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Abstract: Rotorcraft stability is an inherently multidisciplinary area, including aerodynamics of rotor
and fuselage, structural dynamics of flexible structures, actuator dynamics, control, and stability
augmentation systems. The related engineering models can be formulated with increasing com-
plexity due to the asymmetric nature of rotorcraft and the airflow on the rotors in forward flight
conditions. As a result, linear time-invariant (LTI) models are drastic simplifications of the real
problem, which can significantly affect the evaluation of the stability. This usually reveals itself in
form of periodic governing equations and is solved using Floquet’s method. However, in more
general cases, the resulting models could be non-periodic, as well, which requires a more versatile
approach. Lyapunov Characteristic Exponents (LCEs), as a quantitative method, can represent a
solution to this problem. LCEs generalize the stability solutions of the linear models, i.e., eigenvalues
of LTI systems and Floquet multipliers of linear time-periodic (LTP) systems, to the case of non-linear,
time-dependent systems. Motivated by the need for a generic tool for rotorcraft stability analysis, this
work investigates the use of LCEs and their sensitivity in the stability analysis of time-dependent,
comprehensive rotorcraft models. The stability of a rotorcraft modeled using mid-fidelity tools is
considered to illustrate the equivalence of LCEs and Floquet’s characteristic coefficients for linear
time-periodic problems.

Keywords: rotorcraft stability; time-periodic systems; lyapunov characteristic exponents

1. Introduction

Rotorcraft use rotating blades to generate the loads required for flight, i.e., lift, propul-
sion, and control, as needed to take-off and land vertically, as well as hover [1]. They can
fulfill many roles that fixed-wing aircraft cannot perform as effectively, such as search and
rescue, if they can at all. To provide a sufficient level of thrust at hover and low airspeeds,
a relative motion must be maintained between the rotating wings and the air. Rotors
should have a long enough span to enable the efficient lifting, propulsion, and control of
the vehicle [2]. These three fundamental functions significantly affect each other, and lead
to cross-couplings, which result in more complex flight physics compared to fixed-wing
aircraft [3].

Stability assessment is an important task in helicopter design, especially considering
that from an aeromechanical viewpoint they are inherently unstable [4]. A specific form of
complexity arises from the rotation of the blades in forward flight, which induces periodic
aerodynamic loading on the rotor blades. Additionally, blades in the advancing azimuthal
range add their rotational velocity with a component of the forward flight speed of the
vehicle, and exhibit substantial compressibility effects at high forward speeds, with the
blade tip approaching Mach 1. Conversely, blades in the other half of the azimuth move in
a direction opposite to that of the vehicle, resulting in low relative speed, the need for high
angles of attack to compensate for the reduction of lift, proximity to stalled flow, and even
reverse flow conditions near the blade root. As a consequence of extended stall and reverse
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flow regions, high levels of drag result, with a significant drop in the lift. In addition to
the time-dependence of aerodynamic origin, similar effects also occur if an unbalance is
present in the rotating elements. The latter can usually happen as a result of deviations
from nominal mass distribution, or aerodynamic shape distortion [5]. Another source could
be a malfunction of one of the repetitive mechanical elements, such as lead-lag dampers [6].
Whatever the reason, the loss of symmetry in the rotation field results in

1. alternating loads that excite the fuselage, and
2. alternating system properties leading to a time-dependent system.

While the former represents a forced vibration problem, the latter results in a time-
variant problem, whose stability analysis is more difficult.

In dynamical systems, the study of nearby solutions of an equilibrium point is referred
to as stability [7]. In other words, the system response after a perturbation of the system’s
state is introduced about an equilibrium condition [8]. There are several methods to assess
the stability of a system. A conventional one is perturbing the system through typical
input or disturbance sources and observing the free-decay characteristic. This could be
performed by conducting experiments on a manufactured product or through computer
simulations. Alternatively, spectral methods exist, which quantify the decaying behaviour
of independent components of the solution, which is referred to as the system’s exponential
multipliers or characteristic exponents. Once the stability spectrum that quantifies stability
is obtained, it is straightforward to interpret the results and track the changes in stability
characteristics with the evolution of the design. Besides, the spectral methods are also
suitable for the analytical estimation of the sensitivity of stability estimates. This work
focuses on spectral methods of estimating stability.

