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Abstract: This paper proposes a method of structural modification for the assignment of natural
frequencies and mode shapes based on frequency response functions (FRFs). The method involves
the addition of masses or stiffness (supporting stiffness or connection stiffness), the simultaneous
addition of masses and stiffness, or the addition of mass-spring substructures to the original structure.
Firstly, the proposed technique was formulated as an optimization problem based on the FRFs of
the original structure and the masses or stiffness that needed to be added. Next, the required added
masses and stiffness were obtained by solving the optimization problem using a genetic algorithm.
Finally, numerical verification was performed for the different structural modification schemes. The
results show that, compared to only adding either stiffness or masses, adding both simultaneously
or adding spring-mass substructures obtained better optimization results. The advantage of this
FRFs-based method is that the FRFs can be directly measured by modal testing, without knowledge
of analytical or modal models. Furthermore, multiple structural modifications were considered in
the assignment of natural frequencies and mode shapes, making the application of this method more
applicable to engineering.

Keywords: frequency response functions (FRFs); assignment of natural frequencies and modes;
structural modification; genetic algorithm

1. Introduction

Structural dynamics modification technology is an economical and effective means for
the improvement and enhancement of the dynamic characteristics of mechanical structures.
It is widely used in aerospace, ships, automobiles, civil engineering, bridges, and machinery
industries. The problems involved in structural dynamics modification can be divided into
two categories: “forward problems” and “inverse problems”. The former mainly involves
changes in the dynamic characteristics of the structure due to changes to the mass, stiffness,
and damping of the original structure; the latter mainly comprises the study of how to
modify the existing structure in order to achieve the expected dynamic characteristics
(natural frequencies and mode shapes) [1–5]. Compared to “forward problems”, “inverse
problems” are attracting more and more research due to their complexity and extensive
engineering application value [6].

One of the important sub-problems in the “inverse problem” of structural dynamics
modification is known as the assignment of natural frequencies and modes, which refers to
the modification of the structure to make the system meet certain frequency characteristics
or modal requirements. For example, in many engineering applications, it is desirable for
some of the system’s natural frequencies to be far away from the dominant components
of the harmonic excitation force, in order to prevent resonance that may lead to structural
failure. Bycontrast, in other cases, such as the design of resonators, it is desirable for
the natural frequency of the system to match the single-harmonic excitation, in order to
improve the performance of the machine and, at the same time, minimize the excitation
effort [7]. For military aircraft, such as airplanes, rockets, and missiles, not only the natural
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frequency requirements of the structure need to be considered in the design, but also certain
requirements for the position of the modal nodes of the structure. For example, in the
structural design of a vehicle, if the installation position of the attitude sensor can be located
at the first few modes of the structure through the optimization design, the vibration level
of the attitude sensor can be effectively reduced and the attitude detection accuracy can
be improved. In the early research on the assignment of natural frequencies and mode
shapes, most are summarized as system-characteristic structural assignment problems.
Syrmos et al. [8,9] studied these problems and presented numerical solutions. Gobb and
Liebst [10] considered the application of the eigenstructural assignments of the undamped
structural system in mechanics. This method is similar to that of adding stiffness to the
original structure in recent structural modifications. Fletcher et al. [11–15] studied the
assignment problems of the state feedback eigenstructure of the descriptor system. They
also discussed the assignment problems posed by the eigenvalue structure of the output
feedback of the descriptor system in the work of Duan and Fletcher, respectively [16,17].
Duan and Patton [18] studied the robustness eigenstructure assignment problems of the
descriptor system. Again, the concept in these studies of descriptor systems is similar
to the idea of adding masses and stiffness to the original structure in recent structural
modifications. In 2004, Kyprianou, et al. [19] proposed a natural frequency assignment
method. The main features of this method are the addition of mass and one or more
stiffness to the original structure, and that the determination of the added mass or stiffness
required by the receptance of the original structural system. Mottershead et al. [20] used the
receptance measured by the vibration system to assign the eigenvalues of the vibration’s
differential equation through active vibration control and passive structure modification.
In order to draw a comparison with the results of the well-established technique proposed
by Braun and Ram, Ouyang et al. [21] developed a method that relied only on receptance
data for the calculation of the realizable mass and stiffness modification of undamped
systems. In 2013, Mao and Dai [22] proposed a partial eigenvalue assignment method for
linear high-order systems. They established a new orthogonal relationship between the
eigenvectors of general matrix polynomials. By using this new orthogonal relationship, the
parameter solution of partial eigenvalue assignment was constructed, and the eigenvalues
that needed to be modified were assigned, while the eigenvalues that did not need to be
modified remained unchanged. The characteristic feature of this method was that the
eigenvalues that did not need to be modified were ignored. Hu et al. [23] proposed an
approach to the partial eigenvalue and eigenstructure assignment of undamped vibrating
systems. This approach only needed a few eigenpairs to be assigned, as well as the mass
and stiffness matrices of the open-loop vibration system. In 2015, Ouyang et al. [24]
studied a method for the assignment of some natural frequencies on the mass-spring
system; the most important aspect of this method was that, when natural frequencies were
assigned, other natural frequencies that did not need to be assigned did not change. This
phenomenon was called “no spill-over”. In the same year, an eigenstructure assignment
method based on receptance was proposed by Liu et al. [25]. The core component of this
method was the addition of spring-mass subsystems to the original structure, followed by
the transformation of the eigenstructure assignment problems into numerical optimization
problems. One year later, Belotti et al. [26] proposed an inverse structure modification
method for eigenstructure assignment. The proposed method allowed the assignment of the
desired modes only at the parts of interest of the system, according to an arbitrary number
of modification parameters and determined eigenpairs. In 2017, Bai et al. [27] analyzed the
assignment problem of local quadratic eigenvalues in vibration through active feedback
control. A constructive method was proposed to solve the local quadratic eigenvalue
assignment problem based on the measured receptance and the system parameter matrix.
The solution to the problem required only a small linear system and a few unwanted
eigenvalues with related eigenvectors. One year later, in order to assign a certain number
of natural frequencies, a numerical method based on the Sherman-Morrison formula
was proposed [28]. This method required the receptance values related to the modified
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coordinates of the original system structure. In 2018, Belotti et al. [29] proposed a method
that aimed to assign a subset of natural frequencies with low spill-over. In 2020, Tsai
et al. [30] proposed a theoretical study of frequency assignment for the coupling system.
This method was capable of solving some complex modification issues, in which the added
structures were not point mass or ground springs.

