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Abstract: The paper proposes a two-dimensional impact time control cooperative guidance law
under constant velocity and a three-dimensional impact time control cooperative guidance law under
time-varying velocity, which can both improve the penetration ability and combat effectiveness of
multi-missile systems and adapt to the complex and variable future warfare. First, a more accurate
time-to-go estimation method is proposed, and based on which a modified proportional navigational
guidance (MPNG) law with impact time constraint is designed in this paper, which is also effective
when the initial leading angle is zero. Second, adopting cooperative guidance architecture with
centralized coordination, using the MPNG law as the local guidance, and the desired impact time as
the coordination variables, a two-dimensional impact time control cooperative guidance law under
constant velocity is designed. Finally, a method of solving the expression of velocity is derived, and
the analytic function of velocity with respect to time is given, a three-dimensional impact time control
cooperative guidance law under time-varying velocity based on desired impact time is designed.
Numerical simulation results verify the feasibility and applicability of the methods.

Keywords: time-to-go estimation; impact time control; MPNG law; cooperative guidance law;
three-dimensional; time-varying velocity; coordination variables

1. Introduction

Due to the rapid development of defense system, it has become increasingly difficult
to realize penetration by a single missile. Multi-missile cooperative strike has become an
effective way to improve penetration capability [1]. Cooperative guidance law has attracted
extensive attention as it can reduce costs and make the aircraft cooperate effectively to
complete complex missions through information interaction [2]. At present, there are two
main guidance methods to realize multiple-missile striking target concurrently. The first
is the cooperative guidance law based on coordinated variables. This guidance method
does not preset the impact time. In the guidance process, real-time information interaction
among missiles is required, which puts forward high requirements for information process-
ing and anti-interference ability of communication network, and is difficult to be applied
in engineering. The other is the impact time control guidance law based on independent
guidance. There is no need for real-time communication between each missile, but only
to set an identical impact time for each missile before launch. After launch, each missile
flies independently according to the guidance law and attack the target at the designated
impact time, which is more convenient for practical application in engineering. In general,
the above two guidance methods belong to the guidance problem under the constraint of
flight time. Therefore, the design of impact time control cooperative guidance law is an
important problem to solve.

The impact time control guidance law was first proposed in 2006 in [3], an impact
time control guidance law (ITCG) was designed for multi-missile salvo attack at a specified
impact time. Based on reference [3], reference [4] derived a more rigorous generalized
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impact time control guidance law for the nonlinear proportional guidance model. It
should point out that since the additional control command obtained from the above
derivation cannot ensure the minimum control energy of the whole trajectory, the guidance
laws proposed in [3,4] were suboptimal in nature, although the optimal control theory
was applied. Based on the impact time control guidance law proposed in [3], the logic
conversion method of constant leading angle guidance law was proposed in [5], which
realized the impact time control under the constraint of the field of view angle.

In [6], the problem of impact time and falling angle constraints under the framework
of proportional guidance method was studied. By deriving different estimation methods of
time-to-go and different additional control items, the constraints of impact time and falling
angle were realized. In [7,8], considering field-of-view (FOV) constraint, an impact time
control guidance law was proposed based on proportional navigation, which consisted of
the conventional proportional navigation guidance (PNG) law term and the biased term to
control the impact time. However, when the initial leading angle is zero, the guidance law
cannot start. To solve this problem, reference [9] proposed an improved impact time control
guidance law based on the pure proportional guidance law, which has the advantages
of not limited by initial conditions, no singularity, and no strict restriction on impact
time. In [10], a three-dimensional optimal impact time guidance law was proposed, which
consisted of the baseline 3D PNG law and an impact time error feedback term similar to
reference [7]. Reference [11] took the maneuvering target as the research object, the strategy
of segmenting approximate sum was adopted to calculate the time-to-go, and a Retro-PN
guidance law in three-dimensional space was proposed.

In recent years, due to the strong robustness of sliding mode control theory, it has
gradually been applied to the design of terminal guidance laws with terminal constraints.
In reference [12,13], to attack stationary targets, two guidance laws that satisfy impact
time control were proposed based on sliding mode control theory (SMC). At the same
time, using the concept of predicted target points, an extended form suitable for uniformly
moving targets was given. However, when the leading angle is 0, the guidance law
cannot be started. In order to prevent singularity, a discontinuous term was added in
SMC in reference [14]. Two sliding mode guidance laws were proposed in reference [15]
to attack targets with different movement forms. For satisfying the impact time, a new
time-varying LOS profile was designed. For the maneuvering target, inertial delay control
technology [16] was used to estimate the acceleration of the target.