The validity of rotorcraft stability estimation is defined by the capability of mathe-
matical and numerical tools used in evaluating the stability and the simplifications made
during the process. For the linear, time-invariant (LTI) case, stability can be assessed using
eigenanalysis of the system’s matrix. A more difficult case is that of linear, time-periodic
(LTP) systems, a special class of linear, time-variant (LTV) problems, which can be consid-
ered to address the intrinsic periodicity of idealized rotorcraft, especially originating from
the main rotor’s aerodynamics in non-axial flow conditions, or dissimilarities in the rotor
components, as in ground resonance with degraded dampers. A widespread tool, in this
case, is Floquet’s theory, which represents a natural extension of eigenvalue analysis for
LTP systems [9]. The eigenvalue decomposition for LTI systems and Floquet analysis of LTP
problems may successfully evaluate stability in several flight conditions; however, rotorcraft
dynamics is generally described by non-linear, generically time-dependent equations [10].
Therefore, these methods imply simplifications when the system is neither time-invariant
nor periodic. For these reasons, capturing the effects of time-dependence in rotorcraft
stability could provide more insight into increasingly complex rotorcraft stability problems.

To achieve a generalized framework for the stability analysis of rotorcraft, a technique
that can estimate the stability of time-dependent systems is required. This method is further
needed to require no simplifications regarding time-dependence nor any assumption of
periodicity. Additionally, the technique should give the same results and interpretation
when applied to relatively simple models of time-invariant and periodic systems. Lya-
punov Characteristic Exponents (LCE) satisfy all these requirements and can represent
a universal framework for rotorcraft aeroelastic stability. LCEs are the indicators of the
stability properties of non-linear, time-dependent differential equations [11]. Therefore, no
simplifications are required concerning the time-dependence of the system, paving the way
for a more versatile and accurate assessment of rotorcraft stability.

Concerning their application to rotorcraft aeromechanics, LCEs and their sensitivity
were studied for the first time for specific non-linear engineering systems and subcom-
ponents in Refs. [12,13]. This work extends their use to time-dependent high fidelity
rotorcraft problems as a quantitative stability assessment method. The rest of the paper
is organized as follows. Section 2 briefly introduces Lyapunov Characteristic Exponents
and their practical computation. Two time-dependent example problems are utilized in
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Section 3 to illustrate the approach, where the LCE stability indicators are compared with
the conventional Floquet multiplier. Conclusions are finally drawn in Section 4.

2. Method

This section illustrates the theory and estimation of Lyapunov Characteristic Expo-
nents (or Lyapunov Exponents, in short) and their sensitivity.

2.1. Lyapunov Characteristic Exponents

An LTI dynamical system can be represented in state-space form as:

ẋ = Ax, x(t0) = x0, (1)

where vector x ∈ Rn contains the n states of the system, and matrix A ∈ Rn×n is referred to
as the state-space matrix. When matrix A is not singular, x = 0 (the trivial solution) is the
unique equilibrium condition. In this case, the stability of the LTI system in Equation (1) is
estimated by the eigenvalues of the state-space matrix A [14]. Three fundamental outcomes
may originate from this consideration.

• First, the time response of the system converges to zero, which happens when all
eigenvalues have a negative real part.

• Second, the system responds in a divergent manner when some eigenvalues have a
positive real part.

• Third, a periodic orbit can be the resulting motion in the presence of purely imaginary
eigenvalues.

A combination of these fundamental response types can occur, as well [15]. Since
only one equilibrium point exists, which is trivial, the stability properties of all possible
solutions of x are equivalent to those of the trivial solution. Although the time response
amplitude of the system depends on the initial conditions [16], the stability characteristics,
i.e., being divergent, convergent, or periodic, do not depend on them.

