparison among them is made from different aspects, especially
from a viewpoint of modal analysis. By running the simulations of different tethered
systems under each model, three models are cross-verified and their initial condition
influences are also analyzed.

2. Dynamic Models of the Tethered System
2.1. Configuration of Tethered System

As introduced in Section 1, to remove a space debris object from orbit, a chaser satellite
slides close to a target, captures it and deorbits together with it or sends it to a graveyard
orbit. The tethered combined system consists of the chaser satellite, the target and the tether
connecting them. Hovell and Ulrich have proposed two configurations for the combined
system as shown in Figure 3; one is the single tether configuration and the other is the
sub-tether configuration in which the tether attached to the service satellite branches into
four smaller tethers that are attached to the target at various locations [27]. The single tether
configuration as shown in Figure 3a is more suitable for describing the harpoon system and
the tether–gripper system. However, it is better to use the sub-tether configuration to model
the simplified net system since it can better describe the interaction between the net and the
target, even though no contact effect between the net and target is taken into consideration
(see Figure 3b). It is noteworthy that the only difference between these two configurations is
regarding the existence of sub-tethers. Dynamic analysis of these configurations in a planar
environment has been performed and experimentally validated [28]. In this paper, we
provide multiple modeling methods for the configurations and investigate their dynamics
in a 3D environment.

Chaser satellite Chaser satellite

Single tether

Target Target

Sub-tethers

(a) (b)

Figure 3. Configurations of a tethered system [27].

2.2. Modified Dumbbell Model
2.2.1. Single Tether Configuration

The traditional dumbbell model was used for modeling the tethered satellite system, in
which two satellites are simplified as tip masses connected by a rigid rod. Misra et al. have
used this dumbbell model to analyze the motion of a tethered system in the stationkeeping
phase [29]. However, the tether is assumed to be rigid and its length is constant, thus not
accurately describing the physical properties of a tether. Figure 4 displays the concept of
the proposed modified dumbbell model for the single tether configuration. In the proposed
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model, o − xyz represents the inertial frame, OS − XSYSZS and OT − XTYTZT represent
the body frame of the satellite and the target, respectively. Points S and T are two ends
of the connecting positions of the tether on each object, and rFS and rFT are two position
vectors resolved in their individual body frame. The constraint between the satellite and
the target is assumed as a force constraint rather than a geometrical one. This force Ft is
defined as a function of the distance between two objects and written as

Ft =

{
( EA(L−L0)

L + cL̇)i L >= L0
0 L < L0

(1)

where E is the Young’s Modulus of the tether, A is the cross-section of the tether, L is the
current distance between two connecting points, L0 is the initial length of the tether, and i
indicates the direction of the force which should be pointing from one connecting point to
the other, c is the damping coefficient. The satellite and target are regarded as two rigid
bodies instead of end masses. Their governing equations are written as

mkak = Fk ± Ft, (2)

Jkω̇k + ωk × Jkωk = Tk, (3)

where k = S, T, and S and T represent the satellite and target, respectively. In Equation (3), mk,
Jk represent the mass and moment of inertia, ak and ωk represent the linear acceleration and
angular velocity of the rigid bodies, Fk represents the external force such as microgravity
and aerodynamic drag ect. and Tk represents the external torque.

Os Xs

YsZs

OT
XT

YT

ZT

rFS FtTc

o x

yz

-Ft rFT

Figure 4. Concept of the modified dumbbell model.

2.2.2. Sub-Tether Configuration

The above section provides the modified dumbbell model for the single tether con-
figuration after capturing a space debris object. This model can be easily extended to a
sub-tether configuration as shown in Figure 3b only by adding four sub-tethers in the
model. The concept of the modified dumbbell model for the sub-tether configuration is
shown in Figure 5, where a mass point has to be added at the intersection point P and its
governing equation is

mjaj = ΣFi − Ft, (4)

where mj is the lumped mass of the main tether and sub-tethers, aj the acceleration of the
mass point and Fi(i = 1, 2, 3, 4) is the tension forces in sub-tethers, respectively. The tension
force Fi can be obtained similarly via Equation (1) by changing parameters to those of the
sub-tethers.