In [17,18], based on the Lyapunov stability theory, an impact time control guidance
law was designed. A more accurate time-to-go estimation method was derived based on
the incomplete beta function. Similar to [17,18], a composite impact time control guidance
law was proposed based on Lyapunov stability theory in [19], which consisted of two
phases. The first phase guided the missile to fly a certain distance with a constant leading
angle. The second phase was designed to guide the missile to attack the stationary target at
a specified time by using the proposed guidance law. The switch point parameter between
the two segments was used as a variable to determine the impact time. The differential
geometry guidance strategy was proposed to solve the impact time control problem in [20].
The circular arc predictive guidance law did not require any numerical iterative form of
time-to-go estimation.

The above studies are carried out under the assumption that the target is stationary,
but in fact, the target is moving. To solve this problem, two kinds of impact time control
guidance laws based on terminal sliding mode theory were proposed in [21], which is
applicable for stationary and moving targets.

The impact time and angle control guidance (ITACG) law has received attention
recently when the impact angle constraint is also considered [22–27]. In [22,23], based on
the impact angle control guidance law introduced in [24], an impact time control guidance
law was proposed based on the sliding mode theory, as well as the design of a switching
logic path. The guidance law converted between impact angle control guidance law and
the impact time control guidance law according to the size of impact time error. Due to
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the switching, the guidance command was not continuous. To solve this problem, in [26],
an impact time and angle control guidance law was proposed based on the non-singular
terminal sliding mode control theory. However, when the initial leading angle is zero,
the guidance law cannot start. Reference [27] proposed a guidance law based on optimal
control, which was more suitable for large-scale initial leading angle changes compared to
reference [26].

The design of the above mentioned guidance laws requires the desired impact time
that is set in advance, during the flight, there is no communication among the aircrafts.
A Cooperative guidance architecture with centralized coordination was proposed firstly
in [28], which was consisted of two parts: The guidance control layer of the bottom layer
and the coordination control layer of the upper formation. The guidance control layer
was realized by the guidance law of each formation member, and coordinated control
layer could be realized by designing coordination variables and adopting centralized or
decentralized coordination strategies. Reference [29] also proposed a cooperative guidance
law for the two-dimensional planar fixed target, but the sliding mode guidance law was
used in the bottom layer. In [30], in order to achieve multi-missile striking the target
concurrently, the average value of the time-to-go of each member was taken as the coor-
dination variables to design the nominal missile distance change curve, and the nominal
trajectory was tracked by designing the control quantity to achieve the time coordinated
guidance. In [31], a time coordination guidance architecture was designed based on the
“leader- follower” framework. The coordination variable was the time-to-go of the leader.
A calculation method of the rate of change of the visual line of sight of the projectile was
designed for the follower ammunition to satisfy the requirement that the lead ammunition
follows the lead ammunition and strikes the target at the same time. As for the followers, a
method was designed to calculate the rate of change of the sight angle for missile-target, in
order to guide the leader and the followers to attack the target at the same time.

The main contributions of this paper are as follows:

(1) A more accurate time-to-go method compared to the time-to-go estimation methods
designed in [32,33] is proposed, and based on which, the MPNG law is designed. The
MPNG law is also effective when the initial leading angle is zero, while some existing
impact time control guidance laws cannot start in [7,12,13,26].

(2) The cooperative guidance architecture with centralized coordination is adopted, using
the MPNG law as the local guidance, and the desired impact time as the coordination
variables, a two-dimensional impact time control cooperative guidance law under
constant velocity is designed, numerical simulation results verify the feasibility and
applicability of the method.

(3) The analytic function of velocity with respect to time is derived, and a three-dimensional
impact time control cooperative guidance law under time-varying velocity based on
desired impact time is designed.

The rest of the paper is organized as follows. In Section 2, the problem statement
and motion models are given. The accurate time-to-go estimation method, the MPNG
law for impact time control and the two-dimensional impact time control cooperative
guidance law under constant velocity are proposed in Section 3. The analytic function of
velocity with respect to time, and a multi-missile three-dimensional cooperative guidance
law under time-varying velocity based on desired impact time is designed in Section 4.
Several numerical simulations are designed in Section 5. The Section 6 gives the conclusion.