For LTP systems, the same remarks are valid, as well. The only difference is the need
to consider, instead of the state-space matrix A, the monodromy matrix H, which represents
the state transition matrix (STM) over one period (often referred to as Floquet transition
matrix), i.e., the result of integrating the problem

Ḣ = A(t)H (2)

over a period from t = 0 to T, with initial conditions H(0) = I. For an LTI system,
the monodromy matrix over the same period T corresponds to

H = eAT . (3)

While LTI and LTP systems can usually provide sufficiently accurate representations
of rotorcraft problems for several applications, the relation between the system states x
and its rate of change in time ẋ cannot be limited to being time-invariant or time-periodic.
In other words:

ẋ = f(x, t), x(t0) = x0 (4)

is a more generic representation of rotorcraft dynamics, where the non-linear function f(x, t)
governs the system dynamics and can include relations not necessarily time-invariant
nor periodic.

To address the more general time-dependence problem, this work suggests the use
of Lyapunov Characteristic Exponents (LCEs). LCEs indicate the stability properties of
the solutions of differential equations [11,14]. Mathematically speaking, LCEs define the
spectrum of the corresponding initial value, or Cauchy, problem. Moreover, Lyapunov’s
theory applies also to non-linear time-dependent systems. The stability of trajectories in the
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state-space can be estimated while integrating their time response. Therefore, Lyapunov
Exponents represent a generalization of the stability properties that are familiar in current
engineering practice.

By definition, the trajectory of a system is a solution to a differential equation of the
form of Equation (4). Special cases occur if the model is linear, i.e., f(x, t) = A(t)x(t),
or time-periodic, i.e., linear with A(t + T) = A(t), for a given period T. Time-invariant
problems arise when f(x) does not explicitly depend on time t. The simplest form is
obtained when the problem is simultaneously linear and time-invariant, i.e., f(x) = Ax.

Consider the system with ẋ = f(x, t), where the previously introduced vector x ∈ Rn

contains the states, t ∈ R is the time, and f ∈ Rn+1 → Rn is a non-linear time-dependent
function. For a solution x(t) originating from initial conditions x(0) = x0, the LCEs λi are
defined as:

λi = lim
t→∞

1
t

log
||ix(t)||
||ix(t0)||

, (5)

where ix(t) represents the growth of the ith axis of the ellipsoid that evolves from an
initially infinitesimal n-dimension sphere. The evolution happens according to the map
f/x, tangent to f along the solution trajectory x(t). In other words, ix(t) is the solution of
the linear, time-dependent problem

iẋ(t) = f/x(x(t), t) ix(t), (6)

with initial conditions ix(t0) = ix0.
Equation (5) can be simplified by splitting the log function of Equation (5) as:

λi = lim
t→∞

1
t

log ||ix(t)|| − lim
t→∞

1
t

log ||ix(t0)||. (7)

The second limit involves a constant, ||ix(t0)||, divided by time t, which, in the limit,
approaches +∞, obviously tending to zero. The first limit, thus, defines the ith LCE as:

λi = lim
t→∞

1
t

log ||ix(t)||. (8)

Due to the presence of a limit for t→ ∞ in the definition, the practical evaluation of LCEs
can only be numerically obtained for a sufficiently long time t. For this reason, the term
“LCEs” in the following will rather refer to their estimation for a large enough value of t to
reach practical convergence.

2.2. Application to LTP Problems

For an LTV problem, the STM is the solution of

Ẏ = A(t)Y, (9)

integrated from τ to t with initial conditions, Y(τ) = I. When replaced in the LCEs
definition, it yields

λi = lim
t→∞

1
t

log ||Y(t, 0)ix0||. (10)

When the problem is LTP, the time t can be nondimensionalized with respect to the
problem’s period T, namely t = Tψ, yielding

λi = lim
ψ→∞

1
Tψ

log ||Y(Tψ, 0)ix0||. (11)
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Considering now the limit for discrete values of time, for ψ ∈ N+ to +∞, one obtains
Y(Tψ, 0) = Yψ(T, 0), and, recalling the monodromy matrix resulting from the solution of
Equation (2), H = Y(T, 0), one obtains

λi = lim
ψ→∞

1
Tψ

log ||Hψ
ix0||, (12)

and, again, expressing the monodromy matrix in spectral form, namely H = XeBTX−1, and
assuming that ix0 is its ith eigenvector, namely the ith column of matrix X, one obtains

λi = lim
ψ→∞

1
Tψ

log ||ix0eβiTψ|| = Re(βi), (13)

i.e., the LCEs correspond to the real part of the logarithm of the eigenvalues of the mon-
odromy matrix, divided by the period, T.

