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Abstract: This paper addresses the problem of singularity avoidance in a cluster of four Single-
Gimbal Control Moment Gyroscopes (SGCMGs) in a pyramid configuration when used for the
attitude control of a satellite by introducing a new gimballed control moment gyroscope (GCMG)
cluster scheme. Four SGCMGs were used in a pyramid configuration, along with an additional small
and simple stepper motor that was used to gimbal the full cluster around its vertical (z) axis. Contrary
to the use of four variable-speed control moment gyroscopes (VSCMGs), where eight degrees of
freedom are available for singularity avoidance, the proposed GCMG design uses only five degrees
of freedom (DoFs), and a modified steering law was designed for the new setup. The proposed
design offers the advantages of SGCMGs, such as a low weight, size, and reduced complexity, with
the additional benefit of overcoming the internal elliptic singularities, which create a minor attitude
error. A comparison with the four-VSCMG cluster was conducted through numerical simulations,
and the results indicated that the GCMG design was considerably more efficient in terms of power
while achieving a better gimbal configuration at the end of the simulation, which is essential when it
is desired for different manoeuvres to be consecutively executed. Additionally, for a nano-satellite
of a few kilograms, the results prove that it is feasible to manufacture the GCMG concept by using
affordable and lightweight commercial off-the-shelf (COTS) stepper motors.

Keywords: gimballed control moment gyroscope; VSCMG; elliptic singularity; spacecraft
attitude control

1. Introduction

Single-gimbal control moment gyroscopes (SGCMGs) have become popular actuators
for satellites that have an agility requirement [1,2]. They are widely used in spacecraft
control for manoeuvering and have been successfully employed for a wide range of space
missions [3–5]. Agile satellites are highly manoeuvrable, and they enable more data to
be gathered in a single pass compared to those employed with reaction/momentum
wheel actuators. However, SGCMGs come with the inherent problem of singularities.
Singularities occur when the system is unable to generate a torque output along a specific
direction [6]. There are two types of singularities with respect to the ability to escape
from the singular state through null motion [2]. Elliptic singularities cannot be escaped
through null motion, whilst there is a null motion path for escaping hyperbolic singularities.
However, in cases where the angular speed of the flywheel is equal for all SGCMGs in the
cluster, it is not possible to re-orient a symmetric gimbal set to a non-symmetric set through
null-space motion in order to get a singularity-free path. Such an action would result in a
momentum change, and attitude error would be added into the system.

Several studies have focused on finding a measure of distance from singularities,
and different indices have been proposed in the literature [7], with the most commonly
used being the manipulability index [8]. Multiple SGCMG singularity avoidance/escape
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logics and methods have been proposed to date [5]. The singularity-robust inverse is the
most common, but other methods, including null motion and path planning, have also
been proposed [9–11]. In general, the method of planning the path of a manoeuvre also
includes the optimisation of the initial configuration of the gimbals before the execution
of the desired manoeuvre in order to enhance the performance of the system and provide
a singularity-free trajectory [12–14]. A different path-planning technique that blends the
pseudo-spectral and direct-shooting methods upon gimbal saturation and singularity
constraints was presented in [15]. Energy-consumption-based path-planning techniques
for double-gimbal CMGs have also been studied [16]. A global singularity-avoidance
steering law was presented in [17], in which the time integral of the quadratic sum of
the gimbal rates was minimised. A trajectory-planning approach was described in [18] to
reduce the possibility of CMG saturation while the system followed a reference trajectory.
Another novel deterministic allocation algorithm for computing the angular rates of the
gimbal was also proposed in [19] instead of the well-known pseudo-inverse technique in
order to keep the keep a four-CMG cluster in a roof configuration away from singularities.
An optimisation technique for reconfiguring the gimbals back to their initial positions after
completing the desired manoeuvre was also addressed.

The utilisation of more than one type of control moment exchange devices has also
been studied. The combination of a reaction wheel with CMGs presented an enhanced
performance compared to reaction wheel clusters in terms of agility, thus providing an
affordable alternative to the conventional four-CMG cluster [20]. A control strategy that
exploited both thrusters and reaction wheels was presented in [21]. Thrusters were used
in an open-loop scheme to drive the spacecraft to a reference path, while reaction wheels
were used for a closed-loop variable-structure control law to eliminate tracking errors due
to thruster biases and initial condition errors. Another simultaneous actuation of thrusters
and reaction wheels through a varying time-sharing logic was studied, and it was shown
that it could be efficiently adopted for time-optimal manoeuvres [22]. Additionally, three
tracking control laws that made use of momentum wheels and thrusters were explored
in [23], while the implementation of an SGCMG along three orthogonal momentum wheels
was tested on the Distributed Spacecraft Attitude Control System Simulator and showed
promising results [24].

While a CMG cluster can easily encounter singularities, a variable-speed CMG
(VSCMG) cluster deals with this problem efficiently [25]. It uses four extra degrees of
freedom (DoF) compared to the SGCMG cluster by changing the angular velocity of each
flywheel independently. This way, a VSCMG cluster is capable of behaving as a reac-
tion wheel cluster near a singularity and as a conventional CMG cluster away from it [26].
Power management capabilities have also been studied for VSCMGs [27–30], whilst a novel
approach of combining a double-gimbal CMG and a VSCMG was presented in [31,32].
Similarly to VSCMGs, the proposed model described in this paper makes use of more than
four DoFs. The extra DoF is implemented by adding a simple, miniature, and inexpensive
low-power stepper motor in order to gimbal the full SGCMG cluster. Advances in small-
motor mechatronics, avionics, and pin-pullers have enabled the miniaturisation of motors
by a significant amount, thus creating space for small and compact VSCMG clusters [25,33].
In addition, low-power COTS stepper motors have been proven to significantly reduce
CMG power compared to RW systems [34,35]. This paper analyses the ability to use a
small stepper motor to gimbal a full SGCMG cluster, making this a hybrid approach by
combining the elements of SGCMGs and VSCMGs without the additional complexity
of a full VSCMG system. Moreover, the design explored here does not utilise actuators
with low torque capabilities, such as reaction and momentum wheels, thus preserving the
agility characteristics of a simple four-CMG cluster. The details of the proposed GCMG,
along with the advantages and the shortcomings of the proposed method, are presented in
this paper.
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2. Mathematical Modeling
2.1. VSCMG Equations of Motion