2. Problem Statement
2.1. Mathematical Model of Missile on Two-Dimensional Plan

To facilitate analysis, some assumptions are made in this section:

Assumption 1: The missile is considered as a mass point, that is, regardless of the effects of the
autopilot, which means the acceleration of the missile is the same with the acceleration command.

Assumption 2: The target is stationary.
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2.1.1. The Velocity of Missile Is Constant

Assumption 3: The missile velocity remains unchanged, because the range is short probably a few
kilometers to tens of kilometers.

As shown in Figure 1, the missile and target are denoted as M and T, respectively, and
the relative kinematics Equations between them can be expressed as:

.
r = −VM cos σM (1)

.
λ = −VM sin σM

r
(2)

.
r = −VM cos σM (3)

σM = γM − λ (4)

Figure 1. Motion model of missile on two-dimensional plan.

In the above Equations, VM is the velocity of missile. The symbol r is the range-to-go.
Symbols γM, λ, σM and aM represent the flight path angle, the line of sight (LOS) angle, the
leading angle and the acceleration command, respectively.

2.1.2. The Velocity of Missile Is Time-Varying

As shown in Figure 1, when the velocity of missile is time-varying, the relative
kinematics Equations are as follows:

.
r = −VM cos σM (5)

.
λ = −VM sin σM

r
(6)

.
γM = aM/VM (7)

.
VM = −(D + mg sin γM)/m (8)

σM = γM − λ (9)

In the above Equations, Symbols L and D represent the aerodynamic lift and drag
respectively. m is the mass of missile and g is the gravitational acceleration, the meanings
of other symbols are the same as Section 2.1.1.

The aerodynamic drag D can be expressed as:

D = CDρV2
MSre f /2 (10)

where, CD is the drag coefficient, which depend on the angle of attack and Mach number
of the missile. ρ is atmospheric density, and exponential atmospheric model is adopted.
Sre f is the aerodynamic reference area of the missile.
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Substituting Equation (10) into Equation (8), yields:

.
VM = −

(
CDρV2

MSre f /2 + mg sin γM

)
/m = −

(
CDρSre f

2m
+

g sin γM

V2
M

)
V2

M = −
(CDVMρSre f

2m
+

g sin γM
VM

)
VM (11)

Through the analysis of Equation (11), as can be seen, for an unpowered missile, the
aerodynamic drag and its own gravity are the main factors affecting the change of velocity.
When aerodynamic drag is regarded as the main factor and the effect of gravity can be
ignored, assuming that the drag coefficient is constant CD0 and the atmospheric density
is constant, it can be known from [34] that the velocity change rate of the missile can be
expressed as:

.
VM = −KMV2

M (12)

where, KM = CD0ρSre f /2m is the rate coefficient of velocity change, which is constant
under the above assumptions.

2.2. Mathematical Model of Missile in Three-Dimensional Space

The assumptions are the same as Section 2.1.2. The relationship between missile and
target is shown in Figure 2 in three-dimensional space.

Figure 2. Motion model of missile in three-dimensional space.

Where, O− xyz is the ground coordinate system, ψL, ψM are the azimuth of the line of
sight and the flight path angle, respectively. The meanings of other symbols are the same
as Section 2.1.

Then the kinematics Equations of the missile can be expressed as:

.
x = VM cos γM cos ψM.

y = VM sin γM.
z = VM cos γM sin ψM

(13)

The dynamic Equations of the missile can be expressed as:

.
VM = −D

m − g sin γM.
γM = L cos ν

mVM
− g cos γM

VM.
ψM = L sin ν

mVM cos γM

(14)

where, ν is the bank angle, the meanings of other symbols are the same as Section 2.1.2.
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The change rate of distance between the missile and target, the azimuth of the line of
sight and the line of sight angle can be expressed as:

.
r = VM sin γM sin λ−VM cos γM cos(ψM − ψL) cos λ

.
ψL = VM cos λ sin(ψM−ψL)

r cos λ

.
λ = VM cos γM sin(ψM−ψL) sin λ−VM sin γM cos λ

r

(15)

where, r represents the distance between missile and target.
The acceleration of the pitch channel is denoted as az, and the acceleration of the yaw

channel is denoted as ay, from Equation (12) we can get that the dynamic Equations of
missile can be simplified as:

.
VM = −KMV2

M.
γM = az/VM.
ψM = ay/VM

(16)

where, KM = CD0ρSre f /2m is the coefficient of change rate of velocity, which is constant
under the above assumptions.