Os Xs

YsZs

OT
XT

YT

ZT

rFS FtTc

o x

yz

-Ft
rFT

F
i

-Fi

P

Figure 5. Concept of the modified dumbbell model for sub-tether configuration.
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2.3. Lumped-Mass Model
2.3.1. Single Tether Configuration

The lumped-mass model has been widely used in the modeling of a net and/or a
tether, and it was also called the mass–spring model. The basic idea of this model is to
discrete the tether as a series of mass points connected by a non-linear spring–damper
element. Its concept is shown in Figure 6. The reason that the spring–damper element
is non-linear is due to the spring’s capability for standing tension but not compression.
This property allows the spring to better describe the nature of a tether. The lumped-mass
model has been widely discussed in references [9,10,16], and the tension force Fij between
nodes i and j is given as

Fij =

{
(− EA

l0
(rij − l0)− 2ξ

√
mikṙij)r̂ij rij > l0,

0 rij ≤ l0,
(5)

In this equation, rij and ṙij are the distance and relative velocity between the i-th and
j-th node. Furthermore, r̂ij represents the unit direction vector pointing from the i-th node
to the j-th node. l0 is the initial unstretched mesh length, ξ is its damping ratio, and mi
is the mass of the i-th node. The model of two rigid bodies is the same as the modified
dumbbell model in Equation (3).

Mass Point

Spring Damping Element

L

Os Xs

YsZs

OT

XT

YT

ZT

m1 mi mN

rFS

Fs

Tc

o x

yz

rFT

Figure 6. Concept of the lumped-mass model for a single tether configuration.

2.3.2. Sub-Tether Configuration

Similar to the modified dumbbell model for the sub-tether configuration, the lumped
mass model can also be extended by adding four sub-tethers in the model as shown in
Figure 7. Their dynamic equations can be obtained using the same method and are therefore
not repeated here again.

Mass Point

Spring Damping Element

L

Os Xs

YsZs

OT

XT

YT

ZT

m1 mi
mN

rFS

Fs

Tc

o x

yz

rFT

Figure 7. Concept of the lumped-mass model for a sub-tether configuration.

2.4. ANCF Model
2.4.1. Single Tether Configuration

Absolute Nodal Coordinates Formulation (ANCF) was originally proposed by Sha-
bana and is utilized in solving large displacement and deformation problems [30]. In ANCF,
absolute positions and the gradients of the positions act as the element nodal coordinates
to describe the configuration of a flexible system. In contrast, infinitesimal or finite rota-
tions are used as nodal coordinates in the classical finite element method that limits its
use to problems with small deformations and rotations. Moreover, the mass matrix in
ANCF is constant and no centrifugal and Coriolis forces are involved in the derivation of
dynamic equations.

To establish an ANCF model for a combined tethered system, the dynamic models
of two rigid bodies are the same as the other two models mentioned in Equation (3); the



Aerospace 2022, 9, 33 6 of 18

model of the tether is however built by the ANCF cable element. The concept of the ANCF
model for the tethered system is shown in Figure 8.

Os Xs

YsZs

OT

XT

YT

ZT

rFS

Fs

Tc

o x

yz

Node i
Node j

ri rj
rT

Figure 8. Concept of the ANCF model for a single tether configuration.

One cable element contains two end nodes and the arbitrary position in a cable element
can be expressed as,

r = Se (6)

where S = [S1 I, S2 I, S3 I, S4 I] is the global shape function, I is a 3×3 identity matrix,
e = [e1, e2]

T is the absolute nodal coordinates at two ends of the cable element. It is
certain that

ei = [ri, rix](i = 1, 2); (7)

where ri is the global displacement and rix = ∂ri
∂x is the global slope of the element. The

shape function Si is defined as

S1 = 1− 3ξ2 + 2ξ3, S2 = l0(ξ − 2ξ2 + ξ3),
S3 = 3ξ2 − 2ξ3, S4 = l0(−ξ2 + ξ3),

(8)

where ξ = x/l0, and x is the coordinate of arbitrary point on the element.
The constant mass matrix Mi can be derived by evaluating the kinetic energy expres-

sion which is
Ti =

1
2

∫
V

ρṙT
i ṙi dV =

1
2

ėT
i Mi ėi (9)

where ρ is the density of the element material and ṙi is the velocity of the i-th element. The
constant mass matrix Mi is consequently obtained as