The equation of motion of a rigid spacecraft deployed with four VSCMGs is de-
scribed by:

Jω̇ = −ω× Jω̇−Asts −Attt −Agtg (1)

where matrices As, At, Ag ∈ <3×4 contain the components of the unit direction vector of
each VSCMG frame of the cluster as:

As = [ĝs1
, ĝs2

, ĝs3
, ĝs4

] (2)

At = [ĝt1
, ĝt2

, ĝt3
, ĝt4

] (3)

Ag = [ĝg1
, ĝg2

, ĝg3
, ĝg4

] (4)

and J is the spacecraft’s inertia matrix. The spin, gimbal and transverse axes are denoted by
ĝsN

, ĝgN
, ĝtN

∈ <3×1, respectively, for the Nth VSCMG. ω ∈ <3×1 represents the angular
velocity of the spacecraft expressed and derived in terms of control axes that are fixed
relative to the body of the spacecraft. In this paper, the notation ˙(·) indicates the time
derivative of (·). The torques ts, tt, tg ∈ <4×1can be calculated through

ts = [ts1 , ts2 , ts3 , ts4 ]
T (5)

tt = [tt1 , tt2 , tt3 , tt4 ]
T (6)

tg = [tg1 , tg2 , tg3 , tg4 ]
T (7)

and

tsN = Js(Ω̇N + δ̇NωtN )− (JtN − JgN )δ̇NωtN (8)

ttN = Js(ΩN + ωsN )δ̇N − (JtN − JgN )ωsN δ̇N + JsΩNωgN (9)

tgN = Jg δ̈N − JsΩNωtN (10)

where the inertia about the spin, gimbal and transverse axis is given by Js, Jg and
Jt. For simplicity, these inertias are considered to be the same for all VSCMGs. Let
δ = [δ1, δ2, δ3, δ4]

T ∈ <4×1 be the gimbal angles vector for a spacecraft employed with 4
CMGs. The vectors δ̇, δ̈ ∈ <N×1 and Ω̇ ∈ <4×1 contain the gimbal rate, gimbal acceleration
and flywheel angular velocity, respectively. The stability condition as given in [36,37] is
described by:

C0Ω̇ + Bδ̈ + (C1 −C2)δ̇ = Tc (11)

where

B = [ĝg1
Jg, ĝg2

Jg, ĝg3
Jg, ĝg4

Jg] (12)

C0 = [ĝs1
Js, ĝs2

Js, ĝs3
Js, ĝs4

Js] (13)

C1 = [ĝt1
Js(Ω1 + ωs1), ĝt2

Js(Ω2 + ωs2), ĝt3
Js(Ω3 + ωs3), ĝt4

Js(Ω4 + ωs4)] (14)

C2 = [ĝt1
Jtωs1 , ĝt2

Jtωs2 , ĝt3
Jtωs3 , ĝt4

Jtωs4 ] (15)

To calculate the control torque Tc ∈ <3×1, the satellite’s kinematics equation of motion
is expressed in quaternion form:

q̇ =
1
2

q�ωq (16)

where � denotes the quaternion multiplication and q = [q0, q1, q2, q3]
T ∈ <4×1 is the atti-

tude quaternion. ωq is the angular velocity vector of the satellite, ω, given in a quaternion
form as ωq = [0, ωT ]T ∈ <4×1. For the implementation of the attitude control, the con-
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trol torque Tc applied on the satellite’s body is a function of the vector part of the error
quaternion qerr and ω as described by the following equation:

Tc = Kpqv
err + Kωω (17)

where Kp and Kw are fixed gains. The error quaternion between the current attitude
quaternion and a desired quaternion qdes as:

qerr =

[
qs

err
qv

err

]
= q∗des � q (18)

where qs
err and qv

err = [qroll
err , qpitch

err , qyaw
err ]T are the scalar and the vector part, respectively, and

q∗des expresses the conjugate quaternion of qdes. The normalization of the quaternions is
required before evaluating the qerr. The “3-2-1” sequence is used to convert the quaternion
error to the corresponding Euler angles error.

Assuming that the inertia of each VSCMG about the spin axis is much larger compared
to the inertia in gimbal and transverse axis, the stability condition is

Rṗ = Tc (19)

where R ∈ <3×8 and ṗ ∈ <8×1

R =
[
C0 C1

]
(20)

ṗ =

[
Ω̇

δ̇

]
(21)

Thus, the steering law in compact form is given by:

ṗ = R#Tc (22)

The matrix R is the Jacobian matrix of the system and except for the gimbal angles,
the Jacobian matrix depends on geometric characteristics of the CMGs like the skew
angle. Since the Jacobian matrix is not rectangular and the inverse of the matrix cannot be
calculated, several definitions have been proposed for the inverse of the Jacobian matrix
R#. Using a weighting matrix W = diag([WRW , WCMG]) ∈ <8×8 where

WRW = WRW0 e−ζm (23)

and ζ, WRW0 are constant gains and WRW , WCMG ∈ <1×4, the matrix R# is

R# = WRTinv(RWRT) (24)

m is a measure of the linear independence of the columns of the matrix C1, usually referred
as manipulability index:

m =
√

det(C1C1
T) (25)

This way, the VSCMG cluster is capable of performing as the conventional SGCMG
cluster away from the singularity but as the manipulability index value decreases, the vari-
able speed capability is exploited. The null space motion can be added upon the given
steering law, assuming that δdes and Ωdes are the vectors that contain the desired values for
the gimbal angles and the flywheels’ angular velocity. The steering law is described below:

ṗ = R#Tc + ρ(R#R− I8×8)G
[

Ωerr
δerr

]
(26)
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where I8×8 is the identity matrix and ρ a constant gain. The diagonal matrix G ∈ <8×8 is
given by

G =

[
GRWI4×4 04×4

04×4 GCMGI4×4

]
(27)

where 04×4 is the 4 by 4 zero matrix and the sets Ωerr, δerr ∈ <4×1represent the error with
respect to the desired values as

Ωerr = Ω−Ωdes (28)

δerr = δ− δdes (29)

The GRW and GCMGvalues are set to 1 if it is desired the system to follow the Ωdes and
δdes, respectively. Otherwise, they are set to 0. The total momentum of the VSCMG cluster
h ∈ <3×1 is calculated by the sum of the individual momentum from each VSCMG:

h = h1 + h2 + h3 + h4 =



−cβsδ1h1 − cδ2h2 + cβsδ3h3 + cδ4h4
cδ1h1 − cβsδ2h2 − cδ3h3 + cβsδ4h4

sβsδ1h1 + sβsδ2h2 + sβsδ3h3 + sβsδ4h4


 (30)

where s, c are the abbreviations for sin and cos, respectively. The parameter β denotes the
skew angle of the 4-CMG cluster in pyramid configuration and it is chosen in such a way
that the momentum envelope is nearly tree-axis symmetric and spherical [6]. hi, i = 1, . . . , 4
are given by:

hi = JsΩi (31)

2.2. GCMG Equations of Motion

Adding an extra motor in the conventional SGCMG cluster it is possible to rotate the
whole pyramid structure along the z direction, for θz degrees, w.r.t the body frame as shown
in Figure 1. For a symmetric SGCMG cluster, its products of inertia are equal to zero and
the angular momentum of the cluster, here referred as hGCMG is given by Equation (32).
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Figure 1. Gimballed control moment gyroscope (GCMG) visualization

hGCMG = hcmg + hstepper =




cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1


 h + Jzz

cmg




0
0
θ̇z


 (32)

where Jzz
cmg is the moment of inertia about the z axis of the SGCMG cluster. The total156

angular momentum H of the system is157

H = Jω + hGCMG (33)

Let the moment of inertia of the cluster be much smaller than this of the satellite. It158

applies that changing the angle θz negligibly affects the orientation of the satellite. As159

a result, the stepper motor only rotates the actuator and the rate of the total angular160

momentum H can be calculated by:161

Ḣ
¯
=
[
A
¯

D
¯

][ δ̇
θ̇z

]
+ Jzz

cmg




0
0
θ̈z


+ Jω̇ + ω×H (34)

Because the disturbance torques are neglected and the total angular momentum is162

preserved, Equation (34) becomes:163

0 =
[
A
¯

D
¯

][ δ̇
θ̇z

]
+ Jzz

cmg




0
0
θ̈z


+ Jω̇ + ω× hcmg + ω× Jzz

cmg




0
0
θ̇z


+ ω× Jω (35)

Let h1 = h2 = h3 = h4 = h f , for identical flywheels running at the same angular speed.164

Then,165

Figure 1. Gimballed control moment gyroscope (GCMG) visualization.
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hGCMG = hcmg + hstepper =




cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1


 h + Jzz

cmg




0
0
θ̇z


 (32)

where Jzz
cmg is the moment of inertia about the z axis of the SGCMG cluster. The total angular

momentum H of the system is
H = Jω + hGCMG (33)

Let the moment of inertia of the cluster be much smaller than this of the satellite.
It applies that changing the angle θz negligibly affects the orientation of the satellite.
As a result, the stepper motor only rotates the actuator and the rate of the total angular
momentum H can be calculated by:

Ḣ
¯
=
[
A
¯

D
¯

][ δ̇
θ̇z

]
+ Jzz

cmg




0
0
θ̈z


+ Jω̇ + ω×H (34)

Because the disturbance torques are neglected and the total angular momentum is
preserved, Equation (34) becomes:

0 =
[
A
¯

D
¯

][ δ̇
θ̇z

]
+ Jzz

cmg




0
0
θ̈z


+ Jω̇ + ω× hcmg + ω× Jzz

cmg




0
0
θ̇z


+ ω× Jω (35)

Let h1 = h2 = h3 = h4 = h f , for identical flywheels running at the same angular
speed. Then,

A
¯
= h f




sδ1 sθz − cβ cδ1 cθz sδ2 cθz + cβ cδ2 sθz
−sδ1 cθz − cβ cδ1 sθz sδ2 sθz − cβ cδ2 cθz

cδ1 sβ cδ2 sβ

cβ cδ3 cθz − sδ3 sθz −sδ4 cθz − cβ cδ4 sθz
sδ3 cθz + cβ cδ3 sθz cβ cδ4 cθz − sδ4 sθz

cδ3 sβ cδ4 sβ




(36)

D
¯
= h f




cδ2 sθz − cδ4 sθz − cδ1 cθz + cδ3 cθz+
cδ3 sθz − cδ1 sθz − cδ2 cθz + cδ4 cθz−

0

+cβ sδ2 cθz − cβ sδ4 cθz + cβ sδ1 sθz − cβ sδ3 sθz
−cβ sδ1 cθz + cβ sδ3 cθz + cβ sδ2 sθz − cβ sδ4 sθz

0




(37)

Using the Euler formula, the Jacobian matrix of the system R ∈ <3×5 is formulated as:

R =
[
A
¯

D
¯

+M
]

(38)

where

M = Jzz
cmg




ωy
−ωx

0


 (39)

The Equation (35) is given in a compact form by

0 = R
[

δ̇
θ̇z

]
+ Jzz

cmg




0
0
θ̈z


+ ω× hcmg + Jω̇ + ω× Jω (40)
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The control vector Tc is selected as