2.3. Numerical Estimation of LCEs

Starting from the fundamental work of Benettin et al. [11], several methods have been
formulated for the estimation of all LCEs, or at least the largest ones. They can be broadly
partitioned into two classes: continuous and discrete. Noteworthy continuous methods
include those based on the QR and SVD factorizations, whereas, among the discrete ones,
that based on QR is worth mentioning, and will be considered in the rest of this work.

LCE evaluation using continuous formulas suffers from the computational difficulty
of dealing with matrices whose coefficients either diverge or go to zero rapidly. As a result,
practical formulations have been developed. For example, the discrete QR method is a
common technique in LCE calculation. In this method, the LCEs estimates are incrementally
updated with the diagonal elements of the matrix R, which is extracted using the QR
decomposition of the STM evaluated between two successive time steps.

For a given matrix Y(t, tj−1) from time tj−1 to the consecutive time t, define the state
transition of the problem Ẏ = f/x(x(t), t)Y with Y(tj−1) = I. Setting Yj = Y(tj, tj−1) and
considering the QR decomposition of YjQj−1 implies that QjRj = YjQj−1. When the RΠj

matrix is defined as RΠj = Πj
k=0Rj−k, it can be shown that:

YjQj−1RΠj−1 = QjRjRΠj−1 = QjRΠj . (14)

Using the above relation, YjQj−1RΠj−1 RΠj can be constructed using only incremental
QR decompositions over YjQj−1, which allows limited contraction/expansion over one
time-step. Now, the LCEs can be estimated from the RΠj matrix as

λi = lim
j→∞

1
tj

log rii(tj), (15)

where j ∈ N and rii(tj) are the diagonal elements of matrix R(tj) = RΠj . Since the product
of two upper triangular matrices C = AB is also an upper triangular matrix, the diag-
onal elements are cii = aiibii. Thus, the log(cii) can be computed incrementally, namely
log(aiibii) = log(aii) + log(bii). This helps prevent overflow/underflow in numerical
computations. Furthermore,

rii(tj) = Πj
k=0r(j−k)ii

; (16)

thus,

log(rii(tj)) =
j

∑
k=0

log(rkii
), (17)
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which leads to

λi = lim
j→∞

1
tj

j

∑
k=0

log(rkii
). (18)

2.4. Computation of State Transition Matrix

The discrete QR decomposition method needs the calculation of the state transition
matrix, which can be obtained by numerical integration. For a sufficiently small time-step,
Equation (4) can be linearized:

δẋ = A(x(t), t)δx, (19)

where A = f/x results from the partial derivative of the non-linear function f with respect
to the state-space variables x. On the other hand, f can be an arbitrary non-linear function
of xj (trajectory) and t (time). Therefore, to integrate the STM, the knowledge of the
fiducial trajectory is required, i.e., the equations of motion need to be integrated first.
The numerical integration of differential equations is a relatively straightforward task; as
such, it is not discussed here in detail. However, the computation of the state transition
matrix is presented, as its determination is essential for the procedure.

An efficient approach for the evaluation of the state transition matrix is Hsu’s method [17],
which is also reported in Reference [18] and followed in this work. The method is applied
to LTV problems of the form ẋ = A(t)x by considering a piecewise-constant approximation
of matrix A(t), namely A(x, t) ≈ A(x̂, t̂) = Â with t̂ ∈ [tj, tj+1], where tj ≤ t ≤ tj+1 and
x̂ = x(t̂). The selection of t̂ may slightly alter the resulting STM. Finally, the state transition
matrix is readily obtained as

Y(t, tj) ≈ eÂ(t−tj), (20)

where an approximation of the matrix exponential may be necessary to improve the
computational efficiency, such as truncating the matrix power series.