3. Time-to-Go Estimation of PNG Law
3.1. Time-to-Go Estimation When Velocity Is Constant

When the PNG law is adopted, the acceleration is shown as follows:

aM = NVM
.
λ (17)

where, N is the navigation gain and
.
λ is the rate of the LOS angle.

Substituting Equation (17) into Equation (3), yields:

.
γM = N

.
λ (18)

Differentiating Equation (4) and substituting Equation (18), yields:

.
σM = (N − 1)

.
λ (19)

Substituting Equation (2) into Equation (19), yields:

.
σM = − (N − 1)VM sin σM

r
(20)

It can be obtained from Equations (1) and (20) that:

dσM
dr

=

.
σM

.
r

=
(N − 1) tan σM

r
(21)

Integrating Equation (21) and its solution can be obtained as follows:

r = r0

(
sin σM
sin σM0

) 1
N−1

(22)

where r0 is the initial distance and σM0 is the initial leading angle. Note that the assumption
that σM ∈ (0, π) is used in the derivation. Equations (17)–(22) are first seen in [32].

Substituting Equation (22) into Equation (20), yields:

.
σM = − (N − 1)VM sin σM

r0

(
sin σM
sin σM0

) 1
N−1

= K(sin σM)
N−2
N−1 (23)
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where, K = − (N−1)VM
r0

(sin σM0)
1

N−1 . VM is constant, r0 and σM0 are known.
It can be obtained from Equation (23) that:

dt =
1
K
(sin σM)

2−N
N−1 dσM (24)

Assuming that σM0 is small, integrating Equation (24) and using Taylor series expan-
sion, ignoring advanced items, yields:

t− t0 = 1
K
∫ σM

σM0
(sin σM)

2−N
N−1 dσM

≈ 1
K
∫ σM

σM0

(
σM −

σ3
M
6

) 2−N
N−1

dσM

= 1
K
∫ σM

σM0
σ

2−N
N−1
M

(
1− σ2

M
6

) 2−N
N−1

dσM

≈ 1
K
∫ σM

σM0
σ

2−N
N−1
M

(
1− 2−N

N−1
σ2

M
6

)
dσM

= 1
K
∫ σM

σM0

(
σ

2−N
N−1
M + 2−N

N−1
σ

N
N−1

M
6

)
dσM

(25)

Equation (25) can be further simplified as follows:

t = t0 +
r0

VM

(
1 +

2− N
6(N − 1)(2N − 1)

σ2
M0

)(
σM0

sin σM0

) 1
N−1
− r0

VM

(
1 +

2− N
6(N − 1)(2N − 1)

σ2
M

)(
σM

sin σM0

) 1
N−1

(26)

When the distance between missile and target is zero, the leading angle σM is zero. So
the tgo at the moment t can be derived as follows:

tgo =
r

VM

(
1 +

2− N
6(N − 1)(2N − 1)

σ2
M

)(
σM

sin σM

) 1
N−1

(27)

Defining

N′ =
2− N

6(N − 1)(2N − 1)
(28)

The method of time-to-go estimation in Equation (27) can be rewritten as follows:

tgo =
r

VM

(
1 + N′σ2

M

)( σM
sin σM

) 1
N−1

(29)

Here, the time-to-go estimations proposed in [32,33] are also given as below:

tgo =
r

VM

(
1 +

σ2
M

2(2N − 1)

)
(30)

tgo =

(
K

2VM

)
12(1/4)

(
1
2

log

∣∣∣∣∣
√

σM + 12(1/4)

√
σM − 12(1/4)

∣∣∣∣∣+ tan−1
( √

σM

12(1/4)

))
(31)

where, K = r√
sin(σM)

The precision of Equations (29)–(31) will be compared with the actual time-to-go in
Section 5.1. Equation (29) will also be used in the MPNG law.
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3.2. Time-to-Go Estimation under Time-Varying Velocity