Tc = R
[

δ̇
θ̇z

]
+ Jzz

cmg




0
0
θ̈z


+ ω× hcmg (41)

The gimbal angles as well as the rate of θz can be found by

[
δ̇
θ̇z

]
= R#(Tc − Jzz

cmg




0
0
θ̈z


−ω× hcmg) (42)

where
R# = RT(RRT)−1 (43)

is the standard pseudo-inverse, or commonly referred as Moore-Penrose steering law, used
due to its simplicity and the real-time implementation it offers. To guarantee the attitude
stability of the spacecraft, consider the following the candidate Lyapunov function [38–40]

V =
1
2

ωTJω + Kpqv
err

Tqv
err + Kp(1− q0)

2 (44)

The first time derivative of V is given by

V̇ = ωTJω̇ + Kpq̇v
err

Tqv
err + Kpqv

err
Tq̇v

err − 2Kp(1− q0)q̇0 (45)

Because qv
err

Tq̇v
err is a scalar, it can be shown that

qv
err

Tq̇v
err =

(
q̇v

err
Tqv

err

)T
= q̇v

err
Tqv

err (46)

and the Equation (45) becomes

V̇ = ωTJω̇ + 2Kpq̇v
err

Tqv
err − 2Kp(1− q0)q̇0 (47)

Equation (47) becomes

V̇ = ωTJω̇ + 2Kp(
1
2

S(ω)qv
err +

1
2

q0ω)Tqv
err + 2Kp(1− q0)

1
2

ωTqv
err (48)

which can be simplified to

V̇ = ωTJω̇ + Kp(qv
err

TS(ω)T + q0ωT)qv
err + Kp(1− q0)ω

Tqv
err (49)

Because qv
err

TS(ω)qv
err = 0, where S(ω)is the skew matrix of ω, the Equation (49)

becomes
V̇ = ωT(Jω̇ + Kpqv

err) (50)

Using Equations (17), (40) and (41), the Equation (50) can be simplified to

V̇ = ωT(−ω× Jω− Kwω) (51)

Note that ωT(ω× Jω) = 0. Finally,

V̇ = −ωTKwω (52)

and the global stability is guaranteed for Kw > 0 [41].
The redundancy of the system allows to exploit motion in the null space and

Equation (42) can be modified to contain the null motion term as
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[
δ̇
θ̇z

]
= R#(Tc − Jzz

cmg




0
0
θ̈z


−ω× hcmg) + κ(R#R− I5×5)Γ

[
δerr
θzerr

]
(53)

where κ is a constant gain. Γ is a diagonal matrix the values of which denote which elements
of
[
δerr, θzerr

]T are selected for the null motion. The possible values of each element of Γ

are 0 and 1 and θzerr is given by
θzerr = θz − θzdes (54)

Linearized Model

Using the Equations (17) and (42), the input vector u =

[
δ̇
θ̇z

]
can be calculated by

u = R#(Kpqv
err + Kωω− Jzz

cmg




0
0
θ̈z


−ω× hcmg) (55)

which can be embedded in the Equation (40) resulting in

0 = Kpqv + Kωω + Jω̇ + ω× Jω (56)

where qv = [q1, q2, q3]
T ∈ <3×1 because qdes = [1, 0, 0, 0] for simplicity. Then, the closed

loop system is described by the Equation (56) and the reduced kinematics equation

q̇v =
1
2




√
1− q2

1 − q2
2 − q2

3 −q3 q2

q3

√
1− q2

1 − q2
2 − q2

3 −q1

−q2 q1

√
1− q2

1 − q2
2 − q2

3


ω (57)

Let the spacecraft’s products of inertia be zero for simplicity, i.e., J = diag([J11, J22, J33]),
in accordance to the simulation parameters presented in Section 3. Defining the state vector
xs , [ω, qv]T ∈ <6×1, the linearization of the nonlinear model results in

ẋs =




MKω MKp

1
2

√
1− q2

1 − q2
2 − q2

3 −q3/2 q2/2

q3/2 1
2

√
1− q2

1 − q2
2 − q2

3 −q1/2 Mω

−q2/2 q1/2 1
2

√
1− q2

1 − q2
2 − q2

3




xs (58)

where MKω , MKp , Mω ∈ <3×3 are defined by

MKω =




−Kω
J11

ω3(J22−J33)
J11

ω2(J22−J33)
J11

−ω3(J11−J33)
J22

−Kω
J22

−ω1(J11−J33)
J22

ω2(J11−J22)
J33

ω1(J11−J22)
J33

−Kω
J33


 (59)

MKp =




−Kp
J11

0 0

0 −Kp
J22

0

0 0 −Kp
J33


 (60)

Mω =




0 ω3
2 −ω2

2−ω3
2 0 ω1

2
ω2
2 −ω1

2 0


 (61)
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For the set point xs = xe
s = [0, 0, 0, 0, 0, 0]T , the Equation (58) becomes

ẋs = Qxs =




−Kp
J11

0 0

0 −Kp
J22

0 MKp

0 0 −Kp
J33

1
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

2 0 0 0




xs (62)

The eigenvalues of Q are

eig(Q) =




−Kω−
√

K2
ω−2 J11 Kp

2 J11

−Kω+
√

K2
ω−2 J11 Kp

2 J11

−Kω−
√

K2
ω−2 J22 Kp

2 J22

−Kω+
√

K2
ω−2 J22 Kp

2 J22

−Kω−
√

K2
ω−2 J33 Kp

2 J33

−Kω+
√

K2
ω−2 J33 Kp

2 J33




(63)

The asymptotic stability is guaranteed for the parameters presented in Section 3 since
every eigenvalue of Q has a negative real part.