The above-mentioned studies on the assignment of frequencies and modes were
primarily based on the physical model, which requires the knowledge of mass, stiffness,
and damping matrices. In practical engineering, however, these parameters and matrices
of vibration system structures are not easy to obtain. Although there are a few FRF-
based assignment methods, they can only be applied with specific modifications, such
as only adding mass, or only adding spring stiffness. In addition, most of the above
studies only considered the frequency assignment, ignoring the assignment of the mode
shapes. This paper proposes a method for structural modifications for the assignment
of natural frequencies and mode shapes based on FRFs. Multiple modification schemes
were considered in this study, including the addition of masses or stiffness (supporting
stiffness or connection stiffness between different coordinates), the addition of masses
and stiffness simultaneously, or the addition of mass-spring substructures to the original
structure. Firstly, the proposed technique was formulated as an optimization problem
based on the FRFs of the original structure and the masses or stiffness that needed to
be added. Next, the required added masses and stiffness were obtained by solving the
optimization model using a genetic algorithm. The advantage of this FRFs-based method is
that the FRFs can be directly measured by modal testing, without knowledge of analytical
or modal models. Furthermore, multiple structural modification schemes were considered
for the assignment of the natural frequencies and mode shapes, making this method more
applicable to engineering and more likely to achieve better results.

2. Theoretical Development

Although damping always exists, it is relatively small in most engineering structures.
Even if a damping ratio is 10%, the difference between a damped natural frequency and
an undamped natural frequency is only 0.5% [25]. Therefore, damping is ignored in the
following theoretical analysis. As shown in Figure 1, an undamped n-degree-of-freedom
(DOF) system was considered. The dynamics of the vibrating structure were modeled by
the following the second-order differential equation:

M
..
x + Kx = 0 (1)

where
..
x and x are the acceleration and displacement vector, respectively. M, K∈Rn×n

are the mass and stiffness matrices respectively. It is well known that if x = ueiωt is a
fundamental solution to Equation (1), then the vibration’s differential Equation (1) is
transformed from a time domain to a frequency domain. Equation (1) was therefore
rewritten as follows: (

−Mω2 + K
)

u = 0 (2)

where ω is the natural frequency of the spring-mass vibration system and u is the mode
shapes. Dynamic modification was introduced to the original structure through the addi-
tion of masses or stiffness to the positions of the system, and the added mass and stiffness
matrices were ∆M and ∆K, respectively. The vibration’s differential equation in the time
domain of the modified structural system was described as follows:[

−ω2(M + ∆M) + (K + ∆K)
]
u = 0 (3)
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Figure 1. n-degree-of-freedom undamped vibration system.

As for the original structural system, the dynamic stiffness matrix and the receptance
matrix in the frequency domain were represented by Z(ω) and H(ω), respectively. They
were represented by the mass and stiffness matrix as follows:

Z(ω) =
(
−ω2M + K

)
H(ω) =

(
−ω2M + K

)−1

Therefore, Equation (3) was described by the receptance matrix of the original struc-
tural system. The result is shown in Equation (4):

H−1(ω)u =
(

ω2∆M− ∆K
)

u (4)

Considering some of the limitations of structural modification in actual engineering,
various structural modification schemes, including the addition of masses, stiffness, and
mass-spring substructures are considered, respectively, in the following sections.

2.1. Addition of Masses

Assuming that a mass with a value dmi is added onto the coordinate i of the original
structural system, as shown in Figure 2, the consequent vibration’s differential equation
can be described by Equation (5).

H−1
n×n



u1
u2
...

ui
...

un


= ω2 · ∆Mi



u1
u2
...

ui
...

un


=



0 0 · · · 0 · · · 0
0 0 · · · 0 · · · 0
...

...
. . .

...
...

0 0 · · · ω2dmi · · · 0
...

...
...

. . .
...

0 0 · · · 0 · · · 0





u1
u2
...

ui
...

un


(5)
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Figure 2. Structural modification by adding mass.

In some specific structures, it is impossible for the designer to add masses in order
to improve the dynamic characteristics of the structure. For example, some barrel-shaped
or beam structures [31] are not allowed to change their appearance due to functional
requirements. Under these conditions, the addition of stiffness can be considered. In
Sections 2.2 and 2.3, two forms are discussed, including the addition of supporting stiffness
and the addition of connection stiffness, respectively.

2.2. Addition of Supporting Stiffness

Assuming that a supporting stiffness with a value dki is added onto the coordinate i
of original system, as shown in Figure 3, the vibration’s differential equation after adding
stiffness dki can be described by Equation (6). It is not surprising that Equation (5) is similar
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to the Equation (5) presented by Kyprianou, et al. [19] when δK = 0, and Equation (6) is
similar to the Equation (5) presented by Kyprianou, et al. [19] when δM = 0.

H−1
n×n



u1
u2
...

ui
...

un


= −∆Ki



u1
u2
...

ui
...

un


=



0 0 · · · 0 · · · 0
0 0 · · · 0 · · · 0
...

...
. . .

...
...

0 0 · · · −dki · · · 0
...

...
...

. . .
...