Mi =
∫

V
ρSTS dV. (10)

The elastic forces of a cable element can be derived from the elastic energy, and that
of a deformed cable element contains two parts: the strain energy due to longitudinal
deformation and the strain energy due to bending. The strain energy due to longitudinal
deformation and bending is, respectively, expressed as

Ula = 1
2

∫ l0
0 EAε2

l dx,
Ulb = 1

2

∫ l0
0 EIκ2

l dκ,
(11)

where ε l can be expressed based on Cauchy–Green longitudinal strain as

ε l =
1
2
(r′Tr′ − 1). (12)

and the curvature κ of the cable centerline is given by the formula derived from the Seret–
Frenet frame as

κ =
|rx × rxx|
|rx|3

. (13)

Using the expression of the strain energy, one obtains the vector of elastic forces

Qe =

(
∂U
∂e

)T
= Ke (14)
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and K is the nonlinear stiffness matrix of the element. In order to minimize the number
of mathematical operations in the computer implementation, Gaussian quadrature was
used for the integration of the non-rational strain energy expressions to approximate the
elastic forces. The expressions of the elastic forces in ANCF are non-linear and coordinate-
or time-dependent. Several simplified models of elastic forces for the beam element have
been derived by Berzeri and Shabana [31].

In the tethered system, two ends of the tether are constrained with two rigid bodies,
respectively. This makes the system a coupled rigid–flexible multibody system. Using the
principle of virtual power and introducing the Lagrange multipliers, one can derive the
system equations of motion for the tethered system asMe 0

0 Mr
ΦT

q

Φq 0


 ë

q̈r
λ

 =

 Qe
Qr
γ

 (15)

where Me and Mr are the constant ANCF mass matrix and rigid bodies mass matrix,
respectively; Qe is the generalized elastic force associated with absolute nodal coordinates e,
and Qr is the external force applied on the rigid bodies which is governed by its coordinates
qr; here, λ represents the Lagrange multiplier; Φq is the Jacobin matrix of the constraint
equations Φ (Equation (16)); γ is obtained by differentiating the constraint equations twice
with respect to time. Based on the configuration of the tethered system in Figure 8, two
ends of the tether are constraint with two rigid bodies by sphere joints and the constraint
equations of the system is expressed as

Φ = rc + Au− Se = 0, (16)

where rc is the mass center of a rigid body; u is the vector pointing to the connecting
position in the body frame and A represents the rotation matrix with respect to the inertial
frame. Differentiating the constraint equations once with respect to time will obtain

Φ̇ = ṙc + Ȧu− Sė = 0, (17)

in which the derivative of the rotation matrix is complicated to compute. With the help of
the expression of the angular velocity

ω̃ = ȦAT , (18)

where ˜(•) represents the anti-symmetric matrix of the vector (•), one can easily simplify
the Equation (17) as

Φ̇ = ṙc + ω̃Au− Sė = 0. (19)

Differentiating the above equation once more with respect to time will produce

Φ̈ = r̈c + ˜̇ωAu− ω̃ω̃Au− Së = 0, (20)

from where the Jacobin matrix Φq and the term γ can be obtained.

2.4.2. Sub-Tether Configuration

Compared with the single tether configuration under ANCF model, the sub-tether
configuration shown in Figure 9 contains more constraint equations. They not only include
the constraints of the connecting point with the rigid body, but also include the constraint
at the intersection point, whose constraint equation is

ei
s − ee = 0, (21)
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in which ei
s is the vector of absolute nodal coordinates of the start of sub-tether i (i = 1,2,3,4),

and ee is the vector of the end of the main tether. The structure of system equations and
derivations makes no difference with the single tether configuration.

Os Xs

YsZs

OT

XT

YT

ZT

rFS

Fs

Tc

o x

yz

Node i
Node j

ri rj
rT

Figure 9. Concept of the ANCF model for sub-tether configuration.