When the rate of change of velocity is the quadratic function of velocity, integrating
Equation (12) can be obtained:

VM(t) =
VM0

1 + KMVM0t
(32)

where, VM0 is the initial velocity of the missile.
When pure proportional guidance law during the flight is adopted, the relative kine-

matics Equation between the missile and the target can be obtained:

.
σM = − (N − 1)VM(t) sin σM

r0

(
sin σM
sin σM0

) 1
N−1

(33)

Substituting Equation (10) into Equation (8), yields:

.
σM =

K
1 + KMVM0t

(sin σM)
N−2
N−1 (34)

where, K = − (N−1)VM0
r0

(sin σM0)
1

N−1 , N is the proportional navigation constant.
From Equation (34), we can get:

1
1 + KMVM0t

dt =
1
K
(sin σM)

2−N
N−1 dσM (35)

By integrating Equation (35) and using Taylor expansion series, we can get:

1
KMVM0

ln
(

1 + KMVM0t
1 + KMVM0t0

)
=

1
K

∫ σM

σM0

σ
2−N
N−1
M +

N − 2
N − 1

σ
N

N−1
M
6

dσM (36)

Equation (36) can be further simplified to obtain:

t =
(1 + KMVM0t0)e

KMVM0(
r0

VM0
(1+ 2−N

6(N−1)(2N−1) σ2
M0

)(
σM0

sin σM0
)

1
N−1− r0

VM,0
(1+ 2−N

6(N−1)(2N−1) σ2
M
)(

σM
sin σM0

)
1

N−1 ) − 1
KMVM0

(37)

where, t0 is the initial moment, r0 is the relative distance between the missile and the target
at the initial time, and σM0 is the leading angle at the initial time.

When the missile reaches the target, the leading angle is zero, so the time-to-go can be
expressed as:

tgo =
eKMVM( r

VM
(1+ 2−N

6(N−1)(2N−1) σ2
M
)(

σM
sin σM

)
1

N−1 ) − 1
KMVM

(38)

Defining:

N′ =
N − 2

6(N − 1)(2N − 1)
(39)

Then the time-to-go expression in Equation (38) can be re-expressed as:

tgo =
eKMVM( r

VM
(1+N′σ2

M)(
σM

sin σM
)

1
N−1 ) − 1

KMVM
(40)
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4. The Design of Impact Time Control Cooperative Guidance Law
4.1. Two-Dimensional Impact Time Control Cooperative Guidance Law under Constant Velocity
4.1.1. MPNG Law

The proportional navigation guidance law is a well-known homing guidance method.
Based on the conventional proportional navigation law, an impact time control guidance
law is proposed as follows:

aM = aPNG + aε + as = NVM
.
λ + KεNV2

M sin σM
(
tgo − tgo

)
+ KsNV2

Msign(σM)
(
tgo − tgo

)
(41)

where, aPNG = NVM
.
λ is the conventional proportional navigation guidance law,aε =

KεNV2
M sin σM

(
tgo − tgo

)
is the time-to-go error feedback term and Kε is a positive constant.

as = KsNV2
Msign(σM)

(
tgo − tgo

)
is the addition command and the discontinuous function

sign(σM) is defined as follows:

sign(σM) =

{
1
−1

σM ≥ 0
σM < 0

(42)

tgo is the desired time-to-go, which can also be expressed as follows:

tgo = td − t (43)

where td is the desired impact time.
The time derivative of Equation (29) is expressed as follows:

.
tgo =

.
r

VM

(
1 + N′σ2

M
)( σM

sin σM

) 1
N−1

+ r
VM

1
N−1

(
σM

sin σM

) 1
N−1−1 sin σM−σM cos σM

sin σ2
M

(
1 + N′σ2

M
) .
σM

+ r
VM

(2N′σM)
(

σM
sin σM

) 1
N−1 .