0 0 · · · 0 · · · 0





u1
u2
...

ui
...

un


(6)
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2.3. Addition of Connection Stiffness

Assuming a connection stiffness with value dkij is added between the coordinate i and
coordinate j of original system, as shown in Figure 4, the vibration’s differential equation
after the addition of connection stiffness dkij can be described by Equation (7):
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...
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. . .
... ...
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0

...
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0 · · ·

...
0

. . .
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2.4. Addition of Spring-Mass Substructure

In some cases, the original structure was designed for certain specific functions and
requirements, which were not to be modified. In these cases, adding spring-mass sub-
structures to the original system was a preferable structural modification scheme for the
improvement of the system’s dynamic characteristics.

It was assumed that a spring-mass substructure with mass dmi and stiffness dki was
added onto coordinate i of the original structural system, as shown in Figure 5. Due to the
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addition of this spring-mass substructure, an extra DOF was introduced. Consequently, the
matrices in Equation (4) were enlarged by one row and column, as shown in Equation (8).

(
H−1

n×n 0
0 0

)


u1
u2
...

ui
...

un
du


=



0 0 · · · 0 · · · 0 0
0 0 · · · 0 · · · 0 0
...

...
. . .

...
...

...
0 0 · · · −dki · · · 0 dki
...

...
...

. . .
...

...
0 0 · · · 0 · · · 0 0
0 0 · · · dki · · · 0 −dki + ω2dmi





u1
u2
...

ui
...

un
du


(8)
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0 0 · · · 0 · · · 0 0
0 0 · · · dki · · · 0 −dki + ω2dmi





u1
u2
...

ui
...

un(
dki

dki−ω2dmi

)
ui


(11)

Considering the ith and (n + 1)th row of Equation (11), one can obtain

−dki ui +

(
(dki)

2

dki−ω2dm i

)
ui =

(
ω2dmidki

dki−ω2dmi

)
ui

dki ui +
(

ω2dmi−dki
dki−ω2dmi

)
dk iui = 0

(12)
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Combining Equations (10)–(13), Equation (9) can be simplified as equation

H−1
n×n



u1
u2
...

ui
...

un


= −∆Si



u1
u2
...

ui
...

un


=



0 0 · · · 0 · · · 0
0 0 · · · 0 · · · 0
...

...
. . .

...
...

0 0 · · · ω2dmidki
dki−ω2dmi

· · · 0
...

...
...

. . .
...

0 0 · · · 0 · · · 0





u1
u2
...

ui
...

un


(13)

It is not surprising that Equation (13) is the same as Equation (11) in Liu, et al.’s
study [25] when the force vector f = 0.

2.5. Expression of General Structural Modification

Combining the various structural modification schemes in Section 2.1, Section 2.2,
Section 2.3 and Section 2.4, we were able to obtain the general structural modification
expression. It was assumed that extra mass dmi was added onto the ith coordinate, the
supporting stiffness dkj was added onto the coordinate j, connecting stiffness dkpq was
added between the pth and the qth coordinates, and a spring-mass substructure with a
mass value dmm and a stiffness value dkm was added onto the coordinate m of the original
system, as shown in Figure 6. According to Equations (5)–(7), the general expression of
the vibration’s differential equation for the modified structure was derived, as shown in
Equation (14).

H−1
n×n



u1
...

ui
uj

upq
...

upq
um
...

un



=



0 · · · 0 0 0 · · · 0 0 · · · 0
...

. . .
...

0 · · · ω2dmi · · · 0
0 · · · −dk j · · · 0
0 · · · −dkpq dkpq · · · 0
...

...
...

. . .
...

...
...

0 · · · dkpq −dkpq · · · 0
0 · · · 0 0 0 0 0 ω2dmmdkm

dkm−ω2dmm
· · · 0

...
...

...
...

...
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0 0 · · · 0





u1
...

ui
uj

upq
...

upq
um
...

un



(14)
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( )0 0 1 0 0

i i T
i i m m

T
i
m i

dmΔ =

=  

M V V

V
 (15)

mi

ki(i+1)

dmi

mj

kj(j-1)

k(i-1)i

kj(j+1)

mp

kp(p+1)

mq

kq(q-1) kq(q+1)

k(p-1)p dkpq

dkj

mm

k(m-1)m km(m+1)

dmm
dkm

mn

k(n-1)n

m1

k12

Figure 6. General structural modification.

2.6. Establishment of Optimization Model

In order to establish a unified optimization model, the added mass matrix ∆Mi
in Equation (5), the added supporting stiffness matrix ∆Ki in Equation (6), the added
connection stiffness matrix ∆Kij in Equation (7), and the added substructure matrix ∆Si in
Equation (13) were converted into the form of Equations (15)–(18), respectively:

∆Mi = dmiVi
mVi

m
T

Vi
m =

(
0 · · · 0 1

i
0 · · · 0

)T (15)
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∆Ki = dkiVi
kVi

k
T

Vi
k =

(
0 · · · 0 1

i
0 · · · 0

)T (16)

∆Kij = dkijV
ij
k Vij

k
T

Vij
k =

(
0 · · · 0 1

i
0 · · · 0 −1

j
0 · · · 0

)T (17)

where the added stiffness dkij represents the connection stiffness between the coordinates i
and coordinate j when i 6= j. If i = j, dkij represents the supporting stiffness corresponding
with the coordinate i, and

Vij
k =

(
0 · · · 0 1

i
0 · · · 0

)T

∆Si = dsiVi
sV

i
s
T

dsi = − ω2dmidki
dki−ω2dmi

Vi
s =

(
0 · · · 0 1

i
0 · · · 0

)T

(18)

For the sake of generalization, it was assumed that masses were added onto the
first s coordinates, stiffness were added onto the first t coordinates, and the spring-mass
substructures were added onto the first l coordinates of the original structure. By combining
Equations (15)–(18), the vibration’s differential equation in the modified structural system
was described as Equation (19):((

K−ω2M
)
−ω2

s
∑

i=1
dmiVi

mVi
m

T +
t

∑
i=1

dkijV
ij
k Vij

k
T +

l
∑

i=1
dsiVi

sV
i
s
T
)

u = 0

j ∈ [1, t]
(19)

Set:

α =
(
−ω2dm1,−ω2dm2 . . .−ω2dms; dk1j, dk2j . . . dktj; ds1, ds2 . . . dsl

)T

V =
(

V1
m

T , V2
m

T . . . Vs
m

T , V1j
k

T . . . Vtj
k

T , V1
s

T . . . Vl
s
T
)T

j ∈ [1, t]

(20)

Equation (20) was simply described as follows:((
K−ω2M

)
+

r

∑
i=1

αiViVi
T

)
u = 0 (21)

where r = s + t + l, αi is the element in the ith row of vector α and Vi represents the ith
column of the matrix V.

