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Abstract: Assistant based speech recognition (ABSR) prototypes for air traffic controllers have
demonstrated to reduce controller workload and aircraft flight times as a result. However, two aspects
of ABSR could enhance benefits, i.e., (1) the predicted controller commands that speech recognition
engines use can be more accurate, and (2) the confirmation process of ABSR recognition output,
such as callsigns, command types, and values by the controller, can be less intrusive. Both tasks can
be supported by unobtrusive eye- and mouse-tracking when using operators’ gaze and interaction
data. First, probabilities for predicted commands should consider controllers’ visual focus on the
situation data display. Controllers will more likely give commands to aircraft that they focus on or
where there was a mouse interaction on the display. Furthermore, they will more likely give certain
command types depending on the characteristics of multiple aircraft being scanned. Second, it can be
determined via eye-tracking instead of additional mouse clicks if the displayed ABSR output has been
checked by the controller and remains uncorrected for a certain amount of time. Then, the output
is assumed to be correct and is usable by other air traffic control systems, e.g., short-term conflict
alert. If the ABSR output remains unchecked, an attention guidance functionality triggers different
escalation levels to display visual cues. In a one-shot experimental case study with two controllers
for the two implemented techniques, (1) command prediction probabilities improved by a factor of
four, (2) prediction error rates based on an accuracy metric for three most-probable aircraft decreased
by a factor of 25 when combining eye- and mouse-tracking data, and (3) visual confirmation of ABSR
output promises to be an alternative for manual confirmation.

Keywords: air traffic controller; human machine interaction; multimodality; eye-tracking; mouse-
tracking; automatic speech recognition; controller command prediction; attention guidance

1. Introduction

One central task of air traffic controllers (ATCos) is to issue verbal commands to
aircraft pilots via radiotelephony in order to enable a safe, orderly, and expeditious flow
of air traffic [1,2]. Usually, ATCos also need to enter this recently instructed command
information into an electronic air traffic control (ATC) system such as aircraft radar labels
or flight strips. This documentation supports ATCo hearbacks, i.e., to compare pilot’s
readbacks with ATCo instructions [3] and helps to monitor the aircraft status regarding the
issued command characteristics.

If ATCo commands are issued via controller pilot data link communications (CPDLC)—
being more common for non-time-critical commands in en-route phase—the content au-
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tomatically feeds the ATC system and is uplinked to the aircraft pilot in order to be
acknowledged. However, the traditional verbal way of ATCo-pilot communication that
is assumed to remain in the medium-term future especially in highly dynamic and time-
critical approach domain induces additional workload for the ATCo. This is because the
ATCo needs to express the same information content twice—verbally for pilots via ra-
diotelephony using standard phraseology according to ICAO (International Civil Aviation
Organization) specifications [4] and manually for the ATC system.

Thus, automatically extracting the relevant command parts of verbal clearances to
feed the electronic ATC systems without intense ATCo effort became a highly relevant
technological topic in ATC. As a first step, automatic speech recognition (ASR) helps to
provide the uttered words of ATC communication in written form. In addition, automatic
command extraction from ATC utterances is also needed to understand the meaning of
written word sequences. This language understanding task [5] can be heavily supported
by using context knowledge about airspace situation, aircraft information, weather, etc. as
provided through command predictions by an assistant system and used by an ASR engine.

Such assistant based speech recognition (ABSR) systems have proven to be a lightweight
and easy-to-use technology to fulfill the task of ATC command recognition [6]. ABSR
systems have also shown to improve air traffic management (ATM) efficiency and save
aircraft fuel as ATCos can better guide air traffic with reduced workload [6]. However,
ABSR command predictions have varying levels of accuracy, e.g., depending on individual
ATCo habits and situations. Thus, it would be beneficial to know what part of the overall
situation the ATCo currently processes—cognitively or manually.

Current prototypic ABSR implementations for ATC approach require a manual confir-
mation of ABSR output or a correction of recognized values, respectively [6]. Confirmation
clicks via mouse are even needed if the ABSR system has low error rates [6]. Therefore,
ATCos in ABSR studies are open to automatically accept ABSR output after a threshold
time. However, this would also mean that sometimes unchecked and potentially erroneous
ABSR output would also get automatically accepted.

Benefits of multimodal and more natural interaction at a controller working position
(CWP) have already been investigated, i.e., to combine interaction technologies such as
speech recognition and eye-tracking with each other to support ATCo tasks [7]. Hence,
integrating further unobtrusive sensor data from eye- and mouse-tracking with ABSR
and reasonably using these modalities’ benefits promises to further improve efficiency of
ATCos’ CWP interaction.

The four derived research objectives are to (1) collect eye and mouse movement data
of ATCos while monitoring radar traffic and prepare raw data for further applications,
(2) extract relevant information from aforementioned interaction modalities and develop
a framework to integrate the interaction data into an existing ABSR system to improve
the overall performance, (3) develop and implement a method to calculate probabilities
for predicted ATCo commands based on aircraft level and evaluate their quality, and
(4) develop a CWP system to enable unobtrusive (visual) ABSR output confirmation and
evaluate its usefulness.

Operator interaction data from eye- and mouse-tracking can support two important
steps of ABSR applications as will be shown in this paper: (1) predict more accurate ATCo
commands in order to reduce command recognition error rates, (2) check implicit ATCo
confirmation of presented ABSR output or escalate attention guidance mechanisms to
enforce ABSR output check. These two conceptual enhancements have been implemented,
tested, and evaluated. The one-shot experimental case study with two controllers in a
human-in-the-loop simulation of an ATC approach scenario at DLR Braunschweig in
May 2021 revealed promising results—even if not significant due to the limited number
of study subjects—to further refine the integrated use of interaction data: (1) command
predictions on aircraft callsign level got more accurate by a factor of four, (2) combination
of eye- and mouse-tracking metrics was superior over single modality metrics with an
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improvement factor of 25 for prediction error rates, and (3) ABSR output confirmation by
ATCos worked feasibly just by using gaze information.

Section 2 outlines related work on eye- and mouse-tracking as well as speech recog-
nition and combinations of modalities relevant for ATC systems. Both, the baseline CWP
and our CWP prototype with integrated eye- and mouse-tracking for ABSR output confir-
mation are described in Section 3. Section 4 explains the concept of assigning individual
probabilities to command predictions based on ATCo interaction data. The study setup,
methods, and subject data are explained in Section 5. The results of the study as sketched
above are presented and discussed per conceptual enhancement in Section 6. Section 7
concludes and discusses the results more generally. Finally, Section 8 outlines future work.

2. Related Work on Speech Recognition, Eye-Tracking, and Mouse-Tracking

The following subsections give evidence to the use and benefits of speech recognition,
eye-tracking, and mouse-tracking prototypes and applications as well as analyzes how the
modalities can be used together and benefit from each other, respectively.

2.1. Related Work on Automatic Speech Recognition (ASR)

ASR means to convert speech, i.e., audio signals, into a sequence of words, commonly
referred to as transcription. This transcription contains all uttered words and has special
transcription rules for spelled letters, truncated and non-understandable words, human
noise, and different versions of English or even non-English words [8]. The next important
step is the language understanding, i.e., to transform the sequence of words into machine-
readable semantic meaning, commonly referred to as annotation.

Speech recognition found its way into daily life as Amazon Alexa, Apple’s Siri®,
Google Assistant, or Microsoft’s Cortana show. ASR activities in ATC [9] and using
contextual knowledge to improve ASR began decades ago [10]. The mandatory use of ICAO
standard phraseology, which limits the number of words and structures, helps to analyze
verbal ATC communication [4]. However, transcription and especially annotation is more
complex, because ATC radiotelephony users often deviate from the phraseology. Many
European air navigation service providers and air traffic management system providers
agreed on an ontology for annotating ATC utterances in a consortium led by DLR to
enable better interoperability [11]. This ontology dramatically eases semantic interpretation
especially when ATCos or pilots deviate from standard phraseology.