σM

(44)

Substituting Equation (1) into Equation (44) yields:

.
tgo = K1 + K2

.
σM + K3

.
σM (45)

where

K1 = − cos σM

(
1 + N′σ2

M

)( σM
sin σM

) 1
N−1

(46)

K2 =
r

VM

1
N − 1

(
σM

sin σM

) 1
N−1−1 sin σM − σM cos σM

sin σ2
M

(
1 + N′σ2

M

)
(47)

K3 =
r

VM

(
2N′σM

)( σM
sin σM

) 1
N−1

(48)

εT is the impact time error, which can be expressed as follows:

εT = tgo − tgo (49)

Using Equations (3), (4), (41) and (43), Equation (45) can be rearranged as follows:

.
tgo = K1 + (K2 + K3)(N − 1)

.
λ + (K2 + K3)(Kε sin σM + Kssign(σM)) (50)

It can be seen from Equation (41) that if the impact time error equals zero, the law
proposed in this paper is equivalent to the PNG law. Equation (50) can be rearranged
as follows: .

tgo = −1 + (K2 + K3)(Kε sin σM + Kssign(σM))NVMεT (51)

Considering the Lyapunov candidate function as follows:

V1 =
1
2

ε2
T (52)
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The time derivative of Lyapunov candidate function can be obtained as follows:

.
V1 = εT

.
εT = −(K2 + K3)(Kε sin σM + Kssign(σM))NVMεT (53)

Using Equations (42), (47) and (48), it can be obtained that
(K2 + K3)(Kε sin σM + Kssign(σM)) > 0 when σM ∈ (−π, 0) ∪ (0, π) and
(K2 + K3)(Kε sin σM + Kssign(σM)) = 0 when σM = 0. Therefore, the Equation (53) is
negative-semidefinite when σM ∈ (−π, π), which means that the MPNG law may also fail
when σM = 0 and εT 6= 0. So it necessary to prove that σM = 0 is not an attractor.

From Equation (2) we can get that
.
λ = 0 when σM = 0 and εT 6= 0. Equation (41) can

be rearranged as follows:

aM = as = KsNV2
Msign(σM)εT (54)

Therefore, when σM = 0 and εT 6= 0, the
.
σM can be expressed as follows:

.
σM =

.
γM −

.
λ =

aM
VM
−

.
λ = KsNVMsign(σM)εT 6= 0 (55)

It can also be seen from Equation (55) that
.
σM > 0 when εT > 0 and

.
σM < 0 when

εT < 0, which implies that σM = 0 is an attractor just for σM = 0 and εT = 0.
Therefore, the MPNG law is effective even if the initial leading angle is zero. In

addition, the MPNG law has no singularity.

4.1.2. Impact Time Control Cooperative Guidance Law Based on Coordination Variables

The cooperative guidance architecture with centralized coordination is shown in
Figure 3, which consists of the guidance control layer at the bottom and the coordination
control layer at the upper level. The guidance control layer is realized by the guidance
laws of each formation member, and the coordination control layer is realized by designing
coordination variables.

Figure 3. Cooperative guidance architecture with centralized coordination.

In order to guide multiple missiles to attack the target at the same time, the desired
impact time is chosen as the coordination variable and the local guidance adopts MPNG
law in this paper. Then the acceleration of the missile can be rewritten by Equation (41) as:

aM = aPNG + aε + as = NVM
.
λ + KεNV2

M sin σM
(
ξ − t− tgo

)
+ KsNV2

Msign(σM)
(
ξ − t− tgo

)
(56)

In order to minimize the energy consumption of missile formation control, the cost
function of the i(i = 1, 2, . . . , n) missile is taken as:

Ji(ξ) = a2
M,i (57)

For a formation containing n members, the upper level selects a centralized coordi-
nation strategy. In order to minimize the overall cost of the formation, the centralized
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coordination function of the formation is chosen as the sum of the cost functions of each
member in the formation, that is, the total cost function of the formation is the sum of the
control energy of each missile.

Jt(ξ) =
n

∑
i=1

a2
M,i (58)

Take the impact time that minimizes the total energy consumption of the entire
formation as the desired impact time, namely,

ξ∗ = argminJt(ξ) (59)

Defining,
C1 = NVM

.
λ

C2 = KεNV2
M sin σM

C3 = KsNV2
Msign(σM)

(60)

Equation (56) can be rearranged as follows:

aM = aPNG + aε + as = C1 + C2
(
ξ − t− tgo

)
+ C3

(
ξ − t− tgo

)
(61)

The total cost function of formation Equation (58) can be expressed as

Jt(ξ) =
n

∑
i=1

(
C1,i + C2,i

(
ξ − t− tgo,i

)
+ C3,i

(
ξ − t− tgo,i

))2

(62)