As in Equation (4), Equation (21) was described by using the receptance matrix of the
original system, as shown in Equation (22):

H−1(ω)u = −
r

∑
i=1

αiViVi
Tu (22)

By substituting the desired natural frequency ωh and mode uh into Equation (22),
we obtained:

uh = H(ωh)

(
−

r

∑
i=1

αiViVi
T

)
uh (23)
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Therefore, the assignment of natural frequencies and mode shapes in this paper was
cast as an optimization problem, as shown in Equation (24):

min
αi

{
n

∑
h=1

γh‖H(ωh)

(
−

r

∑
i=1

αiViVi
T

)
uh − uh‖2

2

}
(24)

where γh is the weighting coefficient. ωh and uh represent the desired frequency and mode.
H represents FRF matrix, which consisted of FRFs of the original structure. H (ωh) is the
value of FRF matrix at frequency ωh.

The above optimization model (24) can be solved by various optimization algorithms
and a genetic algorithm was employed in the following numerical verification. It should
be noted that the algorithm for solving this optimization problem will not be discussed
because it is not the focus of this paper. In order to describe the detailed process of assigning
natural frequencies and modes, the schematic flow chart is presented as shown in Figure 7.
The specific implementation process can be summarized by the following steps:

(1) We determined the frequencies and mode shapes that needed to be assigned, accord-
ing to the actual engineering needs.

(2) We measured the FRFs of the original structure.
(3) We chose a suitable structural modification scheme (the addition of masses, support-

ing stiffness, connection stiffness, or substructures, or the addition of a mixture of
these) and the corresponding ranges of the variables according to the actual condi-
tions.

(4) We solved the optimal modification results according to the optimization model given
in Equation (24) by using a genetic algorithm.
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3. Verification of the Method

To verify the feasibility and accuracy of the proposed method, a 5-DOF undamped
spring-mass system was presented as a simulated example, as shown in Figure 8. This
simulated model was selected from a real example in a previous study [21]. Furthermore,
all the system parameters, variation range of mass and stiffness, desired natural frequencies
and mode shapes were also identical to those used in the same previous study [21]. The
structural system parameters are listed in Table 1. Next, five natural frequencies and the
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corresponding mode shapes of this system were obtained, as summarized in Table 2. It
should be noted that the natural frequencies and mode shapes of the system were directly
numerically calculated in this simulated experiment, while in practical applications they
should be extracted from the FRFs measured by experiment.
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Figure 8. A 5-DOF undamped spring-mass vibration system.

Table 1. System parameters.

Stiffness k12 k23 k34 k45 kg
(N/m) 7.36 × 104 6.82 × 104 7.35 × 104 8.21 × 104 9.89 × 104

Mass m1 m2 m3 m4 m5
(kg) 1.73 5.12 8.21 2.61 1.34

Table 2. Natural frequencies of original structure.

Mode Number i 1 2 3 4 5

fi (Hz) 22.28 32.61 42.94 52.74 64.59
ui (1) 0.357 0.736 0.094 1.000 0.003
ui (2) 0.673 1.000 0.060 −0.234 −0.004
ui (3) 1.000 −0.418 −0.217 0.025 0.032
ui (4) 0.460 −0.337 1.000 −0.008 −0.482
ui (5) 0.244 −0.222 0.983 −0.019 1.000

The verification of the methods for the assignment of one natural frequency and mode
shape and two natural frequencies and mode shapes is discussed in Sections 3.1 and 3.2,
respectively. Desired natural frequencies and mode shapes are given in Table 3. The genetic
algorithm toolbox in Matlab software was employed for solving this optimization problem.
Default values were chosen as the input parameters of genetic algorithm. The inputs and
the optimization termination criteria are given in Table 4.

Table 3. Desired natural frequencies and mode shapes.

Mode Number d 1 2

fd (Hz) 39.00 55.00
ud (1) 1.00 0
ud (2) −0.55 0.01
ud (3) 0.2 −0.10
ud (4) 0 0.80
ud (5) 0.05 1.00
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Table 4. Inputs and termination criteria.

Inputs of GA

Population size 50 for 5 variables and 200 for 10 variables
Mutation function Constraint dependent
Crossover function Constraint dependent

Optimization Termination Criteria

Generations 100 × number of variables
Stall generations 50

Function tolerance 1 × 10−6

Constraint tolerance 1 × 10−3

3.1. Assignment of One Natural Frequency and Mode

The assignment of one desired natural frequency and mode shape by different modifi-
cation schemes is discussed in Sections 3.1.1–3.1.4.

3.1.1. Addition of Masses

As can be seen in Figure 9, it was assumed that masses dm1, dm2, dm3, dm4, and dm5
were added to all the coordinates of the original system. The purpose of the modification
was to assign the one mode listed in Table 3 at f 1 (39 Hz). The ranges of the added masses
were both 0–2 kg. By solving the optimization Equation (24) using the genetic algorithm,
the optimized values of the added masses and the minimized value were obtained, as
collected in Table 5:
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Figure 9. Modified structure after adding masses.