3. Singularities—Preliminaries

As initially stated, the main problem when SGCMGs are utilized for spacecraft attitude
control, is singularities. A brief overview of the singularities is presented, in order to better
explain the selected task as presented in the next section. Near a singularity, the SGCMG
cluster is incapable of producing torque along at least one direction and due to the ill-
conditioned/singular Jacobian of the system in this state, the gimbal rates approach infinity.
Even though it is known that only three SGCMG are necessary for three-axis control,
the utilization of a redundant SGCMG provides the opportunity to avoid some types
of singularities, increasing the momentum and the torque capacity of the cluster in a
mass-efficient way.

Not all singularities are of the same type. They are divided into two categories. If a
singular state can be escaped by null motion, it is passable or hyperbolic. Otherwise, the sin-
gularity is elliptic. The null motion of a SGCMG cluster is defined as the SGCMG gimbal
motions that produce no net torque, i.e., the actuators’ generated torque does not change
the attitude of the satellite. Most of the times, the null motion is exploited to avoid singu-
larities by internally configuring the gimbal angles to better performance configurations
without affecting the execution of the manoeuvre towards to commanded attitude.

In addition, singularities are sub-categorized into external and internal. External
singularities correspond to the maximum angular momentum in any single direction. Such
singularities, also known as saturation singularities, are accommodated in the sizing of the
control system and they are not considered for singularity avoidance. In contrast, internal
singularities occur when the system is in a singularity and the cluster momentum is far
from the limit of the cluster’s capability. Depending on the number of the momentum axes
aligned, the singularities of a 4-SGCMG cluster are classified to 4 h, 2 h and 0 h (Figure 2).

Figure 2. Singularity designations.
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Caution must be taken when interpreting the singular surfaces since the 4 h surfaces
do not always have a momentum magnitude of 4 h [6]. When two of the SGCMGs point
opposite the other two, then it is a 0 h singularity. Every momentum state corresponding to
a singular gimbal set is a singular surface. When these 4 h, 2 h and 0 h surfaces are plotted
together, they form a continuous connection between all possible singular momentum
states as illustrated in Figure 3.

Figure 3. External and internal singular surfaces for the 4-CMG pyramid cluster.

The detailed understanding on the location and inner working of singularities can be
found in the literature [2,11,12,39,42–44] as it is not the main focus of the work presented.
However, the mathematical framework for examining the null motion as well as for
determining the singularity types is extensively detailed in [6,42,45–47] and is briefly
presented below for the typical 4-SGCMG pyramid cluster.

The null motion condition for the null motion momentum vector δhN ∈ <3×1 is
defined by

δH =
4

∑
N=1

δhN = 0 (64)

where H is the total angular momentum of the 4-SGCMG cluster and N corresponds to the
Nth SGCMG of the cluster. Using the Taylor series, the null motion momentum vector δhN
can be expanded to

δH =
4

∑
N=1

δhN =
4

∑
N=1

(
dhN
dxN

δxN +
1
2!

d2hN

dx2
N

δx2
N +

1
3!

d3hN

dx3
N

δx3
N + · · ·

)
(65)

=
4

∑
N=1

(
f NδxN −

1
2!

hNδx2
N −

1
3!

f Nδx3
N + · · ·

)
= 0 (66)

where f N = dhN/dxN and δxN are the null motion gimbal angle displacements. The
first-order necessary condition for null motion is

4

∑
N=1

fNδxN = Aδx = 0 (67)

where δx = (δx1, . . . , δxn) and A is the Jacobian matrix of the system. The null vector δx is
the null-space vector of A; that is, δx = n = null(A) and An = 0. In order to define the
type of a singular state, let the null motion constraint

δH = H(x + δx)− H(x) =
4

∑
N=1

(
fNδxN −

1
2!

hNδx2
N −

1
3!

fNδx3
N + · · ·

)
= 0 (68)

which is an alternative form of Equation (65). Let u be an arbitrary vector. The inner
product of δH with u results in
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uTδH = uT

{
4

∑
N=1

[
fNδxN −

1
2!

hi(xN)δx2
N −

1
3!

fNδx3
N + · · ·

]}
= 0 (69)

Since uTfN = 0 when u is along the singular direction, it applies that

0 = uT

[
4

∑
N=1

(
− 1

2!
hNδx2

N +
1
4!

hNδxn
N + · · ·

)]
(70)

=
4

∑
N=1

(
uThN

)(
− 1

2!
δx2

N +
1
4!

δxn
N − · · ·

)
(71)

=
4

∑
N=1

eN(cos δxN − 1) (72)

where eN = uThN . Keeping only the second-order terms, the Equation (70) becomes

4

∑
N=1

eNδx2
N = δxTEδx = 0 (73)

where E = diag(eN). When E is a sign-definite matrix, the only solution to Equation (73) is
δx = 0, and there is not null motion. The null motion of gimbal angles can be described by
the first-order condition

δx =
2

∑
N=1

cNnN = Zc (74)

where c = [c1, c2]
T and cN is the Nth weighting coefficient. nN are the null-space basis

vectors of the Jacobian matrix

A =



−cβcδ1 sδ2 cβcδ3 −sδ4
−sδ1 −cβcδ2 sδ3 cβcδ4
sβcδ1 sβcδ2 sβcδ3 sβcδ4


 (75)

such that AnN = 0 or Z = null(A). From Equations (73) and (74), it applies that

cTVc = 0 (76)

where V = ZTEZ. If matrix V is sign-definite, then the singularity is elliptic and null motion
is not possible. Otherwise, the singularity is hyperbolic and it is possible to exploit null
motion to escape the singular state. For the 4-SGCMG cluster in pyramid configuration, it is
easy to prove that the system is in an elliptic singular state when the gimbal configuration
is δ = [−90, 0, 90, 0]T deg as follows

A(−90, 0, 90, 0) =




0 0 0 0
1 −0.5774 1 0.5774
0 0.8164 0 0.8164


 (77)

Z = null(A) =




−0.7071 −0.3536
0.0000 −0.6124
0.7071 −0.3536
−0.0000 0.6124


 (78)

u = null(AT) =
[
1, 0, 0

]T (79)

E = diag(uThN) = diag(0.5774,−1, 0.5774, 1) (80)

V = ZTEZ =

[
0.5774 0

0 0.1444

]
(81)
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The V matrix is sign-definite because it has a positive determinant. Thus, the gimbal
configuration is δ = [−90, 0, 90, 0]Tdeg corresponds to an elliptic singularity. A visualiza-
tion of the gimbals in this state is presented in Figure 4.