Assistant based speech recognition (ABSR) has proven to be a good approach [12]
to achieve low ATC command recognition error rates [6]. In ABSR systems, ASR engines
are supported by hypotheses about the next ATC commands, so called ATCo command
prediction, that reduce the ASR engine’s search space [13]. With this technology, com-
mand recognition error rates of below 2% are possible [14]. The command annotations
can be used for further applications such as radar label maintenance to reduce ATCo
workload [13], workload assessment [15], safety nets [16,17], arrival management planning
input [18,19], or ATC simulation and training support [20,21]. The most advanced com-
mand prediction techniques base on machine learning and cover all relevant flight phases
in the approach, en-route, and tower environment [22–24]. The command prediction error
rate of an early implementation for multiple remote tower simulation command predic-
tions was below 10% [25]. An ATC command prediction error rate of even 0.3% has been
achieved for simulated Prague approach environment [26].

Another relevant metric is the portion of predicted commands, i.e., the number of
predicted commands divided by the total number of commands per aircraft callsign, that
an ATCo could theoretically issue. The lower the portion of predicted commands, the less
alternatives that an ASR engine needs to choose from. For example, 144 heading commands
are modeled as being usually possible with the qualifiers RIGHT and LEFT for the value
range from 005, 010 to 355, 360. For the multiple remote tower environment, a context
portion predicted of below 10% was achieved [25].
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Currently, besides some statistical approaches, actually issued ATC commands were
either predicted or were not predicted at all by an ABSR system, i.e., for comparison
reasons we assume that predictions have a probability of one divided by the number of
all predicted commands (uniform probability) or of zero. However, information about
the certainty of different words and commands can support the ASR engine to choose the
correct words [27,28].

2.2. Related Work on Eye-Tracking

Eye-tracking is a technology based on sensors to determine a human’s gaze point
and gaze movements as well as pupil size [29,30]. Most modern eye-trackers emit near-
infrared light that is reflected by the eye’s pupil and cornea [31]. These reflections can
be measured with an infrared camera to derive the human’s gaze points and further eye-
tracking metrics [32]. Such eye tracking techniques do not distract the people involved
because infrared light is invisible to the human eye.

Eye-tracking devices can be mounted on the head or can be worn as glasses with the
advantage of free movement for the human user, but with the disadvantage of being more
intrusive on the human’s body [33]. Other eye-trackers can solely be mounted on a monitor.
However, this leads to a restricted range of gaze detection. In a calibration process, the
pupils’ and corneas’ reflection are matched with the screen coordinates that the human
would be focusing on.

A number of metrics regarding eye-tracking have been established for further interac-
tion analysis. A gaze point is a single point of gaze measurement that is often recorded with
50–60 Hz. A fixation is a cluster of subsequent gaze points defined through spatial thresh-
olds and timely dwell times, such as 200–300 ms. There are many different algorithms
for eye-tracking fixation identification based on spatial and temporal information [34].
Fixations indicate well the human’s visual attention [31]. Given the fixation, the dwell
time—hereinafter referred to as fixation duration—can also be measured [35]. The rapid
eye movement segments between fixations are called saccades. The sequence of fixations
and saccades is called scan path and is important to estimate user behavior in analyzing
screen content [36]. Analyzing such scan pattern can help to train highly specialist screen
users such as ATCos [37,38].

For the purpose of gaze analysis, certain spots of a screen are defined as areas of interest
(AoI). An AoI is defined as “physical location, where specific task-related information can
be found” [39]. The time spent on an AoI as a sum of fixations can be used to derive the
human’s attention or situational awareness in a broader view. This data is often presented
as colored heat maps of human’s gaze points on screen [40].

Eye-tracking is already widely used to analyze human’s behavior on websites, e.g., using
fixation count and fixation duration to predict customer interest and choices [41,42]. The
time-to-first-fixation of an AoI was found to not support customer intention prediction [41].

In another study about eye-tracking based intent prediction with a support vector
machine, a customer request prediction accuracy above 75% was achieved almost 2 s before
the customer request towards a worker for an ingredient was uttered verbally [43]. Again,
the fixation count and fixation duration (initial and in total) were considered. Furthermore,
the fixation time was analyzed, i.e., how recent did the fixation happen on an AoI. Support
vector machines using visual attention data have also been used successfully to predict
human behavior in problem-solving tasks [44]. Hence, eye-tracking data can enable benefits
in online applications, but also with offline analysis after recording [45].

Different research prototypes incorporating eye-tracking have already been developed
for ATC [46–49]. Eye-tracking data assist to guide human ATC operators’ attention via
visual cues based on the desired and actual area of attention [50–52]. A combination of
eye-tracking and electroencephalography was even used to control vigilance and attention
of ATCos [53]. One important advantage of eye-tracking methods for ATCos is the potential
to relieve them from tasks that would otherwise have to be done by hand [54].
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2.3. Related Work on Mouse-Tracking

Mouse-tracking is a cheap and simple hardware-based method to acquire information
that can be translated into visual attention later on. Human computer users can move a
mouse to position a cursor on screen, can perform clicks with left and right mouse button,
and scroll with a mouse wheel if applicable. The main mouse functions are metaphors of
humans pointing to things (cursor) or touching things (selection of screen items with clicks)
with their fingers or hands. Hence, mouse usage generates a variety of input data for the
computer when users select text, hover over icons, or click to start events. Furthermore,
this kind of tracking is unintrusive [55].

Mouse-tracking data for user intent prediction can be captured with a relatively low
rate of 10 Hz [56]. Mouse cursor trajectories support understanding human decision
processes [57,58]. Mouse movement paths seem to be more important than speed and
acceleration of mouse movements in order to anticipate user decisions similar to the scan
path in eye-tracking [59]. The cognitive processes related to eye- and mouse-tracking are
similar as it is assumed in both cases to indicate visual attention [60]. Humans tend to
use the mouse cursor for examining screen content, e.g., text reading and highlighting as
well as interaction with screen content, but they may also ignore the mouse if it does not
seem to be useful [61,62]. When clicking with the mouse, humans follow the mouse cursor
even more visually compared to just move the mouse [56]. In more than two-thirds of the
cases, the human watches the mouse cursor region on screen after a mouse saccade [63]. In
more than 80% of the cases, if screen areas are examined visually, they are also examined
with the mouse. Similarly, if they are not examined visually, they are also ignored with the
mouse [63].

2.4. Multimodal Integration of Different Modalities Related to Human-Machine Interaction

Different approaches combine multiple interaction modalities to be used either inde-
pendently of each other or to combine the advantages of them.

Eye-tracking can be used to re-assign probabilities of speech recognition hypotheses
or to adapt the language model, respectively, by considering human’s visual attention
leading to significant decrease in word error rate [64]. However, achieved better recognition
accuracy with such technique was connected more to the visual field than to the visual
focus [65]. Eye-tracking and other non-verbal modalities have been combined to make
speech recognition more robust against noise [66]. Eye-tracking was also found to be
complementary to speech recognition for affect recognition in a gaming environment’s
multimodal interface [67] and for tracking reading progress [68].

The multimodal CWP prototype “TriControl” combines speech recognition, eye-
tracking, and multi-touch sensing to issue ATCo commands [69]. The three main parts of
an ATC command—callsign, command type, and command value—are entered into the
ATC system via three different modalities, i.e., by looking at an aircraft radar label for the
callsign, performing defined multi-touch gestures for the command type, and by uttering
only the command value [70]. These three command parts are put together, confirmed, and
sent to the aircraft via data link or electronically read, e.g., by looking at aircraft callsign
“SAS818”, swiping down for command type “DESCEND”, and uttering “four thousand”
for a command value of 4000 ft [71]. The possibility to work with different modalities in
parallel enables faster and more intuitive interaction especially for approach ATCos [7].

Human-machine interfaces (HMI) that offer multiple modalities are called multimodal
HMIs [72–75]. Multimodal HMIs can have several advantages such as robustness [76,77],
quick, safe, and reliable use [78,79], individualized use [80], natural and intuitive interac-
tion [81,82], workload reduction [83], and adaptation for certain human needs in environ-
ments like system control [84]. Human HMI users often change between multimodal and
unimodal use [85,86]. Some tend to prefer multimodal interaction if well-designed [76],
others prefer unimodal interaction especially in phases of low cognitive workload [87]. An
example HMI for cars also offers speech, gaze, and gestures for system input [88].
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Examples of multimodal research prototypes in ATC, e.g., combine gestures with
speech recognition [89] or eye-tracking [90]. Additionally, in SESAR (Single European Sky
ATM Research Programme) speech recognition and eye-tracking for attention guidance
have been investigated and were found to be important future CWP technologies [91,92].