Table 5. Parameters of added masses.

Mass (kg) Range Value

dm1 0–2 1.812
dm2 0–2 1.189
dm3 0–2 2.000
dm4 0–2 0.358
dm5 0–2 0

minimized value 0.03418162623201011

As a further proof of the results, Figure 10 shows the absolute values of the receptance
H1,i(ω) (i = 1, . . . , 5) of the original system (solid line) and the modified systems by the
proposed method (dotted line). For the purpose of comparison, the natural frequencies
and the mode obtained from the modified system are collected in Table 6. In order to
quantify the difference between the desired mode ud and the attained mode ui, the cosine
‘cos’difference between them is given in the last row of Table 6. When the ‘cos’ value
approached 1, the desired mode and the attained mode were very close. By contrast, the
deviation was greater [25]. A graphical comparison of the desired and attained modes is
also presented in order to make their difference more intuitive, as shown in Figure 11.
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Frequency and Mode Obtained Frequency and Mode Desired

fi [Hz] 39.03 fd [Hz] 39.00
ui (1) 1 ud (1) 1
ui (2) −0.5492 ud (2) −0.55
ui (3) 0.0394 ud (3) 0.2
ui (4) 0.3092 ud (4) 0
ui (5) 0.2519 ud (5) 0.05

Desired mode number, d 1
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3.1.2. Addition of Stiffness

The addition of supporting stiffness and connection stiffness is discussed in
Sections 3.1.2.1 and 3.1.2.2.

3.1.2.1. Addition of Supporting Stiffness

As shown in Figure 12, it was assumed that supporting springs with stiffness dk11,
dk22, dk33, dk44, dk55 were added to each coordinate of the original system. The purpose
of the modification was to assign the one mode listed in Table 3 at f 2 (55 Hz). The ranges
of the added stiffness were both 0~300 kN/m. By solving the optimization Equation (24)
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using the genetic algorithm, the optimized value of the added supporting stiffness and the
minimized value were obtained, as listed in Table 7.
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Figure 12. Modified structure after adding supporting stiffness.

Table 7. Parameters of added supporting stiffness.

Stiffness (kN/m) Range Value

dk11 0–300 222.062
dk22 0–300 4.798
dk33 0–300 63.110
dk44 0–300 156.854
dk55 0–300 48.711

minimized value 0.008287571754663436

The absolute values of the receptance H1,i(ω) (i = 1, . . . , 5) of the original system
(solid line) and the modified systems by the proposed method (dotted line) are shown in
Figure 13. The natural frequencies and the mode obtained from the modified system are
collected in Table 8. The difference between the cosine of the desired mode and the cosine
of the attained mode is given in the last law of Table 8. A graphical comparison of the
desired and attained modes is presented in Figure 14.
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Table 8. Comparison of natural frequencies and mode shapes.

Frequency and Mode Obtained Frequency and Mode Desired

fi [Hz] 55.55 fd [Hz] 55.00
ui (1) 0.0056 ud (1) 0
ui (2) 0.0147 ud (2) 0.01
ui (3) −0.0869 ud (3) −0.10
ui (4) 0.8102 ud (4) 0.80
ui (5) 1.00 ud (5) 1.00

Desired mode number, d 2
|fd − fi|(100 × |fd − fi|/fd) 0.55 (1.00)

cos (ud,ui) 0.9999
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3.1.2.2. Addition of Connection Stiffness

It is assumed that connection springs with stiffness dk13, dk25, dk14, dk34 were added
between the five coordinates of the original system, as shown in Figure 15. The purpose
of the modification was to assign the one mode listed in Table 3 at f 2 (55 Hz). The ranges
of the added stiffness were both 0~300 kN/m. By solving the optimization Equation (24)
using the genetic algorithm, the optimized value of the added connection stiffness and the
minimized value were obtained, as listed in Table 9.
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Table 9. Parameters of added connection stiffness.

Stiffness (kN/m) Range Value

dk13 0–300 131.447
dk25 0–300 44.234
dk14 0–300 24.984
dk34 0–300 87.119

minimized value 0.04288060323900754
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The absolute values of the receptance H1,i (ω) (i = 1, . . . , 5) of the original system
(solid line) and the modified systems by the proposed method (dotted line) are shown in
Figure 16. The natural frequencies and the mode obtained from the modified system are
collected in Table 10. The difference between the cosine of the desired mode and the cosine
of the attained mode is given in the last law of Table 10. A graphical comparison of the
desired and attained modes is presented in Figure 17.
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Table 10. Comparison of natural frequencies and mode shapes.

Frequency and Mode Obtained Frequency and Mode Desired

fi [Hz] 55.08 fd [Hz] 55.00
ui (1) −0.1056 ud (1) 0
ui (2) −0.0658 ud (2) 0.01
ui (3) −0.2175 ud (3) −0.10
ui (4) 0.8242 ud (4) 0.80
ui (5) 1.00 ud (5) 1.00

Desired mode number, d 2
|fd − fi|(100 × |fd − fi|/fd) 0.08 (0.15)

cos (ud,ui) 0.9911
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3.1.3. Simultaneous Addition of Masses and Stiffness

It was assumed masses dm1, dm2, dm3, dm4, dm5 and supporting stiffness dk11, dk22,
dk33, dk44, dk55 were added to the original system simultaneously, as shown in Figure 18.
The purpose of the modification was to assign the one mode listed in Table 3 at f 1 (39 Hz).
The ranges of the added masses and stiffness were 0~2 kg and 0~300 kN/m, respectively.
By solving the optimization Equation (24) using the genetic algorithm, the optimized value
of the added supporting stiffness and masses and the minimized values were obtained, as
listed in Table 11.
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Figure 18. Modified structure after the simultaneous addition of masses and supporting stiffness.

Table 11. Parameters of added masses and supporting stiffness.