3. Modal Analysis of Tethered System
3.1. Analytical Results

Section 2 describes three dynamic modeling methods for a tethered post-capture
system, and two of them do not consider the bending stiffness of the main tether. Therefore,
this section only discuss the axial vibration of the main tether for modal analysis. Since a
tether is not able to withstand compression, the tether becomes slack when the distance
between two end bodies is smaller than the original length of the tether. To establish the
theoretical model of the tether for modal analysis and to determine the optimal number of
segments, the tether is divided in the simulation, the main tether is assumed as an elastic
rod, and two end bodies are assumed as two mass points for analysis in this section. It is
easy to establish the equation of equilibrium for a elastic rod as

E
∂2u(x, t)

∂x2 = ρ
∂2u(x, t)

∂t2 , (22)

where E, ρ are the Young’s modulus and density of the main tether. Here, u(x, t) is the
solution of displacement along the tether, and it is feasible to assume its form as follows

u(x, t) = φ(t)U(x) = [a sin(ωt) + b cos(ωt)][c sin(λx) + d cos(λx)], (23)

where a, b, c, d are underdetermined coefficients, λ = ω
√

ρ/E and ω is its natural frequency.
Underdetermined coefficients can be obtained by substitution of boundary conditions into
Equation (23). It is easy to find the analytical solution of natural frequencies for an elastic
rod or string with free–free boundary conditions in any structural dynamics textbook,
which is

ωn =
nπ

l

√
E
ρ

, n = 1, 2, · · · , (24)

where l is the length of the elastic rod or string.
However, a tethered post-capture system contains not only the main tether but also

two end-lumped masses. The boundary conditions for the system therefore become

EA ∂u(0,t)
∂x −mS

∂2u(0,t)
∂t2 = 0,

EA ∂u(L,t)
∂x + mT

∂2u(L,t)
∂t2 = 0,

(25)

where mS and mT represent the mass of the satellite on left and the target on right in
Figure 4, respectively. Substitution of Equation (25) into Equation (23) is able to obtain the
characteristic equation of the tethered system as

tan(λl) =
EAλ(mS + mT)

mSmTω2 − EρA2. (26)
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Therefore, the corresponding natural frequencies of a tethered system can be obtained
by solving Equation (26). Since the radius of the main tether is usually small, the second
term in the denominator in Equation (26) is negligible, and it can be further simplified as

tan
(

ωl
√

ρ/E
)
=

√
EρA(mS + mT)

mSmTω
. (27)

3.2. Modified Dumbbell Model

Based on the derivation of the modified dumbbell model in Section 2.2, it is straight-
forward to write the equations of motion of an undamped tethered system in matrix
form as

Mü + Ku = 0. (28)

where M and K are the mass and stiffness matrix of the tethered system, u is the displace-
ment vector of two end masses. Their explicit forms are

M =

[
mS 0
0 mT

]
, K =

[
k −k
−k k

]
, u =

[
uS
uT

]
, (29)

where k = EA/L is the stiffness of the tether, uS and uT are the displacement of the satellite
and target, respectively.

Then the frequencies and mode shapes of the tethered system can be obtained by
solving the eigenvalue problem

(K −ω2M)u = 0. (30)

Simply changing the mass of the satellite and target to half the mass of the tether in
the mass matrix is able to achieve the frequencies and mode shapes of the tether without
tip masses.

3.3. Lumped-Mass Model

The equations of motion of the tethered system under the lumped-mass model have
the same form with that of the dumbbell model as shown in Equation (28). The mass matrix
and stiffness are different as follows

M =


mS

mi
. . .

mi
mT

, K =


k −k 0 0 0
−k 2k −k 0 0

0
. . . . . . . . . 0

0 0 −k 2k −k
0 0 0 −k k

, (31)

where mi = mt/N is the distributed mass along the tether, mt the mass of the tether, N the
number of the mass points, k = NEA/L the stiffness of each segment. It results in the same
eigenvalue problem as Equation (30). For there to be a nontrivial solution of Equation (30),
the determinant of the matrix K−ω2M should be zero. Solving the characteristic equation
obtains the natural frequencies of the system. Changing the mass mS and mT to mi in mass
matrix is also able to achieve the frequencies of the tether without tip masses.