2.5. Analytical Sensitivity of LCEs

In a dynamical system, especially in the design phase, the rate of change of stability
estimates with respect to an evolving or uncertain parameter plays a significant role in
assessing the stability characteristics. Such sensitivity is useful to gain insight into the
dependence of stability indicators on system parameters or can be integrated into gradient-
based (or gradient-aware) optimization procedures [19,20] and continuation algorithms [21],
or into uncertainty evaluation problems. Rather than using finite-differences, analytical
sensitivity is more favorable for several reasons, such as: to avoid issues related to sharp
changes in sensitivity parameters, and to track the evolution of the stability indicators
using continuation algorithms.

Consider a parameter p as a member of the set of bounded parameters p ∈ P . In
addition, suppose that the system ẋ = f(x, t, p) depends on this parameter set. The
sensitivity of the LCEs with respect to the parameter p ⊂ p, using the form of Equation (15),
can be stated as:

λi/p = lim
t→∞

1
t

rii/p(t)
rii(t)

. (21)

The ability to compute the sensitivity of matrix R, namely R/p, is needed. Considering
the definition of R(tj) = RΠj as formulated within the discrete QR method, its sensitivity is:

R/p(tj) =
j

∑
k=0

(
Πk−1

n=0Rj−n

)
Rk/p

(
Πj

n=k+1

)
Rj−n. (22)
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Since R(tj) = RjR(tj−1), the R/p can be computed incrementally according to:

R/p(tj) = Rj/pR(tj−1) + RjR/p(tj−1); (23)

thus, the perturbation is accumulated straightforwardly.
Finally, the form of Equation (18) can be used to formulate the sensitivity of LCEs:

λi/p = lim
j→∞

1
tj

j

∑
k=1

rkii/p

rkii

, (24)

which only needs the sensitivity of Rj, which is explained next.

2.5.1. Sensitivity of QR Decomposition

The sensitivity of the elements of QR decomposition can be computed along the lines of
the state transition matrix computation with differentiation of the QR decomposition, which
is utilized to formulate the continuous QR method for LCE estimation [11,22]. Revisiting
the QR decomposition of an arbitrary matrix M ∈ Rn×n:

M = QR, (25)

with orthogonal Q ∈ Rn×n (QTQ = I), and upper triangular R ∈ Rn×n having positive
diagonal elements. Differentiation of M with respect to a scalar parameter p gives:

M/p = Q/pR + QR/p, (26)

which requires the derivative of the orthogonality condition QTQ = I:(
QT
)

/p
Q + QTQ/p =

(
QTQ/p

)T
+ QTQ/p = 0. (27)

The second relation implies that QTQ/p must be skew-symmetric; therefore, only
n(n− 1)/2 coefficients are independent (for example, those in the lower triangular part,
excluding the diagonal). Finally, M/p is pre-multiplied by QT :

R/p = QTM/p −QTQ/pR. (28)

The R/p matrix is upper triangular; hence, the whole problem can be re-cast in the follow-
ing steps:

compute W = QTQ/p (29a)

considering stril
(

QTM/p −WR
)
= stril(0) (29b)

constrained by WT + W = 0, (29c)

compute R/p (29d)

considering triu
(

R/p

)
= triu

(
QTM/p −WR

)
(29e)

and stril
(

R/p

)
= stril(0), (29f)

where the triu(·) extracts the upper triangular part, including the diagonal elements, and
the stril(·) extracts the strictly lower triangular part, excluding the diagonal elements.

It should be noted that, since R is upper triangular, W is computed as:

WL = stril
(

QTM/pR−1
)

W = WL −WT
L , (30)
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where the matrix R−1 can be computed by back-substitution. In fact, since B = QTM/p,
the generic coefficient of stril(W) is

wij =
1
rjj

(
bij −

j−1

∑
k=1

wikrkj

)
j = 1, n− 1 i = j + 1, n, (31)

leading to:

Q/p = QW. (32)

The decomposition of YjQj−1 is required here; thus, the sensitivity of M = YjQj−1 =
QjRj is computed, i.e.