Mass (kg) Range Value Stiffness (kN/m) Range

dm1 0–2 1.974 dk11 0–300
dm2 0–2 1.541 dk22 0–300
dm3 0–2 0.671 dk33 0–300
dm4 0–2 0.35 dk44 0–300
dm5 0–2 0.785 dk55 0–300

minimized value 0.016437102458409666

The absolute values of the receptance H1,i (ω) (i = 1, . . . , 5) of the original system
(solid line) and the modified systems by the proposed method (dotted line) are shown in
Figure 19. The natural frequencies and the mode obtained from the modified system are
collected in Table 12. The difference between the cosine of the desired mode and cosine
of the attained mode is given in the last law of Table 12. A graphical comparison of the
desired and attained modes is presented in Figure 20.
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Table 12. Comparison of natural frequencies and mode shapes.

Frequency and Mode Obtained Frequency and Mode Desired

fi [Hz] 38.94 fd [Hz] 39.00
ui (1) 1.00 ud (1) 1.00
ui (2) −0.5493 ud (2) −0.55
ui (3) 0.1341 ud (3) 0.2
ui (4) 0.0998 ud (4) 0
ui (5) 0.0275 ud (5) 0.05

Desired mode number, d 1
|fd − fi|(100 × |fd − fi|/fd) 0.06 (0.15)

cos (ud,ui) 0.9945
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3.1.4. Addition of Spring-Mass Substructures

It was assumed that spring-mass substructures with masses dm1, dm2, dm3, dm4, dm5
and stiffness dk11, dk22, dk33, dk44, dk55 were added to original system, as shown in Figure 21.
The purpose of the modification was to assign the one mode listed in Table 3 at f 1 (39 Hz).
The ranges of the added masses and stiffness were 0~2 kg and 0~300 kN/m, respectively.
By solving the optimization Equation (24) using the genetic algorithm, the optimized values
of the substructures and the minimized value were solved and listed in Table 13.
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Figure 21. Modified structure after the addition of spring-mass substructures.

Table 13. Parameters of added masses and stiffness of the substructures.

Mass (kg) Range Value Stiffness (kN/m) Range Value

dm1 0–2 1.34 dk11 0–300 280.005
dm2 0–2 1.052 dk22 0–300 279.597
dm3 0–2 0.216 dk33 0–300 279.268
dm4 0–2 1.254 dk44 0–300 163.297
dm5 0–2 0.424 dk55 0–300 21.965

minimized value 0.018034547178530872
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The absolute values of the receptance H1,i (ω) (i = 1, . . . , 5) of the original system
(solid line) and the modified systems by the proposed method (dotted line) are shown in
Figure 22. The natural frequencies and the mode obtained from the modified system are
collected in Table 14. The difference between the cosine of the desired mode and the cosine
of the attained mode is given in the last law of Table 14. A graphical comparison of the
desired and attained modes is shown in Figure 23.
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Figure 22. Original FRFs and FRFs after the addition of mass-spring substructures.

Table 14. Comparison of natural frequencies and mode shapes.

Frequency and Mode Obtained Frequency and Mode Desired

fi [Hz] 38.98 fd [Hz] 39.00
ui (1) 1.00 ud (1) 1.00
ui (2) −0.5986 ud (2) −0.55
ui (3) 0.2202 ud (3) 0.2
ui (4) −0.2398 ud (4) 0
ui (5) −0.0754 ud (5) 0.05

Desired mode number, d 1
|fd − fi|(100 × fd − fi|/fd) 0.02 (0.05)

cos (ud,ui) 0.9740
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multiple natural frequencies and mode shapes might be considered. In this section, the
assignment of two natural frequencies and mode shapes (listed in Table 3) by different
structural modifications schemes is discussed.

3.2.1. Addition of Masses

It was assumed that masses dm1, dm2, dm3, dm4, dm5 were added to each coordinate of
the original system, as shown in Figure 9. The goal of this modification was to assign the
two vibration modes listed in Table 3. The ranges of the added masses were both 0~2 kg.
By solving the optimization Equation (24) usng the genetic algorithm, the optimized values
of the added masses and the minimized value were obtained, as listed in Table 15.

Table 15. Parameters of added masses.

Mass (kg) Range Value

dm1 0–2 1.720
dm2 0–2 1.425
dm3 0–2 0
dm4 0–2 0
dm5 0–2 0

minimized value 1.7158324192317873

The absolute values of the receptance H1,i (ω) (i = 1, . . . , 5) of the original system
(solid line) and the modified systems by the proposed method (dotted line) are shown in
Figure 24. The natural frequencies and the mode obtained from the modified system are
collected in Table 16. The difference between the cosine of the desired mode and the cosine
of the attained mode is given in the last law of Table 16. A graphical comparison of the
desired and attained modes is shown in Figure 25.
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Aerospace 2021, 8, 262 20 of 27

Table 16. Comparison of natural frequencies and mode shapes.

Frequency and Mode Obtained Frequency and Mode Desired

fi [Hz] 39.22 42.95 fd [Hz] 39 39.22
ui (1) 1.00 −0.086 ud (1) 1.00 1.00
ui (2) −0.503 0.092 ud (2) −0.55 −0.503
ui (3) 0.077 −0.227 ud (3) 0.2 0.077
ui (4) 0.198 1.016 ud (4) 0 0.198
ui (5) 0.163 1.000 ud (5) 0.05 0.163

Desired mode number, d 1 2
|fd − fi|(100 × |fd − fi|/fd) 0.22 (0.56) 12.05 (21.91)

cos (ud,ui) 0.9739 0.9866
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Figure 25. Comparison of desired and attained modes: (a) 39 Hz; (b) 55 Hz.

The results shown in Table 16 demonstrate that the proposed method performed well
in the assignment of frequency 39.00 Hz and the two desired modes, although the attained
frequency of 42.95 Hz was far from the desired 55 Hz. We believe that this was because the
number of desired modal parameters (two frequencies and ten mode elements) was much
greater than that of modified variables (five added masses).