4

2

1

3

4

1

2
3

Figure 4. Visual repsresentation of the 4-CMG pyramid cluster at δ = [−90, 0, 90, 0]Tdeg.

In terms of controllability, a singularity can also be examined considering the dynamics
equation

ω̇ = J−1(−ω× (Jω)− ḣ−ω× h) (82)

and the Equation (57) where the state vector is defined as xs , [ω, qv]T ∈ <6×1 and
us , δ̇ ∈ <4×1. Without loss of generality, let J = I3×3 for simplicity. Then, for the set point
xs = xe

s = [0, 0, 0, 0, 0, 0]T and us = ue
s = [0, 0, 0, 0]T , the open loop system can be described

in the linearized form of ẋs = Alxs + Blus where

Al =




0 − sβ sδ1 + sδ2 + sδ3 + sδ4 cδ1 − cδ3 − cβ sδ2 + cβ sδ4 0 0 0
sβ sδ1 + sδ2 + sδ3 + sδ4 0 cδ2 − cδ4 + cβ sδ1 − cβ sδ3 0 0 0

cδ3 − cδ1 + cβ sδ2 − cβ sδ4 cδ4 − cδ2 − cβ sδ1 + cβ sδ3 0 0 0 0
0.5 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0




(83)

Bl =




cβ cδ1 −sδ2 −cβ cδ3 sδ4
sδ1 cβ cδ2 −sδ3 −cβ cδ4
−cδ1 sβ −cδ2 sβ −cδ3 sβ −cδ4 sβ

0 0 0 0
0 0 0 0
0 0 0 0




(84)

Then, the controllability matrix can be calculated by

Cl = [Bl , AlBl , A2
l Bl , .., A5

l Bl ] (85)

and the rank(Cl) indicates whether the system is controllable or not. E.g., at the config-
uration δ = [0, 0, 0, 0]T deg, the rank(Cl) = 6 and the system is fully controllable in this
state. In contrast, the well-known elliptic singularity at δ = [−90, 0, 90, 0]T deg results in
rank(Cl) = 4 < 6 indicating the uncontrollability at the certain gimbal configuration.

4. Simulation Set-Up

Following the description of the singular states and the problems they introduce
to the spacecraft attitude control, it is evident that exploring the behaviour of a system
employed with SGCMGs near these states is essential. Thus, the task selected to study the
behaviour of each model near an internal elliptic singularity is a manoeuvre about the roll
axis by −90 deg because the system encounters the δ = [−90, 0, 90, 0]Tdeg singularity [46].
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The initial non-zero gimbal configuration δini near the singular configuration is selected to
guarantee that the system will meet the singularity while the initial attitude quaternion is
qini = [1, 0, 0, 0]T . Similar to [12,34,48], studying this type of singular state in addition to the
initial gimbal values that are extremely near the singularity is a useful simulation strategy
which enables to prove that the proposed GCMG design is effective even in challenging
conditions. The total simulation time is 20 s. The first 2 s the systems is at rest, then the
system is commanded to follow the desired orientation given by the quaternion qdes. Since
the simulation describes a discrete time system, it is required to integrate the quaternion
rate q̇ at the ith iteration as given by Equation (16) using the equation:

qi = qi−1 � [cos(||ω||dt
2
),

ω

||ω|| sin(||ω||dt
2
)]T (86)

where dt is the time between two consecutive iterations. The SGCMG rates are saturated
when they exceed the specific threshold δ̇th, using the following formula:

δ̇sat = δ̇
δ̇th

max(|δ̇1|, |δ̇2|, |δ̇3|, |δ̇4|)
(87)

It is preferred to saturate the gimbal angle rates using Equation (87) over applying a
boundary value to every gimbal angle rate that exceeds the required threshold because the
characteristics of the motion are conserved. For a fair comparison, it is desired to keep the
number of the unrestricted DoF of the two models the same. Thus, every DoF apart from
the motion of the four gimbals in the cluster is selected to follow certain criteria, i.e., every
flywheel of the VSCMG cluster as well as the stepper motor of the GCMG cluster are used
for null space motion following a preferred value. Moreover, the rotation angle and rate of
the stepper motor are limited in order to better depict a real-life application.

A 2.7 GHz Inter Core i5 with 8 GB of RAM computer was used and all the simulations
were run on the operating system MacOS Mojave in Matlab® R2016b. The exact simulation
parameters used, are shown in Table 1. The exact steering law parameters used for each
model are presented in Tables 2 and 3.

Table 1. Simulation Parameters.

Parameter VSCMG GCMG

Manoeuvre 0 to −90 deg 0 to −90 deg
Moment of Inertia J diag([1, 1, 1]) kgm2 diag([1, 1, 1]) kgm2

Js, Jt, Jg 9.5× 10−5 kgm2 -----
Jzz
cmg ----- 38 × 10−4 kgm2

Time-step dt 0.01 s 0.01 s
Simulation time 20 s 20 s

PD, Kp, Kω 1.6, 3 1.6, 3
Skew angle β 54.73 deg 54.73 deg

δ̇th 50 deg/s 50 deg/s
δini

N [−70, 0, 75, 0]T deg [−70, 0, 75, 0]T deg
θ̇sat

z ----- 50 deg/s
[θ−sat

z , θ+sat
z ] ----- [−180, 180] deg

Ω 1047.2[1, 1, 1, 1]T rad/s 1047.2[1, 1, 1, 1]T rad/s
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Table 2. VSCMG steering law parameters.