M/p = Qj/pRj + QjRj/p = Yj/pQj−1 + YjQ(j−1)/p, (33)

where Qj−1 and Q(j−1)/p are already known from the previous step. Next, Equation (33) is
premultiplied by QT

j to get:

QT
j Qj/pRj + Rj/p = QT

j Yj/pQj−1 + QT
j YjQ(j−1)/p. (34)

Then, the strictly lower triangular part of the equation is computed to obtain WL,

WL = stril
((

QT
j Yj/pQj−1 + QT

j YjQ(j−1)/p

)
R−1

j

)
= stril

((
QT

j Yj/pQj−1 + RjWj−1

)
R−1

j

)
. (35)

The strictly lower triangular part of Wj is Wj = QT
j Qj/p = WL −WT

L . Finally, the up-
per triangular part of Equation (34) is computed to attain Rj/p,

Rj/p = QT
j

(
Yj/pQj−1 + YjQ(j−1)/p

)
−WjRj

= QT
j Yj/pQj−1 + RjWj−1 −WjRj, (36)

which depends on computation of the sensitivity of Yj, from tj−1 to tj, as explained next.

2.5.2. Sensitivity of the State Transition Matrix

The sensitivity of the state transition matrix Y at time tj, namely Y/p(tj), is finally
required to complete the computation of sensitivity of the LCEs. In principle, one can
achieve this by integrating the sensitivity of the problem. Ẏ = AY. Then,

Ẏ/p = AY/p +
(

A/xx/p + A/p

)
Y, (37)

i.e., a problem with the same matrix A of the original one, forced by a term (dA/dp)Y that
depends on the reference solution. The term A/x is the second-order derivative of function
f with respect to the state x. Therefore, the solution becomes independent for the change in
the trajectory (x/p) for LTP problems. Finally, the sensitivity of the state transition matrix
can be computed using Hsu’s method [17] for the state transition matrix is readily obtained
as Y(t, tj) ≈ eÂ(t−tj):

Y/p(t, tj) ≈ Â/p(t− tj)e
Â(t−tj) = Â/p(t− tj)Y(t, tj). (38)

3. Numerical Results

This section presents the verification of the method using an analytical solution and
later demonstrates the method over a complex multidisciplinary rotorcraft model.



Aerospace 2022, 9, 10 9 of 15

3.1. Verification with an Analytical Solution

Before providing the detailed rotorcraft model and its stability analysis using LCEs,
the proposed procedure was verified against analytical solution. Consider the homoge-
neous mass-damper system with a periodic damping term:

mẍ + (c0 + cp cos2 t)ẋ = 0, (39)

where the system has a period of π radians. Then, the system can be considered as a first
order system with q = ẋ.

q̇ = −
(c0 + cp cos2 t)

m
q = 0 (40)

The monodromy matrix (in this case a scalar) can be obtained by integrating Equation (40)
from an initial time t = 0 to t = T. Let m = 1;

qT
q0

= H = e−
∫ T

0 [c0+cp cos2 t]dt = e−Tc0− T
2 cp (41)

The eigenvalue of the system λ can be obtained from the eigenvalue of the monodromy matrix:

λ =
1
T

log(H) =
1
T

log(e−Tc0− T
2 cp) = −c0 −

1
2

cp (42)

If the coefficient of the periodic term, cp, is considered as the parameter; the sensitivity
of the eigenvalue, λp, can be analytically obtained as:

λ/p = −1
2

. (43)

The analytical results are compared with the LCE numerical solution for c0 = cp = 1.
Figure 1 presents the characteristic exponent obtained by the analytical and numerical
(named Floquet), and Figure 2 gives the corresponding sensitivity of the characteristic
exponents. Results show good correlation.

0.0 0.2 0.4 0.6 0.8 1.0
−2.00

−1.50

−1.00

−0.50

c
p

λ

 

 

Analytical

Floquet

Figure 1. Comparison of the characteristic exponents obtained by analytical solution and numerical
method (Floquet).
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Figure 2. Comparison of the sensitivity characteristic exponents obtained by analytical solution and
numerical method (Floquet).