3.4. ANCF Model

In Section 2.4, the constant mass matrix Mi in the ANCF model has been derived.
The stiffness matrix of a tether can be obtained by taking the derivative of elastic force
with respect to the generalized coordinates e, or taking the derivative of strain energy with
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respect to e twice. Since we only consider the axial vibration of the tether, we use the strain
energy due to longitudinal deformation only. The stiffness matrix is therefore

Ki =
∂2Ula
∂e2 . (32)

Performing the derivative, we can obtain

Ki =
∫ l

0
EA

∂ε l
∂e

∂ε l
∂e

dx +
∫ l

0
EAε l

∂2ε l
∂e2 dx. (33)

It is seen from the above equation that the stiffness matrix is dependent on the current
configuration of the system. Since calculating the natural frequency only requires the
stiffness matrix at an initial configuration, and we assume there is no initial stress in
the system, i.e., ε l is zero in the beginning, the second term of the stiffness matrix in
Equation (33) is therefore zero. Only the first term is left. The expression of ε l is already
shown in Equation (12). Taking the derivative of ε l with respect to e yields

∂ε l
∂e

= ST
x Sxe = Sae. (34)

where Sx is the first derivative of shape function S with respect to position coordinates x,
and Sa = ST

x Sx for short. Note that

Sa = ST
x Sx =

1
l2
0

ST
ξ Sξ =

1
l2
0

Sb. (35)

where Sb = ST
ξ Sξ for short, and Sξ is the first derivative of shape function S with respect to

natural coordinates ξ.
Therefore, the initial stiffness matrix becomes

Ki =
∫ l

0
EA

∂ε l
∂e

∂ε l
∂e

dx =
∫ l

0
EA(Sae)(Sae)dx =

EA
l3
0

∫ 1

0
(Sbe)(Sbe)dξ. (36)

The above achieved mass matrix and stiffness matrix are for one element. Assemble
them to obtain the system mass matrix M and stiffness matrix K. Use Equation (30) to
solve the eigenvalue problem and achieve the natural frequency and mode shapes for the
main tether without tip masses. It is noteworthy that the mass matrix need to be modified
if a tethered system is considered. The rigid tip mass should be added and the new mass
matrix becomes

Mn = M + Mr. (37)

4. Comparison of Three Models

To systematically compare three modeling methods for tethered system after capturing
a space debris object provided in Section 2, simulations of both the single tether configu-
ration and the sub-tether configuration are performed based on the above three models
in this section. Six groups of simulations in total, two configurations under three models,
respectively, are run and the results are compared. Moreover, natural frequencies are
calculated based on three models and the results are compared with the analytical solution.
Moreover, the influence of the initial conditions of the tethered system is also discussed.

4.1. Single Tether Configuration

For the harpoon method and the tether–gripper method, the combined system can
be simplified as two rigid bodies connected by a flexible tether as shown in Figure 3a.
The target is assumed as a Cubesat weights 3.5 kg, to be captured by a 10 kg chaser
Cubesat equiped with a harpoon or gripper. As most of the space debris is tumbling due
to its residual momentum, we set the initial angular velocity of the target as 0.3 rad/s
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rotating about its axis with the largest moment of inertia. Other simulation parameters are
summarized in Table 1.

Table 1. Simulation Parameters.

Parameter Value

Service Satellite Mass mS, (kg) 10
Dimensions −, (m) 0.6 × 0.6 × 0.6

Target Mass mT , (kg) 3.5
Dimensions −, (m) 0.4 × 0.4 × 0.4

Tether Main tether length L, (m) 2.25
Sub-tether length l, (m) 0.4123
Tether diameter d, (mm) 5
Damping coefficient c, (-) 0.1
Young’s modulus E, (Pa) 4.456× 107

Simulations of the tethered system with the parameters in Table 1 under three models
were performed. Screenshots of the animations are listed and compared in Table 2. It can
be seen that their configurations at the same moments under three models are close to
each other. Figure 10 shows the position trajectory of the mass center of the target along
the x direction. It can be seen that the curves overlap each other, indicating that the three
models are all able to describe the motion of system correctly. The change of the angular
velocity of the target is shown in Figure 11 and it indicates that the tether force applies on
the target and generates a torque on the target, thus detumbling the target. Its angular
velocity is decreased from 0.3 rad/s to around 0.21 rad/s in 5 s, and all the three models
present quite close results. In this respect, it is implied that a tethered system is not only
able to capture a target but also able to detumble the target simultaneously. As shown in
Figure 12, the tether force in the modified dumbbell model and the lumped-mass model is
always positive. This is because that the tether in those two models is not able to withstand
compression but only tension. In contrast, the tether in ANCF model can withstand both.
In addition, in the first two models, it is also seen that the force is not always applied on
the tether. It is zero when the tether is not at tension.