Parameter Value

ζ 10−4

GRW , GCMG 1, 0
ρ 1

WRW0 6× 105[1, 1, 1, 1]
WCMG 10[1, 1, 1, 1]
Ωdes 1047.2[1, 1, 1, 1]T rad/s
δdes -----
GRW 1

GCMG 0

Table 3. GCMG steering law parameters.

Parameter Value

κ 1
Γ diag([0, 0, 0, 0, 1])

θzdes −90 deg

5. Simulation Results

Figure 5 illustrates the results derived by using the VSCMG cluster in avoiding the
singularity encountered. The steering law of Equation (26) is applied and the null motion
guides the system to follow only the desired Ωdes set because the GCMG equals zero.

The attitude angle in x axis is shown in Figure 5a. After t = 2 s the attitude begins to
follow the commanded quaternion. The system reaches the steady state at approximately
t = 18 s where the attitude error about the roll axis is slightly less than 1 deg. Figure 5b
shows that the manoeuvre is executed with a minor attitude error about the pitch and
yaw axis because the the system exploits the variable speed part to handle the approach
to singularity. In particular, the maximum deviation of the attitude angle about pitch and
yaw is −0.18 deg and 0.9 deg, respectively. The angular velocity of the satellite is presented
in Figure 5c and the maximum absolute value is 18.9 deg/s in the negative of the roll
axis. It is possible to accomplish a lower maximum velocity value by decreasing the value
of the gain Kp. The momentum profile of the VSCMG cluster, is presented in Figure 5d.
The momentum in x direction increases approaching the value of 1.15 Nms where the
gimbals are in singular configuration [47]. Figure 5e shows that the angle of the first and
the third gimbal is heading towards −90 deg and +90 deg, respectively, when the system
approaches the singularity but in the steady state these values change to −74.3 deg and
71.1 deg. The rest of the gimbal angles remain almost zero through the whole simulation
time. Figure 5f presents the gimbal rates. It is observed that mainly the first and the third
gimbal contribute to the rotation whilst the rest gimbal angle rates are significantly lower.
The rate of the first gimbal reaches the saturation for a slight period of time but in the
steady state, no rates are generated by the steering law. The control torque as presented in
Figure 5g is about the roll axis. From t = 2 s to t = 2.9 s the torque spans to the negative of
roll axis but after t = 2.9 s the sign changes to decelerate the satellite until the steady state.
The manipulability index drops from 0.446 (t = 0 s) to 0.149 (t = 2.9 s). It is known that the
minimum value is obtained once the system reaches closer to the singular configuration.
After that, the index increases till the steady state where the obtain value is equal to 0.47
(Figure 5h). The angular velocity of each flywheel in the cluster is presented in Figure 6.
A small change in the angular velocity of each flywheels is capable of solving the singularity
problem. The maximum deviation from the nominal velocity is 0.31% at t = 2 s but in the
steady state all flywheels are following the Ωdes set.

Overall, the 4-VSCMG cluster is capable of avoiding the singular state due to the
redundancy in the DoF it offers. The system avoids the elliptic singularity because it is
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capable to change the flywheel’s angular velocity while configuring the four gimbals. When
the null space motion is applied, the system can efficiently track the desired set Ωdes and
follow the commanded manoeuvre while maintaining a high performance configuration.
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Figure 5. Results derived using the variable speed control moment gyroscope (VSCMG) model.
(a) Attitude angle in x, (b) Attitude angle in y, z, (c) Angular velocity, (d) CMG momentum, (e) Gimbal
angles, (f) Gimbal rates, (g) Control torque, (h) Manipulability index.
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Figure 6. Angular velocity of each flywheel in the variable speed control moment gyroscope (VSCMG)
cluster with null motion.

The same manoeuvre is executed using the GCMG model and the results are presented
in Figure 7. Figure 7a shows that after t = 2 s the system follows the desired quaternion.
The attitude angle about x direction is starting to decrease reaching the steady state at
t = 18 s with a steady state error similar to this of the VSCMG. The GCMG exploits the
fifth DoF to handle the encountering singularity completing the manoeuvre with slight
attitude error (Figure 7b). Compared to the VSCMG, the maximum deviation is−1 deg and
0.53 deg about the pitch and yaw axis, respectively. This deviation is also depicted in the
angular velocity of the satellite mainly in the negative of the y direction with an absolute
maximum velocity of 4.4 deg/s (Figure 7c) . The main velocity component is about the x
axis and the maximum absolute value is 18.7 deg/s. The angular momentum of the GCMG
cluster is presented in Figure 7d. When the momentum in x direction reaches the value of
1.15 Nms where is known that the system encounters the singular state, a change in the
momentum about y is presented. The gimbal angles profile is shown in Figure 7e and in
the steady state the gimbal angle vector δ is [2.3, 4.9, 128.5,−54]T deg. The rate of the third
gimbal becomes saturated from t = 2 s to t = 2.37 s (Figure 7f) while every other gimbal
rate is scaled down according to Equation (87) for this time period. The control torque
can be seen in Figure 7g and the profile in x direction is similar to this of the VSCMG. It
spans in the negative of the axis till t = 3.2 s where the overshoot in the positive of the
axis indicates again the deceleration of the satellite. It can be seen in Figure 7h that the
manipulability index of the CMG cluster, i.e., use of A

¯
—drops to 0.166 at t = 2.4 s but in the

steady state it converges to 1.22. In contrast, the lowest value of the manipulability index
of the GCMG cluster—use of R—is 0.466 at t = 2.15 s. Even though the manipulability
index in these two cases is not comparable because of the unequal DoF are used in each
case, the profile of the index is. The significant difference is noticed from t = 2.16 s to t = 3 s.
In this period of time the manipulability index of the GCMG increases quickly because
of the action of the stepper motor, in contrast to this of the CMG which remains near the
singularity. In Figure 8a,b the angle θz and rate θ̇z are presented. The stepper motor rotates
the cluster −90 deg following the commanded θzdes set and the rate θ̇z remains saturated
from t = 2 s to t = 2.5 s. Then, it decreases again because of the motion in the null space and
in the steady state, it drops to zero. Table 4 presents the percentage differences for the main
parameters among the two simulations.