3. Description of Controller Working Position Prototype with Integrated Eye- and
Mouse-Tracking for ABSR Output Confirmation
3.1. Description of the Baseline Controller Working Position (Mouse-Click Trigger)

ATCos will be using the same basic CWP setup to evaluate the baseline and our
solution system. The baseline includes the common interaction method with using symbols
to be clicked in the aircraft radar label. The newly implemented solution system works
by just looking or mouse-hovering at the aircraft radar label to start the ABSR output
confirmation process. Hence, the majority of ATCos’ tasks are the same in baseline and
solution run as detailed in Section 5.2. ATCos have to monitor air traffic in approach phase
with the given situation data display (see Figure 1).

Figure 1. Aircraft radar labels next to aircraft circle icons (containing sequence numbers) flying within
Düsseldorf approach airspace shown on DLR’s radar display RadarVision [93]. The five shaded
label cells in the second and third label lines may depict the last ATCo command value for a certain
command type (altitude, speed, direction, rate of altitude change, miscellaneous).

The first label line in any of the labels in Figure 1 indicates the callsign and the weight
category in brackets. “medium” is the default weight class category. The second line shows
(1) flight level (first letter is “F”) or altitude in hundreds of feet (first letter “A”), (2) the last
given or recognized altitude command, (3) the speed in tens of knots (“N”), and (4) the last
given or recognized speed command. The third line displays last issued heading/waypoint
(“270”/“DL455”) clearances, rate of climb/descent with an arrow if applicable, and any
other miscellaneous recently given command content such as an ILS-clearance (“ILS”) or
handover to tower (“Twr”). The label example in Figure 2 also shows an optional fourth
label line activated by mouse-over function with current heading (“053”) and aircraft
type (“A319”).
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Figure 2. Baseline aircraft radar label with white frame and yellow ABSR output value expecting
manual ATCo confirmation through mouse click on green check mark (or rejection on yellow cross)
and drop-down menu to change misrecognized or not recognized speed value.

Based on the air traffic situation and the ATCos’ situational awareness, ATCos issue
commands to aircraft pilots. The primary way to issue commands shall be the acoustic
modality, i.e., to press a foot switch (push-to-talk), utter commands/clearances, and release
the foot switch again. The recorded verbal utterance is analyzed in the speech recognition
process by the ABSR system. The ABSR output is presented as yellow value in one of the
five shaded aircraft radar label cells (see yellow flight level “90” in Figure 2). Clicking on
one of the five shaded cells will open a drop-down menu to enable manual correction of
the ABSR output. The first line of the aircraft radar label also shows a green check mark
and a yellow cross to completely accept or reject all shown ABSR output for this aircraft,
respectively. The former should ultimately be clicked if all ABSR output shown in the label
is correct. All label values will then turn into white. Hence, the ABSR output confirmation
by ATCos is triggered by mouse-clicks. In earlier trials with the same configuration, ATCos
complained about the need to always click on the check mark given the high command
recognition rate of the ABSR system. Furthermore, they need to move the mouse cursor—
and thus also their gaze—to a less important area in the corner of the aircraft radar label.
This causes additional manual and cognitive workloads. ATCos would rather just see
the highlighted ABSR output that enters the ATC system directly if there is no ATCo
intervention in a certain amount of time.

3.2. Description of the Solution Controller Working Position (Attention Trigger)

Based on the aforementioned ATCo recommendation, we modified the concept of
ABSR output confirmation [94]. However, as a safety net, we still want to check if the ATCo
at least noticed the ABSR output and did not intervene in a certain amount of time.

Thus, to avoid manual workload for ABSR output confirmation, the visual attention
shall be used as a trigger in the confirmation process without the need for mouse clicks.
One pre-assumption is that the ATCo has his/her visual attention at the spot he/she is
looking at. This might not always be true, e.g., in case of staring at a certain position
without presuming anything. However, this is a valid approximation to support ATCos
in a visual task [50]. An infrared eye-tracker mounted on the bottom of the situation data
display continuously records the ATCos’ gaze points. The software module ModEyeGaze
tries to match these gaze points with relevant objects displayed on the screen. These objects
can be aircraft icons, aircraft labels, and airspace points.

The accuracy of eye-tracking is not of utmost importance, i.e., an accuracy of pixels is
not required as it is not important to determine if the ATCo is looking at the speed or the
altitude field in a label. An accuracy of roughly less than 1 cm is feasible to match the gaze
points with displayed objects such as aircraft radar labels given a further visual threshold.
Furthermore, a dwell time is defined in order to calculate a fixation on a displayed object.
This avoids too many fixations in case the ATCo is just quickly shifting his/her view to
the other side of the display. Like in the baseline system, yellow ABSR output values will
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appear in the aircraft radar label immediately after the speech recognition process ends
(see yellow values in Figure 3).

Figure 3. Solution aircraft radar labels with yellow ABSR output expecting attention-based ATCo
confirmation and colored label frames in different states; left: light blue frame in saliency level “2” as
visual check gaze for ABSR output is pending, right: green frame in saliency level “5” as visual check
gaze has confirmed and time for potential manual ASBR output correction is running.

Peripheral cues are used to guide the operator’s attention [95]. More precise, different
saliency levels of labels are applied depending on the visual check status by the ATCo to
smoothly guide the ATCos’ attention to the relevant spots. All aircraft labels are in the
default saliency level transparent (“−1”) initially. As soon as yellow ABSR output appears
in a label, eye-tracking data analysis will be activated. The layout is as shown in Figure 2
of baseline system, but without the cross and check mark. The saliency level of the label
will be escalated further every 5 s if ModEyeGaze does not detect an ATCo fixation on a
highlighted aircraft radar label.

The label status is switched to saliency level white (“0”), i.e., a white label frame will
be drawn. Saliency level yellow (“1”) with a yellow label frame is activated 5 s after the
start of saliency level white to get the ATCo’s attention. Accordingly, saliency levels light
blue (“2”) (see left label of Figure 3) followed by dark blue (“3”) are activated later after a
gap of 5 s each. Thus, if there was no visual scan of the ABSR output (aircraft radar label)
for 25 s after the appearance of the ABSR output value in yellow, the ABSR output will be
rejected (saliency level 4) and does not enter the ATC system. The label’s saliency level will
revert to transparent (“−1”) afterwards.

If ModEyeGaze detects an ATCo fixation on an aircraft radar label that has at least one
unchecked yellow ABSR output value independent of the current saliency level, saliency
level green (“5”) will be activated, i.e., a green label frame (see right label of Figure 3) will
remain until the end of the maximum time for optional correction (10 s). If the correction
time has passed, all visible yellow values in the aircraft radar label will enter the ATC
system and the label will revert to saliency level transparent (“−1”) with all label values
displayed in white color.

Eye-tracking as a technology might be more error-prone than manual system operator
input especially if ATCos heavily move around with body and head compared to the
calibration seating position. Therefore, mouse interaction data with the situation data
display is used as a backup. The frequency of mouse usage by the ATCos depends on
the CWP interaction design. However, as this data is just used as a backup data input,
it is of less importance if the mouse is really used. Accordingly, if the mouse cursor is
moved on an aircraft radar label that currently displays yellow ABSR output values and
the mouse-over time exceeds a certain threshold time, this is determined as a match as if
the ATCo would have looked at the label. Hence, the label frame turns green and counts
down the remaining time for optional ABSR output value correction.

As system operators often carry their gaze, i.e., their visual attention, along with the
mouse cursor, the gaze- or mouse-over initiated check of the solution system is called
“attention triggered”.
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4. Description of Command Prediction Rescoring with Integrated Eye-
and Mouse-Tracking

The second use case for operator gaze and interaction data is the enhancement of
ATCo command prediction quality [96]. The implemented algorithm will be tested on the
baseline run (Section 5.1), but also works if the ABSR output confirmation is used as in the
solution system explained in Section 5.2. DLR’s command hypotheses generator predicts
ATCo commands for the speech recognition engine for given timeticks as shown below
in Table 1.