Table 2. Simulation Animation Screenshots for Single Tether Configuration.

Models Screenshots of Animations
t = 0 s t = 2.5 s t = 5 s

Modified
Dumbbell

Model

Lumped-
mass

Model

ANCF
Model
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Figure 10. Position of the mass center of the target.

0 1 2 3 4 5

Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
n

g
u

la
r 

V
el

o
ci

ty
 (

ra
d

/s
)

Modified Dumbbell Model

Lumped-mass Model

ANCF Model

Figure 11. Angular velocity of the target.
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Figure 12. Tether force.

4.2. Sub-Tether Configuration

For the net capturing method, the combined system model can be simplified as two
rigid bodies connected by a main flexible tether and four sub-tethers as shown in Figure 3b.
When a net finishes capturing a target, not all cables of the net are at tension. Therefore, it is
reasonable to simplify the net as four sub-tethers connecting to the target, which is a typical
configuration proposed by Hovell and Ulrich for the post-capture system by a net [28].
Here, we use this sub-tether configuration in the simulation and the contact between the
net and the target is not taken into consideration. Table 3 lists the screenshots of animations
of three models. It is not surprising to notice that those configurations at the same moments
have good agreements. Figures 13–15 display the position, angular velocity of the target
and the tether force with respect to time, respectively. Similar conclusions can be drawn
to the simulation of the single tether system except for the complicated situation in the
sub-tether configuration. Moreover, the angular velocity of the target is decreased 20% more
than that of a single tether system in 5 s, which implies that the sub-tether configuration
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has more detumbling efficiency than that of the single tether configuration. The reason of
why the simulation is run up to 5 s is because the tumbling target will entangle with the
main tether if no control is performed after 5 s. In that case, the contact detection algorithm
and contact dynamics have to be considered, which is not the focus of this paper.

Table 3. Simulation animation screenshots for the sub-tether configuration.

Models Screenshots of Animations
t = 0 s t = 2.5 s t = 5 s

Modified
Dumbbell

Model

Lumped-
mass

Model

ANCF
Model
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Figure 13. Position of the mass center of the target.
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Figure 14. Angular velocity of the target.
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Figure 15. Tether force.

4.3. Comparison of Natural Frequency

To further compare three models from the viewpoint of vibration, the natural fre-
quencies of the main tether and the tethered system based on three models are calculated
and compared with the analytical results introduced in Section 3. The parameters of the
system are the same as shown in Table 1. First five orders of natural frequencies of the
main tether and the tethered system are shown in Tables 4 and 5, respectively. Since the
modified dumbbell model only has two degrees of freedom in 2D space and one of the
mode is the rigid motion, it has only the first order of natural frequency and that of the
main tether is far from the analytical result. Natural frequencies of the main tether based
on the lumped-mass model are close to the analytical. However, the results come from
the discrete model with 100 mass points along a 2.25-m elastic tether. For comparison, the
ANCF model only requires seven elements to receive even closer results. When it comes
to the tethered system, two end masses are attached at both ends and the first order of
natural frequency drops down dramatically. It is also interesting to see that the modified
dumbbell model is able to capture that mode accurately. The lumped-mass model with
10 discrete mass points can already obtain a quite close match, let alone the 7-element
ANCF model. This is because the mass of the tether is much smaller than that of two end
masses; therefore, the end masses dominate the natural frequency of the system.

Table 4. Natural frequencies of the main tether (Hz).

Order Analytical Modified
Dumbbell Model

Lumped-
Mass

Model

ANCF
Model

1 71.59 45.58 71.24 71.59
2 143.19 - 142.46 143.19
3 214.78 - 213.65 214.79
4 286.38 - 284.79 286.44
5 357.97 - 355.86 358.22

Table 5. Natural frequencies of the tethered system (Hz).