3.2.2. Addition of Supporting Stiffness

It was assumed that supporting springs with stiffness dk11, dk22, dk33, dk44, dk55 were
added to each coordinate of the original system, as shown in Figure 12. The goal of this
modification was to assign the two vibration modes listed in Table 3. The ranges of the
added stiffness were both 0~300 kN/m. By solving the optimization Equation (24) using
the genetic algorithm, the optimized value of the added supporting stiffness and the
minimized value were obtained, as listed in Table 17.

Table 17. Parameters of supporting stiffness.

Stiffness (kN/m) Range Value

dk11 0–300 0
dk22 0–300 0
dk33 0–300 54.065
dk44 0–300 144.807
dk55 0–300 52.889

minimized value 1.374314676701035469

The absolute values of the receptance H1,i (ω) (i = 1, . . . , 5) of the original system
(solid line) and the modified systems by the proposed method (dotted line) are shown in
Figure 26. The natural frequencies and mode shapes obtained from the modified system
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are collected in Table 18. The difference between the cosine of the desired mode shapes
and the cosine of the attained mode shapes is given in the last law of Table 18. A graphical
comparison of the desired and attained modes is shown in Figure 27.
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Table 18. Comparison of natural frequencies and mode shapes.

Frequency and Mode Obtained Frequency and Mode Desired

fi [Hz] 52.70 55.23 fd [Hz] 39 55
ui (1) 1.00 −0.060 ud (1) 1.00 0
ui (2) −0.234 0.029 ud (2) −0.55 0.01
ui (3) 0.021 −0.096 ud (3) 0.2 −0.10
ui (4) 0.044 0.883 ud (4) 0 0.8
ui (5) 0.041 1.000 ud (5) 0.05 1.00

Desired mode number, d 1 2
|fd − fi|(100 × |fd − fi|/fd) 13.7 (35.13) 0.23 (0.42)

cos (ud,ui) 0.9511 0.9977
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The results shown in Table 18 demonstrate that the proposed method performed well
in the assignment of frequency 55.00 Hz and the two desired modes, although the attained
frequency of 52.7 Hz was far from the desired 39 Hz. This was due to fact that the number
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of desired modal parameters (two frequencies and ten mode elements) was much greater
than that of modified variables (five added stiffness).

3.2.3. Simultaneous Addition of Masses and Stiffness

It was assumed that masses dm1, dm2, dm3, dm4, dm5 and supporting stiffness dk11, dk22,
dk33, dk44, dk55 were simultaneously added to the original system, as shown in Figure 18.
The goal of this modification was to assign the two vibration modes listed in Table 3. The
ranges of the added masses and stiffness were 0~2 kg and 0~300 kN/m, respectively. By
solving the optimization Equation (24) using the genetic algorithm, the optimized values of
added masses, the stiffness and the minimized values were obtained, as listed in Table 19:

Table 19. Parameters of added mass and stiffness.

Mass (kg) Range Value Stiffness (kN/m) Range Value

dm1 0–2 1.896 dk11 0–300 4.230
dm2 0–2 1.459 dk22 0–300 12.931
dm3 0–2 1.862 dk33 0–300 36.959
dm4 0–2 0.361 dk44 0–300 192.893
dm5 0–2 0.352 dk55 0–300 85.339

minimized value 0.02819136696777782071

The absolute values of the receptance H1,i (ω) (i = 1, . . . , 5) of the original system
(solid line) and the modified systems by the proposed method (dotted line) are shown
in Figure 28. The natural frequencies and the modes obtained from the modified system
are collected in Table 20. The difference between the cosine of the desired modes and the
cosine of the attained modes is given in the last law of Table 20. A graphical comparison of
the desired and attained modes is shown in Figure 29.
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Table 20. Comparison of natural frequencies and mode shapes.

Frequency and Mode Obtained Frequency and Mode Desired

fi [Hz] 39.07 54.74 fd [Hz] 39 55
ui (1) 1.00 −0.003 ud (1) 1.00 0
ui (2) −0.568 0.089 ud (2) −0.55 0.01
ui (3) 0.110 −0.066 ud (3) 0.2 −0.10
ui (4) 0.035 0.806 ud (4) 0 0.8
ui (5) 0.018 1.000 ud (5) 0.05 1.00

Desired mode number, d 1 2
|fd − fi|(100 × |fd − fi|/fd) 0.07 (0.18) 0.26 (0.47)

cos (ud,ui) 0.9960 0.9996
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Figure 29. Comparison of desired and attained modes: (a) 39 Hz; (b) 55 Hz.

Compared with the addition of masses or supporting stiffness, the simultaneous
addition of masses and stiffness clearly demonstrated better performances in both mode
shapes and frequencies assignment. We believe that this was because the number of
modifying quantities was increased from five (five added masses or five added stiffness) to
ten (five added masses and five added stiffness).

3.2.4. Adding Spring-Mass Substructures

It was assumed that spring-mass substructures with masses dm1, dm2, dm3, dm4, dm5
and stiffness dk11, dk22, dk33, dk44, dk55 were added to the original system, as shown in
Figure 21. The goal of this modification was to assign the two vibration modes listed
in Table 3. The ranges of the added masses and stiffness were 0~2 kg and 0~300 kN/m,
respectively. By solving the optimization Equation (24) using the genetic algorithm, the
optimized values of the substructures and the minimized values were solved and expressed
in Table 21:

Table 21. Parameters of added masses and stiffness of substructures.