Table 1. Examples for controller command predictions in ontology format with higher probability for aircraft that recently
received ATCo attention.

Aircraft
Callsign Command Type Second Type Command

Value Unit Qualifier Uniform
Probability

Re-Assigned
Probability

AFR641P HEADING 260 RIGHT 0.1 0.02
AFR641P CLEARED ILS RW23R 0.1 0.02
AFR641P DESCEND 4000 ft 0.1 0.02

BAW936 TRANSITION DOMUX
23 0.1 0.06

DLH5MA DESCEND 80 FL 0.1 0.23
DLH5MA REDUCE 200 kt 0.1 0.23
DLH5MA INFORMATION QNH 1013 0.1 0.23

KLM1853 CONTACT TOWER 0.1 0.03

KLM1853 CONTACT_
FREQUENCY 118.300 0.1 0.03

UAE57 DIRECT_TO DL455 none 0.1 0.13

In Table 1’s example, five different aircraft callsigns are predicted to possibly receive an
ATCo command in the near future. For those callsigns different command types and values
are reasonable due to their current airspace position and current motion characteristics.
Hence, the number of predicted commands per aircraft can vary. In the basic ABSR imple-
mentation, no probability values are used, i.e., all predicted commands (here: 10 different
ones) are assumed to have the same probability P(cmd)u (here 0.1). The basic advantage of
this command prediction for the speech recognition engine is to know beforehand about
commands that may be uttered (e.g., “AFR641P DESCEND 4000 ft”) and to know, which
will probably not be uttered (e.g., “KLM1853 DESCEND 4000 ft”). However, there might
exist further data that even state which of the predicted commands are more likely to be
uttered than others, i.e., to re-assign probabilities for command predictions with higher
weightings for some aircraft commands (exemplarily underlined in column “Re-assigned
Probability” with P(cmd)ra of Table 1). From an implementation point of view, the term
assignment is more correct than re-assignment. However, the latter term better empha-
sizes to compare individualized probabilities against uniform probabilities for command
predictions as outlined above.

It is important to note that the re-assignment does not intend to further predict yet
unpredicted commands or to delete some predicted commands. Hence, as in the basic
implementation, it can still happen that the ATCo issued a command to aircraft callsign
“DAL27V”, which is not a predicted aircraft callsign in the example of Table 1.

The basic pre-assumption is again: “the visual attention is where the ATCo looks
at”. However, some derived assumptions need to be made for this concept, i.e., display
spots—including aircraft—that get more attention from the ATCo than others will more
likely be involved in very near-term future ATC commands that the ATCo will issue. We
assume that an ATCo will more likely give a command to an aircraft that he/she currently
looks at or recently looked at—maybe even a multiple of times—as compared to an aircraft
that was never looked at in the recent past by the ATCo, as determined by eye-tracking and
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ModEyeGaze. In Table 1′s example, we assume that DLH5MA and UAE57 have recently
been looked at. Thus, predicted commands that include these aircraft callsigns receive
probabilities above the “uniform” probability average for all commands. This implies that
the probabilities for all the other aircraft needs to be reduced and re-assigned (AFR641P,
BAW936, KLM1853).

Mouse interaction is again used as backup sensor data, i.e., if the ATCo moved the
mouse and rested over an aircraft radar label recently or clicked very close by, this is
considered to be similar to the visual attention via eye-tracking. For all interaction data
stored in a data base, i.e., the combination of eye-tracking recorded with 60 Hz and mouse-
interaction data recorded with 10 Hz (except the mouse clicks), different ratios will be
tested. The most recent data from the last five to ten seconds for eye-tracking and the most
recent data from the last three seconds for mouse-tracking is used in our concept due to
expert feedback and initial feasibility testing. Three parameters of the recent past seconds
will be considered for re-calculating probabilities: gaze duration on aircraft, gaze counts on
aircraft, and mouse movements related to aircraft shown on a radar display.

4.1. Command Probability Calculation Based on ATCo Interaction Data (Aircraft Level)

The calculation of probabilities for command predictions with respect to different
aircraft based on ATCo interaction data will be explained in the following. The total
command probability P(cmd) for a single command can be calculated with individual
weightages W for each of the three interaction data metrics that sum up to one:

P(cmd) = WET f ixdur
·P(cmd)ET f ixdur

+ WET f ixcnt ·P(cmd)ET f ixcnt
+ WMTint·P(cmd)MTint. (1)

These metrics are called eye-tracking gaze fixation duration (ETfixdur), eye-tracking
gaze fixation count (ETfixcnt), as well as mouse interaction data (MTint) and will be ex-
plained in Sections 4.2 and 4.3.

4.2. Command Probability Calculation Based on Eye-Tracker Data (Aircraft Level)

The total probability of an aircraft receiving an ATC command in the near future
should be extremely high in case the ATCo looked at this aircraft for a long amount of time
in the recent past. This mathematical weightage can be best expressed with an exponential
function instead of a linear function. Thus, the re-calculation of probability P per command
(cmd) for a concrete aircraft (A/Ck) based on eye-tracking gaze fixation duration (ETfixdur) is
given by:

P
(
cmdA/Ck

)
ET f ixdur

=
edur

A/Ck

∑#A/C
i=1 (#cmdA/Ci

edur
A/Ci

)
. (2)

The parameter dur is the time spent on an aircraft during the last five seconds, #cmdA/Ci
represents the number of predicted commands per aircraft with all aircraft from iterator
start i = 1 to the number of considered aircraft (#A/C) being summed up.

The eye-tracking gaze fixation count (ETfixcnt) in Equation (3) is considered in a linear
way as the number of fixations on an aircraft is not assumed to be as an extreme indicator
as the duration for an aircraft to receive the next ATC command. It is calculated with the
following equation where cnt is the number of fixations for the specific aircraft in the last
ten seconds:

P
(
cmdA/Ck

)
ET f ixcnt

=
cnt

∑#A/C
i=1 (#cmdA/Ci

cnt)
. (3)

Both eye-tracking probabilities (ET) can be combined to a single probability with an
appropriate weight.

4.3. Command Probability Calculation Based on Mouse-Tracker Data and Combination of
Interaction Data (Aircraft Level)

Mouse-tracking (MT) data are considered by Euclidian distance between the position
of closest aircraft radar icon and position of mouse cursor/click. This closest aircraft
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influences the mouse interaction weighting score miw to be (a) 5 if the aircraft has been
visited with the mouse cursor for at least 300 ms or (b) 10 if the ATCo left/right clicked
close to this aircraft as a sign of more active interaction with the aircraft’s characteristics.
The command probability based on mouse interaction data (MTint) in Equation (4) is only
considered for an aircraft (A/C) if miw is greater than zero, i.e., if any mouse interaction
close to the analyzed aircraft has taken place:

P
(
cmdA/Ck

)
MTint=

emiw
A/Ck

∑#A/C
i=1 (#cmdA/Ci

emiw
A/Ci

)
. (4)

Inactive mouse interaction can result from the CWP design or from individual prefer-
ences of the ATCo. Unlike ET, positions of aircraft radar labels are not considered for MT
as labels may overlap and may be moved away just for readability even if the labels are far
away from aircraft icons and contain relevant information why the ATCo looks there.

4.4. Air Traffic Situation Dependent Command Probability Combined with Interaction Data
(Command Type Level)

We further assume that scanning different aircraft in the recent past leads to dedicated
command types if some of the scanned aircraft have certain characteristics. For example, if
the ATCo scans an aircraft close to the runway, the likelihood of a CONTACT command to
the tower increases. If the ATCo fixes the gaze on a certain waypoint and on an aircraft
for which this waypoint has been predicted as a command value, the likelihood for a
DIRECT_TO command to this waypoint increases. Furthermore, if an approach ATCo
scans two or more aircraft at similar altitudes, the likelihood of commands from the
categories of altitude change commands, direction change commands, or speed change
commands can be adjusted as shown in Figure 4 based on ATCo feedback. For example, if
scanned aircraft in similar altitudes have converging headings and are in close proximity,
altitude change commands would be re-assigned with higher probabilities than heading
change commands and especially than speed change commands. If these aircraft are not
in close proximity, the speed difference might decide about prioritizing heading or speed
change commands. Individual air traffic situations require individual decisions about
ATC commands as well as individual conflict detection and resolution strategies [97], but
slightly different probabilities on command type level can help to predict commands better
on average.