Order Analytical Modified
Dumbbell Model

Lumped-
Mass

Model

ANCF
Model

1 1.947 1.949 1.948 1.948
2 71.646 - 74.574 71.647
3 143.216 - 147.555 143.217
4 214.802 - 217.549 214.814
5 286.392 - 283.120 286.464
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It can be seen that more discrete mass points and elements in the model will lead to a
more accurate result based on the above discussion. However, more discrete elements will
definitely increase the computational time. In order to choose the optimal number of points
into which the tether is divided to maintain the efficiency and adequacy of the simulation,
convergence study for both the lumped mass model and the ANCF model is carried out.
Figures 16 and 17 show the convergence of natural frequencies to the analytical results with
respect to the increasing elements under two models. On one hand, this analysis indicates
both models are able to describe the dynamics of a tether and tethered system accurately,
and they are cross-verified. On the other hand, this analysis provides the reader a guideline
of how to choose a proper number of elements from a viewpoint of vibration.
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Figure 16. Convergence study of the lumped-mass model. (a) Natural frequency convergence of the
main tether; (b) natural frequency convergence of the tethered system.
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Figure 17. Convergence study of the ANCF model. (a) Natural frequency convergence of the main
tether; (b) natural frequency convergence of the tethered system.

4.4. Influence by Initial Condition

Sections 4.1 and 4.2 introduced the cross-verification of the three presented models
when dealing with a small target. However, the most threatening and urgent targets to
be removed are usually massive ones. This section discusses a removal of an 8-ton target
by a Microsat weighing 500 kg. Since a rotating massive target can cause a huge force in
the tether, thus pulling the satellite, the faster it rotates, the larger the force will be; Kevlar
is strong enough to be selected as the material of the main tether. To investigate how
this impact force changes with respect to the initial angular velocity of a massive target,
simulations based on those three models were performed, and the simulation parameters
are summarized in Table 6.
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Table 6. Simulation parameters.

Parameter Value

Service Satellite Mass mS, (kg) 500
Dimensions −, (m) 2.5 × 2.5 × 2.5

Target Mass mT , (kg) 8000
Dimensions −, (m) 5 × 5 × 5

Tether Main tether length L, (m) 100
Tether diameter d, (mm) 50
Damping coefficient c, (-) 0.1
Young’s modulus E, (GPa) 131

Figure 18 describes the changing of the impact force on the satellite when the target
rotates based on three models. It can be seen that the impact force is non-linearly changing
with respect to the target’s initial angular velocity. Moreover, three models present the same
trend and relatively closer values of the tether tension force, that of lumped-mass model
and ANCF model almost overlap each other. Since the tether tension force will generate
an inverse torque on the target thus detumbling it, the reduced values of target’s angular
velocity is shown in Figure 19, which also have good agreements among three models.
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Figure 18. Impact force on the satellite with respect to the initial angular velocity.
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Figure 19. Reduced angular velocity with respect to the initial angular velocity.

5. Conclusions

This paper compares three models of describing a tethered post-capture system for
space debris removal, namely the modified dumbbell model, lumped-mass model and
the ANCF model. Three models have been established in detail and modal analysis of the
tethered system was performed. Comparison among three models was deeply made via
numerical simulations. Simulations of different case studies have shown good agreements
among models. By running simulations of both the single tether system and the sub-tether
system, it concludes that the tethered-system is able to capture a target and de-tumble a
target simultaneously, and the sub-tether configuration is more efficient in detumbling a
target than the single tether configuration. Comparison of natural frequencies of a tethered
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system provides the cross-verification from the viewpoint of vibration, and the convergence
study offers a guideline to determine the number of elements in the lumped-mass model
or ANCF model. In addition, it was found that the impact force on the satellite is non-
linearly dependent on the target’s initial angular velocity. Based on those comparisons,
three models are all able to predict the motion of a tethered system accurately. However,
the modified dumbbell model is recommended to model a tether system as a first guess due
to its simplicity. Both the lumped-mass model and the ANCF model are able to describe
the flexibility and longitudinal vibration of the main tether, but the ANCF model requires
less elements to capture the dynamics of it. Future study will focus on the detumbling
control and the orbital effect influence of the tethered system during de-orbiting based on
those models.
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