3.2. Complex LTP Rotorcraft Model

The nature of rotary-wing stability presents the interaction of structural dynamics,
aerodynamics, and control systems to model rotorcraft components, such as rotors, fuselage,
gearbox, etc. Each component may require a considerable number of degrees of freedom to
describe the problem within the desired accuracy, even in its simplest and most compact
form. As discussed earlier in this paper, LCEs estimation requires matrix operations at each
time-step, including multiplications and orthogonalizations. Theoretically, this procedure
should be carried on for an infinite limit (t → ∞), and in practice till LCEs converge
to a steady finite value, a criterion that may not be verifiable in a trivial manner. This
may require significant computational cost, compared to other classical methods that are
otherwise limited to LTI or LTP problems [12].

In problems described with a relatively large number of degrees of freedom, only
extracting the most critical LCEs or the few largest ones closest to zero can help improve
computation efficiency [23,24]. However, in a detailed rotorcraft model, many lightly
damped LCEs may appear, especially when the aircraft’s rigid body motion and fuselage
elastic degrees of freedoms are considered. It may be impossible to discern between lightly
damped modes that are not going to jeopardize stability and modes that, despite being more
damped in the reference configuration, will eventually turn unstable for some variations
of the parameters of the problem. Therefore, within the scope of this work, even when
applied to a detailed problem, the method needs to be verified for the whole spectrum.

3.2.1. Model Description

To illustrate the application of the proposed approach to a complex problem, an aeroe-
lastic model of a rotorcraft was developed, based on data for the AS-330 PUMA helicopter
as presented in Reference [25]. Its general characteristics are reported in Table 1. The solidity
parameter is the ratio of the actual rotor area over the area of the disk,

Solidity =
Nbc
πR

, (44)

where Nb is the number of blades, and c is the chord, whereas the Lock number expresses
the ratio between the aerodynamic and the inertia moments about the flap hinge that are
associated with the flapping motion of the blades,

Lock number =
ρacR4

Iβ
, (45)

where ρ is the air density, a the slope of the lift coefficient curve (often approximated as a =
2π according to thin airfoil theory), and Iβ the moment of inertia of the blade about the flap
hinge. These parameters are used to nondimensionalize the dynamics and aeromechanics
of the main rotor (see, for example, Reference [2]). The overall model comprises:
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• all six rigid body modes (Fore/Aft, Lateral, Plunge, Roll, Pitch, and Yaw);
• flight mechanics derivatives of the fuselage determined by fuselage/wing-body, hori-

zontal tail, and the vertical tail;
• ten elastic airframe modes captured at airframe and connection locations (such as

airframe rotor connection); additionally, 1.5 % modal damping was also added;
• three bending modes of the rotor in multiblade coordinates, formulated using a

linerazized finite volume approach [26];
• three main rotor servo-actuators modelled as transfer function from the force applied

by controls ( fc) and requested displacement (xc) to the servoactuator displacement
(xs), namely xs = Hxxc + H f fc;

• lead-lag dampers for the main rotor blades.

Table 1. AS-330 PUMA general characteristics [25].

Parameter Value Units

Helicopter
Gross Weight 7400 kg

Max Speed 140 kn

Main Rotor
Number of blades 4

Radius 7.49 m
Solidity 0.0913 (n.d.)

Lock number 8.70 (n.d.)
Speed 270 rpm

Flap frequency 1.03 /rev
Lag Frequency 0.26 /rev

The above components are blended in MASST [27], an aeroservoelastic simulation
platform with proven capabilities for rotorcraft comprehensive modeling [28,29]. The he-
licopter model is developed for hover flight, so the rotor model is isotropic; therefore,
the model is linear time-invariant under normal conditions. Periodicity is introduced by
considering the characteristic coefficient of the lead-lag damper of one blade as a parameter,
varying from zero (CL = 0) to twice its nominal value (CL = 2Cd), while the other dampers
maintain their nominal value (CL = Cd). The resulting overall system of equations can be
stated as:

Mẍ + C(t, T)ẋ + Kx = 0, (46)

where T is the period of the system, namely reciprocal of the rotor angular speed T = 1/Ω.
While the mass matrix M and stiffness matrix K are constant in time, the damping

matrix C is periodic due to the asymetric distribution of lead-lag dampers. The resulting
model is LTP with respect to the angular motion of the rotor. Stability and sensitivity
analyses of the LTP model are performed using Lyapunov’s theory, as explained in a
previous section. To illustrate the effectiveness of the proposed method, LCEs and their
sensitivity are estimated and compared to that of the Floquet multipliers and their analytical
sensitivities using the formulation in Ref. [30].

3.2.2. Analysis

Figure 3 presents the characteristic exponents resulting from both Floquet’s and
Lyapunov’s analysis in the parameter range of interest. The LCEs show a good correlation
with Floquet’s exponents. One can also observe that the higher modes (larger absolute
valued LCEs) are not sensitive to the parameter change. However, some lightly damped
modes that strongly interact with the in-plane motion of the rotor show higher sensitivity
to the dissimilarity in the rotor blades’ dynamics. This can be better observed in Figure 4,
which zooms on lightly damped modes.
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Figure 3. Characteristic exponents estimated by Lyapunov theory (LCEs) and Floquet multipliers,
whole range. The lightly damped modes are marked with blue.
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Figure 4. Characteristic Exponents estimated by Lyapunov theory (LCEs) and Floquet multipliers,
zoom of lightly damped modes from Figure 3. The lightly damped blade lead-lag mode is marked
in green.

Among the lightly damped modes, the one corresponding to regressive cyclic lag is the
one that has the largest sensitivity to the parameter change. The corresponding LCEs and
Floquet multipliers were separately plotted in Figure 5. It can be observed that the system
does not lose the stability of the coupled airframe/lead-lag motion as one lead-lag damper
reduces its effectiveness. Even when one damper is completely inoperative, the system is
stable, which is most likely due to the presence of aerodynamic damping resulting from
the coupled lag-flap motion.

The sensitivities corresponding to the LCEs and Floquet multipliers of Figure 5 are
shown in Figure 6. Sensitivity estimates of the LCEs are compared with the corresponding
sensitivity of the Floquet exponents and with analogous results obtained from numerical
differentiation through finite differences. Results show that the sensitivity estimates ob-
tained using LCEs are close enough to those obtained via finite differences, but not as close
to those obtained through the sensitivity analysis of Floquet’s exponents.



Aerospace 2022, 9, 10 13 of 15

0 25 50 75 100 125 150 175 200
−6.00

−5.00

−4.00

−3.00

c
L
 / c

B
 × 100

 

 

Floquet

Lyapunov

λ
(ra

d/
s)

Figure 5. Characteristic exponents estimated by Lyapunov theory (LCEs) and Floquet multipliers,
corresponding to the lightly damped blade lag mode, isolated and zoomed from Figure 4
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Figure 6. Sensitivity estimates of characteristic exponents from Lyapunov theory (LCEs), Floquet
Analysis, and finite differences, corresponding to the lightly damped blade lag mode of Figure 5.

4. Conclusions

This work presented the use of Lyapunov Characteristic Exponents (LCEs) for the
estimation of the stability properties of time-dependent rotorcraft models. The theory of
LCEs and the computation of their parameter sensitivity were presented with practical
estimation methods. The proposed approach was applied to a comprehensive aeroelastic
rotorcraft model. Time-variance was introduced by changing the properties of one of
the lead-lag dampers, resulting in a time-periodic system. The resulting LCEs and their
sensitivity were compared with those resulting from the Floquet method. The LCEs
were in very good agreement with Floquet multipliers. Considering that the LCEs can
also be generalized to non-linear problems, LCEs can represent a replacement and a
generalization of the Floquet method. The analytical sensitivity estimation was not as
successful, although found in relatively good agreement with finite-difference estimations.
More efficient LCE sensitivity estimation algorithms are needed to improve that aspect
of LCEs.
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