If in Table 1’s example DLH5MA was recently scanned, having the same altitude and
intersecting path with another aircraft, the DESCEND command might be re-assigned with
higher probability, e.g., 0.39 as compared to 0.15 for each of the REDUCE and INFORMA-
TION QNH commands.
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Figure 4. Flow chart to determine priorities for ATC command types based on aircraft scanned by ATCos.

5. One-Shot Experimental Case Study with Controllers in Simulation Environment

For a quantitative and qualitative evaluation on how DLR’s ABSR application benefits
from the use of eye- and mouse-tracking interaction data, relevant data from the simulation
trials of a one-shot experimental case study was recorded in log files and data bases. This
data comprises of:

• Positions of aircraft icons and aircraft radar labels with their states as shown on the
situation data display

• Verbal utterances with automatic transcriptions, annotations, and instruction methods
• Eye gaze data with timeticks and fixation positions/durations
• Mouse interaction data with timeticks, click positions, and movements
• Answers of online questionnaires

5.1. Study Setup and Schedule for Evaluation of Eye- and Mouse-Tracking Support for
Speech Recognition

In May 2021 we conducted an early interaction study at DLR Braunschweig with
two controllers living close by—as COVID-19 restrictions prohibited trials with interna-
tional ATCos. Hence, there was no scientific sampling and recruitment process. The study
subjects were both male, roughly at the same age, wore a face mask (due to Covid-19
hygienic protocol), and spoke English with a German accent being relevant for speech
recognition. Furthermore, both subjects wore glasses which is relevant for eye-tracking.
One of the participants was an active licensed ATCo for tower and approach and the other
participant was a former ATCo trainee for Düsseldorf approach area. Both subjects were
not involved in the research activities and received the main part of the study information
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only in the briefing session. The complete hardware setup of the prototypic CWP can be
seen in Figure 5.

Figure 5. Study participant during simulation trials using an eye-tracking supported attention guidance system for assistant
based speech recognition.

The subject used a foot switch to enable and disable voice recording (push-to-talk).
The voice itself was recorded via the headset. The mouse placed to the right of the keyboard
could be used to manually correct ABSR output or give commands via mouse. The leftmost
monitor shows the situation data display with aircraft radar data in Düsseldorf approach
airspace. The eye-tracker is mounted onto the bottom of this monitor. All other devices
were not relevant for the subject’s work during the scenario, but to run the simulation.
The right monitor presents software module output of the arrival manager, the speech
recognition engine, and the air traffic simulator running on the two Linux laptops on the
right side of the photograph. The situation data display and the eye-tracking system runs
on a Windows laptop (hardly visible below the right monitor). The disinfection material
placed on the desk was used before a new operator started working on the CWP prototype
to fulfill the hygienic protocol.

The software setup of the human-in-the-loop simulation comprised of an air traffic
scenario for Düsseldorf approach (ICAO airport code EDDL). The only active runway
was 23R. The duration of the scenario was one hour and included 38 approaching aircraft
without considering departures. Seven aircraft were of weight category “heavy”, all
others were “medium” class aircraft. The participants had to handle the traffic being
a “Complete Approach” controller, i.e., combined pickup/feeder ATCo in Europe or
combined feeder/final ATCo in the US, respectively. This setup was similar to the earlier
AcListant® [14,18], AcListant®-Strips [13], and TriControl [7,71] trials.

The four-hour-schedule of the study started with a 30-min briefing about the tasks to
perform and included an eye-tracking calibration exercise. Two training runs for baseline
and solution condition with roughly 20 min each and individual short breaks between
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simulation runs followed. The baseline and solution runs themselves lasted up to one hour
each—conducted in alternate order for the different participants to avoid bias. During the
final half an hour, participants had to fill a questionnaire as well as needed to answer open
questions and give comments during a debriefing.

5.2. Subjects Tasks and Execution of Simulation Study

The ATCos’ task was to issue ATC commands primarily via voice by using the push-to-
talk functionality. An example would be the following transcription of words: “lufthansa
five mike alfa descend flight level seven zero turn right heading three six zero”. If relevant
parts of this utterance are correctly recognized by the speech recognition engine, the
semantic representation of the utterance as per the agreed ontology, also known as the
annotations would be displayed as follows: “DLH5MA DESCEND 70 FL, DLH5MA
HEADING 360 RIGHT”. These commands are converted to the necessary format for the
air traffic simulator which itself changes the motion of the relevant aircraft. Hence, there
are no active simulation pilots during the runs (amongst other reasons due to COVID-19
restrictions). All commands recognized by ABSR will be executed by the simulator. In
almost all cases, misrecognized commands have not been shown as ABSR output, because
they have been invalidated beforehand as not being plausible, due to reasons such as
missing a correct callsign or a command value being out of a reasonable range.

Some technical problems of the CWP system that occurred during baseline and solu-
tion runs need to be mentioned that probably also affected the rating of the tested features.
There was an operating system latency of roughly one second due to a laptop docking
station issue that was only found after the trials. With this, there was a slight lag for the
output display to appear, i.e., the confirmation saliency level, the ABSR output or the
zoomed situation data display region appeared later than expected/theoretically possible.
Furthermore, some commands have not been properly forwarded to the traffic simulator,
i.e., altitude commands between 4000 and 6000 feet, DIRECT_TO-commands, and some ILS
clearances were affected. Nevertheless, all traffic could be handled and could be guided to
land on the runway. As the flown trajectory did not matter for data analysis, but only the
relevant eye- and mouse-tracking data, as well as the given ATC commands, the techni-
cal problems mentioned above should not heavily influence the basic conclusions of the
simulation runs.

6. Results Regarding Effectivity of Eye- and Mouse-Tracking to Support Speech
Recognition Applications

Data of two baseline and two solution runs has been recorded. Only the middle 45 min
of the runs were analyzed to avoid data of a “slow start” and “scenario fading out”. As
Table 2 shows, ATCos issued 180 ATC commands per run on an average considering both
modalities. Roughly 125 of these 180 ATC commands were recognized from slightly more
than 100 speech utterances on an average, i.e., 1.3 ATC commands per speech utterance.
The remaining 55 ATC commands were instructed via mouse in roughly 49 mouse issuing
occasions, i.e., 1.1 ATC commands per mouse issuing occasion.

Table 2. Number (#) of actually issued ATC commands per run and command modality.

Run # Actually Issued ATC
Commands via Mouse

# Actually Issued ATC
Commands via Speech

# Actually Issued ATC
Commands per Run

# Speech Utterances/Mouse
Issuing Occasions per Run

Baseline 88 105 193 154
Solution 22 146 168 144

All 55 125 180 149

In baseline runs, roughly 105 and 88 commands were issued via voice and mouse,
respectively. The different types of issued ATC commands—by using both modalities with
some misrecognitions—were ALTITUDE (36.4%, mainly DESCEND), HEADING (34%),
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CLEARED ILS (13.6%), SPEED (6.6%, mainly REDUCE), CONTACT (6.5%), and others
including DIRECT_TO (3%).

Multiple thousand gaze fixations have been determined by the eye-tracking algorithm
per run. A total of 42% of those fixations were on aircraft radar labels, 23% on aircraft
radar icons, and 35% on airspace waypoints. In the baseline scenario, on an average more
than 6000 mouse movements, around 250 left clicks, and less than ten right clicks on the
situation data display have been captured per run.

6.1. Enhancement of Probabilities for Speech Recognition Hypotheses by Eye- and Mouse-Tracking Data

This section compares the re-assigned ATCo command prediction probabilities with
the uniform probabilities of the basic ABSR system implementation. The first part of
the analysis concentrates on the benefits of re-assigned probabilities for different aircraft
callsigns of command predictions while the second part also investigates re-assigned
probabilities for different command types of single aircraft command prediction sets.

There are two basic result areas for the analysis. First, a factor showing the improve-
ment in prediction accuracy as compared to the basic ABSR implementation, i.e., if the
factor is greater than 1, the enhanced implementation outperforms the basic. Second, a
four-field confusion matrix that helps to classify predicted and actually issued commands,
i.e., the percentage of correct command predictions can be derived.