The ξ partial derivative of Equation (62) is expressed as follows:

∂Jt(ξ)

∂ξ
= 2

n

∑
i=1

aM,i
∂aM,i

∂ξ
= 2

n

∑
i=1

(
C1,i(C2,i + C3,i) + (C2,i + C3,i)

2(ξ − t− tgo,i
))

(63)

It can be obtained from Equation (58) that:

ξ∗ =

n
∑

i=1

(
(C2,i + C3,i)

2(t + tgo,i
)
− C1,i(C2,i + C3,i)

)
n
∑

i=1
(C2,i + C3,i)

2
(64)

Defining δ =
n
∑

i=1
C1,i(C2,i + C3,i)/

n
∑

i=1
(C2,i + C3,i)

2, Equation (64) can be re-expressed as:

ξ∗ =

n
∑

i=1
(C2,i + C3,i)

2(t + tgo,i
)

n
∑

i=1
(C2,i + C3,i)

2
+ δ (65)

It can be seen from Equation (65) that the desired impact time ξ∗ can be regarded as
composed of two parts: the first part is the weighted average of the attack time of each
missile, and the second part is an additional item. In the actual process, when the distance
between the missile and the target point is relatively short, the additional item δ is very
small compared to the first item, usually not in the same order of magnitude. Therefore,
the influence of the additional item can be ignored, and the suboptimal solution of the
desired impact time can be obtained.

ξ† =

n
∑

i=1
(C2,i + C3,i)

2(t + tgo,i
)

n
∑

i=1
(C2,i + C3,i)

2
(66)
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Let the weight of each missile be wi, and there is wi = (C2,i + C3,i)
2/

n
∑

i=1
(C2,i + C3,i)

2,

Equation (66) can be re-expressed as:

ξ† =
n

∑
i=1

wi
(
t + tgo,i

)
(67)

Although the desired impact time obtained is not the optimal solution, one of its
advantages is that the physical meaning of the expression is relatively clear, that is, after
each member of the formation interacts with information in real time, the attack time
determined through mutual negotiation is equivalent to the weighted average of the attack
time of each missile.

In summary, when the desired impact time is selected as the coordination variable, the
Equation (56) is the cooperative guidance law based on coordination variables designed in
this paper.

4.2. Three-Dimensional Impact Time Control Cooperative Guidance Law under Time-Varying
Velocity

When the change rate of velocity is a quadratic function of velocity, the expression
of time-to-go estimation in two-dimensional plane is given in Section 3.2. On this basis,
in order to estimate the time-to-go in three-dimensional space, the guidance laws of pitch
channel and yaw channel are designed separately. The pure proportional guidance law
is used in the pitch channel, and the guidance law with impact time constraint is used in
the yaw channel. The guidance laws of the pitch channel and yaw channel are expressed
as follows:

.
γM = N

.
λ

.
ψM = N

.
ψL

 3
2 −

1
2

√
1 + 240V5

Mxz(
NVMxz

.
ψL

)2
r3

xz

et

 (68)

where, VMxz is the projection of missile velocity in the XZ plane of yaw channel, VMxz =
VM cos γM. rxz is the projection of the distance between missile and target in the XZ plane,
rxz = r cos λ. N is the proportional guidance coefficient. et is the impact time error, the
expression is

et = td − t− tgo (69)

where, td is the desired impact time, t is the current time, tgo is the estimation of the
time-to-go in the yaw channel.

According to the expression of time-to-go estimation in two-dimensional plane in
Section 2, the time-to-go estimation in yaw channel can be expressed as:

tgo =
eKMxzVMxz(

rxz
VM xz (1+N′η2

M)(
ηM

sin ηM
)

1
N−1 ) − 1

KMxzVMxz
(70)

where, ηM is the included angle between the projection of velocity in the XZ plane and the
projection of the line of sight in the XZ plane, denoted as the leading angle of yaw channel
and meets ηM = ψL − ψM. KMxz is the change rate coefficient of velocity in the XZ plane,
and satisfies the following relation:

.
VMxz = −KMxzV2

Mxz (71)

Take the derivative with respect to time of both sides of VMxz = VM cos γM:

.
VMxz =

.
VM cos γM −VM

.
γM sin γM (72)
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From Equations (71) and (72), the coefficient of change rate of Vxz with time can
be obtained:

KMxz = −
( .