Mass (kg) Range Value Stiffness (kN/m) Range Value

dm1 0–2 1.036 dk11 0–300 144.317
dm2 0–2 0.891 dk22 0–300 176.605
dm3 0–2 0.809 dk33 0–300 272.801
dm4 0–2 0.986 dk44 0–300 65.742
dm5 0–2 1.012 dk55 0–300 33.282

minimized value 0.027636992152442294

The absolute values of the receptance H1,i (ω) (i = 1, . . . ,5) of the original system
(solid line) and the modified systems by the proposed method (dotted line) are shown
in Figure 30. The natural frequencies and the mode shapes obtained from the modified
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system are collected in Table 22. The difference between the cosine of the desired modes
and the cosine of the attained modes is given in the last law of Table 22. A graphical
comparison of the desired and attained modes is shown in Figure 31.
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Table 22. Comparison of natural frequencies and mode shapes.

Frequency and Mode Obtained Frequency and Mode Desired

fi [Hz] 39.07 54.89 fd [Hz] 39 55
ui (1) 1.00 −0.001 ud (1) 1.00 0
ui (2) −0.568 0.008 ud (2) −0.55 0.01
ui (3) 0.127 −0.069 ud (3) 0.2 −0.10
ui (4) −0.170 0.823 ud (4) 0 0.8
ui (5) −0.008 1.000 ud (5) 0.05 1.00

Desired mode number, d 1 2
|fd − fi|(100 × |fd − fi|/fd) 0.07 (0.18) 0.11 (0.20)

cos (ud,ui) 0.9966 0.9996
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As with the simultaneous addition of masses and supporting stiffness, the addition of
spring-mass substructures also demonstrated excellent performances in both mode shapes



Aerospace 2021, 8, 262 25 of 27

and frequencies assignment. This was also because more modification variables (five added
masses and five added stiffness) were provided in the addition of substructures.

3.3. Discussion

It is evident that the proposed methods in Sections 3.1.1–3.1.4 demonstrated very
good performances in the assignment of one natural frequency and mode shape. It can be
seen from the results of the assignment of the natural frequencies and mode shapes in the
above four structural modification schemes that the maximum error between the desired
frequency and the attained frequency did not exceed 1.02% (when adding supporting
stiffness), and that the smallest difference between the cosine of the desired mode and that
of the attained mode was no less than 0.9431 (when adding masses). On the whole, the
assigned natural frequencies and mode shapes of the modified system agreed well with the
desired ones in all the four structural modification schemes. This indicates that when one
natural frequency and mode need to be assigned, any of the above structural modification
schemes can be chosen under the premise of convenient implementation in practice.

As can be seen in Sections 3.2.1–3.2.4, only partial frequencies and mode shapes
were assigned by the structural modification of adding masses or stiffness when two
frequencies and mode shapes needed to be assigned. However, all the frequencies and
mode shapes were well assigned through the simultenous addition of masses and stiffness,
or by adding a mass-spring subsystem. One reason for this phenomenon was that the
latter structural modifications provided more modification variables, which made the
optimization model more likely to obtain better results. Another reason lay in a law of
structural dynamic modification, namely that the mere addition of masses will only lower
the natural frequencies of the original structure, while the mere addition of stiffness will
only heighten them. It is difficult to satisfy the assignment of multiple frequencies with
these two kinds of unidirectional movement; the assignment of mode shapes should also
be taken into consideration, which makes it even more difficult to meet the requirement of
assigning multiple frequencies and mode shapes at the same time. By contrast, the addition
of masses and stiffness simultaneously and the addition of mass-spring substructures both
offer the possibility of lowering and heightening the natural frequencies of the original
structure, making it easier to obtain better results when multiple frequencies and mode
shapes need to be assigned at the same time. Based on the analysis above, we suggest that
the addition of masses or stiffness should be considered for the sake of convenience in
practical structural modification if fewer frequencies and mode shapes need to be assigned.
We further suggest that either the simultaneous addition of masses and stiffness or the
addition of mass-spring substructures can be chosen when multiple frequencies and mode
shapes need to be assigned.

Compared with other assignment methods, the advantage of this method is that it
can be applied to a variety of different structural modifications (the addition of masses,
supporting stiffness, connection stiffness, and substructures, or the addition of a mixture of
these), making this method more applicable to engineering. Furthermore, both frequencies
and mode shapes were taken into consideration in the assignment; therefore, multiple
frequencies and mode shapes can be assigned according to the proposed method. However,
it is important to note that, as the number of frequencies and mode shapes that need to be
assigned increases, it becomes more difficult to obtain better optimization results. Another
merit of this FRFs-based method is that FRFs can be directly measured by modal testing,
without knowledge of analytical or modal models. However, the influence of damping
was not considered in this study in view of the fact that it damping relatively small in
most engineering structures. For some cases, where the damping is relatively large, further
analysis is required.

4. Conclusions

This study deals with the problem of frequencies and mode shapes assignment based
on FRFs. Different structural modification schemes are considered in the method pro-
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posed in this study, including the addition of masses or stiffness (supporting stiffness or
connection stiffness), the simultaneous addition masses and stiffness, and the addition of
mass-spring substructures to the original structure.

A 5-DOF spring-mass vibration system was used in order to verify the accuracy
and effectiveness of the proposed method. Both single frequency (and mode shape) and
multiple natural frequencies (and mode shapes) assignments were validated. The results
show that ideal results can be obtained by using any of the above-mentioned modification
schemes when only one frequency and mode need to be assigned. However, it is difficult
to assign multiple frequencies and mode shapes at the same time just by adding masses
or stiffness. Correspondingly, either the simultaneous addition of masses and stiffness or
the addition of a mass-spring subsystem are more likely to achieve better results when
multiple frequencies and mode shapes are required. The main advantage of this method
is that it can be applied to a variety of different structural modifications, making it more
applicable to engineering. Another merit of this FRFs-based method is that FRFs can be
directly measured by modal testing, without knowledge of analytical or modal models.
This method is mainly applicable for the assignment of the natural frequencies and mode
shapes of a structure with little damping in engineering.
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