6.1.1. Conditions and Metrics for Evaluating Prediction Probabilities on Aircraft Callsign Level

The recorded data is analyzed (1) for three conditions of eye- and mouse-tracking
metrics as well as for two combinations of them, (2) for input modalities speech, mouse,
and both combined, and (3) for the four simulation runs.

As explained above, the terms baseline and solution are right for the task of non-
manual ABSR output check, but may be misleading for the task of analyzing the re-
assignment of command prediction probabilities. However, the display appearance was
slightly different in the two runs—cross and check mark in the first aircraft radar label
line were not shown for solution runs unlike in baseline runs as explained in Section 3.2.
Nevertheless, data from baseline and solution runs can loosely be compared with each other
for a few special analyses. Therefore, the simulation runs are abbreviated as B (“baseline”)
and S (“solution”). Mouse-tracker data only exists for the B runs as mouse-tracking has
only been implemented for S runs’ setup; eye-tracker data exists for all runs.

The average improvement factor is calculated as shown in Equation (5) to sketch the
enhancement of the probability (P) re-assignment (ra) concept compared to uniform (u)
probabilities per command (cmd):

Improvement Factor =
P(cmd)ra
P(cmd)u

. (5)

Five conditions or condition combinations, respectively, for the re-assignment of
prediction probabilities based on aircraft level were analyzed with their influence on the
prediction accuracy:

1. Only eye-tracking fixation duration of last 5 s to be considered (ETfixdur)
2. Only eye-tracking fixation counts of last 10 s to be considered (ETfixcnt)
3. Only mouse-tracking interaction data of last 3 s to be considered (MTint)
4. Combining (1) and (2) with 50% weightage each (ET)
5. Combining (4) with 70% weightage and (3) with 30% weightage (ET+MT).

From Equation (6) and using the definition in Table 3, Accuracy is defined as the
percentage of correctly predicted ATCo commands. In other words, it is the number of
commands predicted with above-average probabilities (compared to uniform average
probabilities) which were actually issued plus the number of commands predicted with
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average or below-average probabilities which were not issued divided by the number of
all predicted commands:

Accuracy =
TP + TN

TP + FP + FN + TN
. (6)

Table 3. Confusion matrix of ATC commands predicted vs. actually issued commands.

Command Issued
YES

Command Issued
NO

Command Predicted
YES True Positive (TP) False Positive (FP)

Command Predicted
NO False Negative (FN) True Negative (TN)

More precisely, the following Accuracy values always consider Top N aircraft, e.g., for
Top 2 A/C, the two aircraft callsigns that have the highest re-assigned probability com-
pared to the other aircraft. Hence, if the ATCo actually issues a command to one of the
two highest-ranked aircraft in terms of prediction probability, it is a TP. If the ATCo issues
a command to the third ranked aircraft, it would be a FN. An aircraft is a FP if its callsign
was predicted with above-average probability, but is not affected by the ATC command
at the timetick it was issued. Finally, a callsign is said to be a TN if the used callsign
was predicted with average or below-average probability and was not issued a command
by the ATCo. As noted above, gazes on aircraft only influence the command prediction
probability of callsigns if commands with the aircraft callsigns have been predicted in the
basic implementation, i.e., in 3.2% of the cases aircraft callsigns receive a command that
was not predicted. As it was neither predicted in the basic implementation, nor in the
enhanced implementation, this has no negative influence on the defined Accuracy. Hence,
if N is set to the maximum number of aircraft, Accuracy for Top N will be 100%.

Usually, there is a high one-digit number of aircraft to be considered at the same
time as these are the aircraft under ATCo’s responsibility. However, commands are only
predicted for some of those aircraft as prediction for other aircraft might temporarily not
be reasonable due to their motion characteristics. So, for each point in time when the ATCo
issues one or multiple commands, there are usually multiple aircraft to be considered. For
the four conducted simulation runs, commands have been predicted for 7.8 aircraft on an
average at a time. Hence, for 149 prediction timeticks (100 speech utterances plus 49 mouse
issuing occasions) almost 1200 aircraft callsigns have been predicted in total per run. Based
on experiments, it is thus most reasonable to consider the Top 3 A/C only. Top 3 A/C are
selected as shown in Table 4.

Table 4. Example of prediction sets for Top N A/C based on Table 1.

N Highest Prediction Probability for Aircraft Callsign Probability Sum

Top 1 A/C {DLH5MA} 0.69 1

Top 2 A/C {DLH5MA; UAE57} 0.82 2

Top 3 A/C {DLH5MA; UAE57} 3 0.82
1 3 × 0.23 (for the three commands of DLH5MA); 2 3 × 0.23 + 0.13 (for the three commands of DLH5MA and
the one command of UAE57); 3 neither of the three further aircraft {AFR641P; BAW936; KLM1853} is considered
for Top 3 as they all have the same overall probability sum of 0.06 in Table 1 and there would be no single
choice aircraft.

6.1.2. Accuracy of Aircraft Callsign Prediction for ATC Commands Based on Interaction Data

The percentages of correctly predicted aircraft callsigns for ATC commands based
on Top 1/2/3 A/C for the input modalities speech (S), mouse (M), and both combined,
considering the five interaction conditions are shown in Figures 6 and 7 for both B runs
in average.
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Figure 6. Correctly predicted aircraft callsigns for ATC commands when considering Top 1/2/3 aircraft for single interaction
data conditions per command modality (speech: S; mouse: M; combined).

Figure 7. Correctly predicted aircraft callsigns for ATC commands when considering Top 1/2/3 aircraft
for combined interaction data conditions per command modality (speech: S; mouse: M; combined).

The number of correctly predicted aircraft callsigns increases for the analyzed stand-
alone conditions from Top 1 A/C to Top 3 A/C (see Figure 6). The gaze fixation duration
metric alone achieves accuracy results above 80% for Top 1 A/C which further increases to
around 93% for both Top 2 and Top 3 A/C. The gaze count metric is slightly less accurate
in predicting Top 1 A/C as compared to gaze fixation duration metric, but significantly
improves the accuracy to around 95% for Top 2 A/C and 98% for Top 3 A/C (see Figure 6).
The mouse interaction metric behaves almost in the same for all the three Top A/C cate-
gories with accuracies between 73% and 89% (see Figure 6), i.e., the ATCo either has just
moved the mouse to the aircraft, which gets the next command or the mouse is not moved
at all to that aircraft during the last ten seconds. For all three metrics, aircraft callsigns
are predicted more accurately if ATC commands are given via mouse (M) rather than
speech (S).

When combining the two eye-tracking metrics or even combining all three interaction
metrics, the accuracy of probabilities for aircraft callsign prediction improves significantly
(see Figure 7). Independent of the command modality used, from the average values
we see that an accuracy rate of 84% and 86% for ET and ET+MT for Top 1 A/C, 97%
and 96% for ET and ET+MT for Top 2 A/C, and 98% and 99% for ET and ET+MT for
Top 3 A/C was achieved. This implies that the prediction error rates decrease significantly
from 16% to 2% (factor of 8 improvement) when Top 3 A/C is predicted as compared
to Top 1 A/C for the case when just ET was used. Similarly, when both ET and MT was
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used, the prediction error rates decrease from 14% to 1% (factor of 14 improvement) when
Top 3 A/C is predicted as compared to Top 1 A/C. Another impressive result is to compare
the prediction error rates for speech modality of the three single modalities for Top 3 A/C
of 7.4% (ETfixdur), 2.4% (ETfixcnt), and 27% (MTint) with the prediction error rate of the
combined condition ET+MT(S) of 0.5%—up to a factor of 54 improvement. Overall, it is a
factor of 25 improvement when comparing the average prediction error rate of the three
single modalities (12.3%) to the combined condition for Top 3 A/C Accuracy.