Table 4. Percentage differences.

Parameter Value

Max attitude error in y 455%
Max attitude error in z −41%

Max velocity in x −1%
Min manipulability 11%

Steady state manipulability 160%
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Figure 7. Results derived using the gimballed control moment gyroscope (GCMG) model. (a) Attitude
angle in x, (b) Attitude angle in y, z, (c) Angular velocity, (d) CMG momentum, (e) Gimbal angles,
(f) Gimbal rates, (g) Control torque, (h) Manipulability index.
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Figure 8. (a) Angle θz and (b) rate θ̇z.

As the results indicate, both the VSCMG and GCMG cluster are capable of avoiding the
internal singularity exploiting the redundant DoF while maintaining a high manipulability
index through the whole manoeuvre and similar settling time. Contrary to the results
derived by using the GCMG, the maximum deviation of the attitude angle and satellite’s
angular velocity is lower about pitch and higher about yaw axis, respectively, in the case of
VSCMG. The same applies for the control torque. The manipulability index profile for the
VSCMG is significantly different from this of the GCMG. It presents a wide dip and slowly
increases until the end of the simulation. The GCMG presents a higher index value both
in singularity and the steady state compared to the VSCMG. Thus, after completing the
desired manoeuvre the GCMG cluster comes to a better configuration which is significant
for the beginning of the next manoeuvre without re-configuring its gimbals, e.g., through
null space.

No major difference is presented in the maximum absolute value of the angular
velocity of the satellite about the roll axis for the two models. Both models are capable
of avoiding the elliptic singular state with attitude error lower than 1 deg which makes
the GCMG an efficient alternative to the VSCMG when it is desired to explicitly follow a
given trajectory. The memory allocation is almost identical for the two models (approx. 2%
less in the case of GCMG). The difference in execution time is less than 1% as measured
by 100 consecutive measurements. However the mathematical complexity of the GCMG
is highly reduced. In applications where only the final attitude is of interest while high
attitude error is allowed during the manoeuvre, the extra motor of the GCMG design
is adding weight and complexity without providing any extra value compared to the
conventional SGCMG. Such a task can be efficiently accomplished by a SGCMG cluster
combined with the modified singularity robust inverse steering law.

Caution must be taken in selecting the moment of inertia matrix of the CMG cluster.
The used value is negligible compared to this of the satellite and as a result a minor rotation
is applied to the system. A large CMG inertia may result in rotating the satellite in the
opposite direction resulting in higher attitude errors.

Figure 9 illustrates an important difference between the total power required by the
VSCMG compared to the GCMG to execute the same manoeuvre. The power component
that is related to the initial spin up and the stabilization of the flywheels to their nominal
velocities is the same in both cases and as a result, it has been omitted. The power profiles
presented consist of two power components. The first is related to power used for the
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gimbal motion whilst the second is related to the power needed to change the velocity of
the flywheels and control the stepper motor in the VSCMG and GCMG design, respectively.
The power difference shown in Figure 9 is mainly due to the second component because
the order of magnitude of the power of the first component is much smaller. There is
an 88.1% and a 74.1% decrease in the maximum and the mean power needed when the
GCMG is exploited. The maximum and the mean values for both cases are presented in
Table 5. The values indicate that is feasible to use a commercial off-the-shelf stepper motor
to manufacture the GCMG design with a required motor torque capability of less than
0.34 Nm. Such demands can be easily fulfilled by low mass and affordable stepper motors
allowing the application of the GCMG actuator to micro and nano-satellites missions.

A more detailed power comparison of COTS based CMGs using stepper motors
will be presented in future work showing experimental results which as shown previ-
ously in [34,35] show the power advantage of using stepper motors for CMG systems.
The proposed GCMG uses less power than a conventional VSCMG cluster as the added
gimbal motor/extra degree of freedom brings savings in power compared to the increased
speed/power needed when using VSCMGs.

Time, s

P
o

w
e

r,
 W

GCMG

VSCMG

Figure 9. Power profile for GCMG and VSCMG cluster.

Table 5. Power values.

Power GCMG VSCMG

Maximum 0.153 W 1.28 W
Mean 0.006 W 0.023 W

6. Conclusions

This paper addresses the problem of singularity avoidance in a 4-single gimbal control
moment gyroscope (SGCMG) cluster in pyramid configuration as used for the attitude
control of a satellite. A novel SGCMG cluster design is proposed that uses an extra
stepper motor capable of rotating the full cluster and a comparison is held among the
design proposed and the VSCMG cluster. Both are capable of avoiding the encountering
singularity even though the GCMG presents a lower and a higher attitude error about
the yaw and the pitch, respectively, for the exact same tuning. However, the GCMG
shows a clear advantage over the VSCMG in the gimbal configuration in the end of the
manoeuvre. The gimbals end in a configuration of higher performance that is essential
for agile and small satellites that perform multiple consecutive manoeuvres in one pass.
Moreover, the results indicate that GCMG provides a superior performance in terms of
the power needed to execute the manoeuvre while it has been shown that a simple COTS
stepper motor can be utilized in practice for manufacturing the GCMG concept. With three
less DoF and reduced mathematical complexity, the GCMG design may be an effective
alternative to the VSCMG in applications that is desired to explicitly follow a commanded
trajectory. Even though the present study only investigates the GCMG cluster using the
Moore-Penrose steering law, an extensive analysis is kept for future work to understand
how the GCMG behaves to different steering laws.
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