6.1.3. Improvement Factor for Predicted ATC Commands Based on Interaction Data

The improvement factor for all five conditions and command modalities vary between
3.4 and 6.4 as shown in Figures 8 and 9 for both B runs on average. Again, as for the
Top A/C analysis, the factor is higher with mouse as command modality. The metrics gaze
fixation duration and fixation count achieve improvement factors above 5 and around 4,
respectively. The metric mouse interaction is more dependent on the command modality
with a factor of 4.9 over all commands. Yet, all the factors illustrated in Figure 8 indicates
that the re-assigned probabilities are much better on average as compared to the basic
uniform probabilities.

Figure 8. Improvement factors for command prediction probabilities for single interaction data conditions per command
modality (speech: S; mouse: M; combined) with positive and negative standard deviation of the two average values per run
(black lines).

Figure 9. Improvement factors for command prediction probabilities for combined interaction data
conditions per command modality (speech: S; mouse: M; combined) with positive and negative
standard deviation of the two average values per run (black lines).

When combining the eye-tracking metrics and also further integrating the mouse-
tracking metric, the average factors for ET and ET+MT are 4.6 and 4.7, respectively.
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6.1.4. Detailed Analysis of Specific Results and Discussion on Probability
Re-Assignment Quality

Given the above numbers, it is of interest which of the results per condition and per
command modality should be interpreted as the core result. As ATCos usually issue com-
mands via speech and the combination of using all three interaction metrics from eye- and
mouse-tracking demonstrated to be the most feasible option under the given circumstances,
the values for ET+MT(S) should be selected as core results. Thus, an improvement factor
of 4.1 (3.7 and 4.4 for the two controllers each per run) is achieved. Furthermore, above
99.5% of aircraft callsigns for ATC commands have been correctly predicted for Top 3 A/C
(95.5% for Top 2 A/C and 82.9% for Top 1 A/C). For one ATCo, prediction of Top 3 A/C
even reached an accuracy of 100%. For the condition ET+MT(S) with speech command
modality, 92% of improvement factors per speech utterance are greater than 1 showing a
positive effect of the investigated re-assignment probability implementation.

When correlating Top 1 A/C data from mouse-tracking and eye-tracking, around
66% (two thirds) of predicted aircraft callsigns for ATC commands match, with similar
numbers for correct and wrong predictions. When correlating Top 1 A/C data from mouse-
tracking and Top 2 A/C data from eye-tracking, 79% of all predicted aircraft callsigns
for ATC commands match—83% for correct predictions and 69% for wrong predictions.
Hence, there is a slight potential to further filter out wrong predictions by analyzing and
comparing single conditions.

The improvement factors for all B-runs analyzed independent of controller, condition,
and command modality are always greater than 3 showing a good robustness of the
enhanced command prediction probabilities when using ATCo interaction data. The
greatest improvement factor for a single run was 7 for one controller in condition with
mouse-tracking data only and commands issued via mouse (MTint(M)). If ATCos issue
commands via speech, they could basically be looking anywhere. If ATCos issue commands
via mouse, they are more or less forced to look at the aircraft radar label and they are
definitely forced to move the mouse onto the label to open the intended drop-down
menus and select the right values. So, a factor of around 7 seems to indicate the greatest
possible factor when considering interaction data. However, the use of mouse-tracking
data depends on the CWP and command modality design.

Probabilities of ATC commands derived from interaction data when issuing com-
mands via mouse (ET+MT(M)) and data link can still be used for plausibility checking
of command contents. When analyzing all four runs together (2xB, 2xS) for all command
modalities and the condition ET, we still achieve 75.1% for Top1 A/C, 90.6% for Top 2 A/C,
93.9% for Top 3 A/C and an improvement factor of 4.1 even if the concept was not intended
to be applied on the S-runs.

Some further results for other conditions and modalities are also noteworthy. When
considering Top 1 A/C for ETfixdur in S-runs with commands issued via mouse, there
exists no correctly predicted aircraft callsigns. This is a conceptional issue as the commands
are only issued after the time for optional manual correction has passed—quite a long
time after visually checking the aircraft radar label values inserted via mouse before. The
improvement factor and the accuracy increase when the analysis duration is extended, i.e.,
by looking more into the past to gather interaction data. However, this fact together with
the high percentages of B-runs prove the pre-assumptions very well that upcoming ATCo
actions are connected to gazes and even non-visual checking is related to hardly any ATCo
action concerning a displayed aircraft.

6.1.5. Re-Assigned Prediction Probability Evaluation on Command Type Level

As described in Section 4, the concept of re-assigning prediction probabilities encom-
passes aircraft callsign level and command type level. However, only aircraft callsign
level has been implemented so far. To estimate the further benefits of the command type
level, we applied a generalized post-analysis on the command prediction results with
re-assigned probabilities. More precisely, we increase the probabilities of command types
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that were issued more often and decrease probabilities of command types that were seldom
issued. According to the analysis at the beginning of Section 6, we again re-assign the
probabilities of the three most often used command types. Thus, for analysis, DESCEND,
HEADING, and CLEARED ILS commands have twice as high probability as all other
command types for the same aircraft callsign. This reveals an assumed benefit of having
different probabilities even for command types.

With this analysis, the improvement factor will further increase by 0.4 when consid-
ering different command types for each aircraft callsign. However, it must be mentioned
that the analysis approach is just based on statistical incidence, while the concept approach
bases on concrete air traffic situations that can be determined via surveillance data. Hence,
it is unclear if the improvement factor will in reality be higher or lower than 0.4. Fur-
thermore, it is unclear what the effect on ABSR output will be for command types that
occur less frequently, e.g., only less than every tenth command. Though, some of these less
frequently occurring command types such as CONTACT can be predicted quite reliably in
space and time. Hence, it is assumed that a positive influence and an improvement factor
increase of more than 0.4 is achievable when implementing the re-assigned probability on
command type level.

6.2. Using Gazes for Confirmation with Potential Visual Attention Guidance for Speech
Recognition Output

In the solution runs 146 ATC commands have been extracted on average from speech
utterances. The number of relevant speech utterances is only 123 as often multiple ATC
commands were given to aircraft in single utterances. All 123 speech recognition outputs
for verbal utterances have been acknowledged via gaze on an aircraft radar label, i.e., the
ATCo visually checked one or more at the same time yellow highlighted ABSR output
values in a single aircraft radar label. Also, the escalation of saliency levels to enforce the
ABSR output check technically worked without any problems. Roughly 120,000 peripheral
views on elements at the situation data display have been calculated.

6.2.1. Quantitative Questionnaire Results and Discussion

The two subjects rated higher workload for the solution run than for the baseline run,
i.e., average Bedford scale workload [98] was 4 for baseline and 7 for solution as well as Raw
NASA-TLX scale [99,100] without weighted ratings was 35 for baseline and 51 for solution.
The overall score of the system usability scale (SUS) was 77 (range “good”) [101,102]. The
ratings for robustness and reliability of the tested system were around the scale mean value.
These numbers and the following qualitative feedback should not be generalized given
only two study subjects, but can indicate a tendency.

6.2.2. Qualitative Questionnaire Results and Discussion

The different frame colors around aircraft radar labels of higher saliency levels seldom
appeared for the two subjects as the solution system almost always detected the subjects’
gaze at the colored frame in the first saliency level. So, the colors, numbers, and durations
of the additional saliency levels could hardly be correctly judged with regards to usefulness.
Nevertheless, the eye-tracking based attention guidance for ABSR output was judged to
give a medium added value on a scale from very low to very high. Moving and freezing
of gazes at a certain aircraft radar label was perceived as physically demanding to some
extent. However, the responsiveness of the system given the hardware latency strongly
impacted the controlling task in baseline and solution run.

Subjects felt that they had sufficient amount of time to correct the presented ABSR
output after the aircraft radar label frame turned green for the confirmation saliency level.
The duration for escalating to a higher saliency level should not be changed due to the
subjects’ ratings. However, the duration of displaying the green aircraft radar label frame
in the confirmation saliency level could be reduced. Both subjects voted to decrease the
number of different saliency levels. Three different levels are sufficient due to the subjects’
opinion. The aircraft radar label frames were found to be unobtrusive, but sometimes
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there were too many green frames at the same time, because the ATCo issued many ATC
commands in a short amount of time. The maximum number of visible green frames could
be reduced to three. The green frames indicate the time to correct the ABSR output after
looking at the label. However, the expectation related to a highlighting frame would be that
visual attention is required which is not the case. So, it could be a good idea to completely
eliminate the green frame when looking away to only let the yellow highlighted ABSR
output value remain for a few seconds without an aircraft radar label frame.

After manually clicking check mark and cross in the baseline run subjects felt to have
cognitively finished their checking task. This feeling was different for the visual check as
the response state, i.e., yellow ABSR output turning white still takes some time as there is
still some time remaining for possible correction.

Also, the threshold times for saliency levels could be dependent on the number of
highlighted aircraft radar label frames. One subject wished to have check mark and cross
even next to the visual ABSR confirmation to be able to return to the default saliency level
earlier. Furthermore, parallelly checking ABSR output and pilot readback might be difficult
as one or both of them could contain errors and “appear” at the same time. In case of
multiple commands in the same transmission or multiple transmissions shortly after each
other for the same aircraft it was not clear which elements were already accepted and
which were not.

This feedback shows basic feasibility of the visual confirmation concept and im-
plementation without general showstoppers and encourages further advances based on
reasonable suggestions.

7. Conclusions and Overall Discussion

The four general research objectives have been fulfilled, i.e., (1) eye and mouse move-
ments of ATCos can be recorded and post-processed, (2) relevant information is extracted
from such data and integrated into an ABSR system, (3) probabilities for predicted ATCo
commands are calculated with good accuracy, and (4) ABSR output can be visually con-
firmed by ATCos in a CWP system prototype.

Eye- and mouse-tracking were rated to be unobtrusive and important features to
easily support ABSR applications with more accurate data and interaction options. Visual
confirmation of ABSR output technically worked and confirms that state-of-the-art eye-
tracking accuracy is sufficient for applications in various domains and even in the safety-
critical ATC domain.

Command prediction probabilities improved by a factor of four on average compared
to an existing state-of-research prototype (basic implementation) and included more than
95% of correct aircraft callsigns for Top 2 A/C and even more than 99.5% of correct aircraft
callsigns for Top 3 A/C analysis. Thus, Top 2 A/C seems to be sufficient to consider for
probability re-assignment even if Top 3 A/C is slightly better. The combination of using
all eye-tracking and mouse-tracking metrics together was superior over using some of
these metrics alone with an improvement factor for the prediction error rate of 25. This
confirms state-of-the-art knowledge that using multiple sensor data is superior to just using
single sensor data. To the best of our knowledge no eye- and mouse-tracking based ATC
command prediction system or prototype, as well as no visual ASR output confirmation
exists in the academic world that could be compared with the results in this paper.

The command predictions support the ABSR engine to reduce command recogni-
tion error rates if timely considerable in the search space of the engine. Reduced error
rates further enable benefits for speech recognition applications that may lead to reduced
workload or increased accuracy of safety net functions. Hence, the concept of visual (and
mouse-hover) confirmation should be refined and implementation should be advanced,
the concept of re-assigned probabilities based on eye- and mouse-tracking data should be
further implemented.

It has to be clearly stated that our one-shot experimental case study without any
control group and many possible confounding variables has very low internal validity and
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cannot reveal any cause-and-effect relationships. The reported results base on a sample
size of just two study subjects and can therefore not be generalized. The reported results
might be interpreted as a vague tendency on usefulness of implemented prototypes and
indicate that it is worth to move forward with our research from pre-experimental design.
Nevertheless, the results presented in this paper tremendously help to design a future
broader true experimental design study with randomized groups and clearly defined
independent and dependent variables after fixing the reported minor technical issues of
the prototypic CWP.

For example, the study design should consider to let all saliency levels appear a
number of times to be better judgeable. In addition, the duration of training runs should
be extended to reduce the effect of subjects on results with being new and unfamiliar with
the elements of the prototypic CWP.

The two controllers had a different professional background, i.e., different number of
years of experience as ATCo in approach or tower domain and different experience levels in
ATC research. This background and the knowledge about actively participating in a study
might have influenced their performance and their reported judgements in a positive or
negative way. However, this influencing effect might be bigger for the conceptual element
with visual ABSR output confirmation than for the visually nontransparent ATC command
prediction rescoring.

It has also to be noted that the explained pre-assumptions about the connection
between visual attention and spot of ATCos’ gaze have limitation implications, i.e., the
effects of implications are different for different CWPs, ATCos, and other aspects of the
working environment. The reported qualitative and quantitative results enable to assess the
two implemented techniques in a human-in-the-loop simulation trial with more ATCos in
the near future. Then, it can also be determined in detail how much the improved command
prediction probabilities help in terms of ASR engine’s word error rate, ABSR system’s
command recognition rate, and further following measures such as ATCo workload when
using the system.

All in all, this paper has given first evidence that using further interaction data of
a controller working position such as eye-tracking and mouse-tracking can easily en-
hance existing ATC system prototypes or be integrated in advanced CWP prototypes as
demonstrated with functionalities around an Assistant Based Speech Recognition system.

8. Outlook on Future Work

The following subsections sketch some future work per each of the two conceptual
elements and in general related to CWP interaction.

8.1. Outlook on Command Prediction Probability Re-Assignment

Given an improved eye-tracker accuracy, e.g., with advanced devices, it could be
checked whether the ATCo looked at, e.g., the label value for current speed of an aircraft.
This would lead to an increased likelihood of speed commands for this aircraft or other
aircraft being looked at in close timely proximity. The improvement factor for re-assigned
ATCo command predictions might be further enhanced if the weighting, e.g., 35% ETfixdur,
35% ETfixcnt, and 30% MTint would be changed dynamically during a simulation run. If
it is detected by the mouse-tracker, that the mouse is inactive or the human operator has
many eye gaze saccades, the weighting could be adapted.

Legally collecting large amounts of relevant eye- and mouse-tracking data from
CWPs—in laboratories or real-life—might be slightly easier than recording radiotelephony
utterances due to privacy issues of personal data existing in some countries even if all
interaction data could be used in anonymized form to derive patterns and human erroneous
behavior. Machine learning on a huge amount of ATC interaction data from eye-tracking,
mouse-tracking, and speech recordings could even more automatically individualize re-
assigned probabilities for command predictions.
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8.2. Outlook on ABSR Output Confirmation Mode

Saliency levels should be reduced in their number and re-designed in order to be less
intrusive. Taking the existing attention guidance implementation as role model [50], the
levels may escalate as follows: The default transparent saliency level remains unchanged
as well as the first saliency level white directly appears with yellow ABSR output values.
However, after a few seconds without attention-based trigger, a semi-transparent circle
around the aircraft icon should appear. If this visual cue and the white label frame remain
undetected, the semi-transparent circle could also receive a flashlight effect for some
additional seconds as the highest saliency level. In case the ATCo’s attention has been
determined to have rested on a highlighted aircraft label, there should be no label frame of
any color. The ABSR output value might stay yellow or become another color as visual
feedback for checking status for the remaining optional correction time. If the correction
time has passed or the highest saliency level duration has passed, all accepted label values
turn to white. Furthermore, the optional time for correcting ABSR output should be
dependent on the number of aircraft currently under responsibility, i.e., to give the ATCo
more time if there are more aircraft to monitor and potential tasks to perform before
correcting aircraft radar label input. Also, the time for escalation of saliency levels and the
time for optional correction could be made command type specific. In situations of dense
air traffic, it might be more important to confirm altitude and heading commands than to
confirm CONTACT commands.

The feature of visual checking and confirmation via eye gaze could also be applied to
other parts of CWPs. One example would be highlighted warnings, e.g., on automatically
detected readback errors or medium-term conflict alerts with following escalation and de-
escalation via attention guidance mechanisms. Another example is the acknowledgement
of the final command in the TriControl prototype via gaze instead of a touch gesture.

8.3. Outlook on General Improvements for CWP Interaction

In general, the approximated ATCos’ visual attention will be used to assist ATCos in
a more convenient way, i.e., giving information at the time and spot that is deemed most
reasonable given the current situation. Besides, even further sensors can be included to
analyze the ATCos’ CWP interaction, e.g., integrate an audio-visual speech recognition
system into ABSR.

As a next concrete step, both conceptual techniques will be applied for upcoming
ABSR studies in the approach, en-route, and even tower domain.
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