VM cos γM −VM
.
γM sin γM

)
/V2

Mxz (73)

Equation (68) is denoted as the three-dimensional cooperative guidance law based on
the desired impact time.

5. Numerical Simulation
5.1. Comparison of Methods for Time-to-Go Estimation

The time-to-go estimation method proposed in this paper and in [32,33] expressed
by Equations (29)–(31) are compared in this Section. The simulation parameters are set to
N = 3, r0 = 10, 000m and VM = 330m/s, the meanings of which are shown in Section 3.1.
The variation curves of the time-to-go and time-to-go error with the initial leading angle
under different time-to-go estimation methods are shown in the Figures 4 and 5.

Figure 4. Time-to-go with different initial leading angles.

Figure 5. Time-to-go error with different initial leading angles.

As can be seen from Figures 4 and 5, the estimation errors of the three time-to-go
estimation methods increase with the increase of the initial leading angle. When the
initial leading angle is less than about 40 deg, the accuracy of the three methods is similar.
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However, when the initial leading angle is greater than about 40 deg, the estimation
accuracy and estimation error convergence speed of the method proposed in this paper are
obviously better than the other two estimation methods.

5.2. Performance of MPNG Law
5.2.1. Comparison of the MPNG Law and the SMC Law

The SMC law of [12] can be expressed as follows:

aM = aeq
M + adis

M

=

[{
1 +

.
r

VM

[
1 + σ2

M
2(2N−1)

]
+ −r

.
λσM

(2N−1)VM

}
× Csign

( .
λ
)
− 2

.
r

.
λ

r

]
/

[
cos σM

r −
CrσMsign

( .
λ
)

(2N−1)V2
M

]
+ Kdis

M sign(S)
(74)

where

Kdis
M = M/sign

cos σM
r
−

CrσMsign
( .

λ
)

(2N − 1)V2
M

 (75)

C and M are positive constants.
In this section, the performance of the MPNG law and the SMC law are compared

when the initial leading angle is zero. The designated impact time is set to 45 s, the positive
constants C, M are set to 1 and 200. The other simulation parameters used in this Section
are listed in Table 1 and the simulation results are shown in Figure 6.

Table 1. Simulation parameters for Section 5.2.

Initial Position of the Missile (X0,Y0) (0,0) km

Target position (XT , YT) (10,0) km
Velocity of the missile VM 330 m/s

Initial flight path angle γM,0 0 deg

Figure 6a–d show the missile trajectory, the leading angle, the impact time error
and the acceleration command, respectively. It can be seen from Figure 6c that the SMC
law cannot drive the missile to attack the target at the designated impact time when the
initial leading angle is zero. Therefore, it can also be concluded that the MPNG law is
advantageous over the SMC law proposed in [12] when the initial leading angle is zero.

Figure 6. Simulation 4.2.1.
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5.2.2. Salvo Attack with the MPNG Law

In Section 5.2.1, the effectiveness of MPNG law is verified when the initial leading
angle is 0. This Section verifies the performance of MPNG law in the multi-missile coop-
erative operation problem. The parameters are set to N = 3 and Kε = Ks = 40/

(
r0tgo,0

)
.

The initial conditions of four missiles are listed in Table 2 and the simulation results are
demonstrated in Figure 7.

Table 2. Simulation parameters for salvo attack.

Missiles Initial Position
(km)

Target Position
(km)

Velocity
(m/s)

Initial Flight
Path Angle

(Deg)

Designated
Impact Time

(s)

M1 (0,0)

(10,0)

330 0

45
M2 (5,8) 320 30
M3 (15,5) 310 −120
M4 (5,−8) 300 45

Figure 7. Salvo attack against a stationary target.

As can be seen from Figure 7a, four missiles at different positions can reach the
designated target at the same time. Figure 7b–d show the variation trend of leading angle,
impact time error and acceleration with time, respectively. We can see from Figure 7b that
the absolute value of the leading angle increases first, and then decreases gradually with
time until it is zero. The impact time error decreases gradually until it converges to zero in
Figure 7c and the acceleration also converges to zero at terminal time, as shown in Figure 7d.
Figure 7a–d show that MPNG law is effective and applicable in cooperative operation.
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5.3. Performance of Two-Dimensional Impact Time Control Cooperative Guidance Law under
Constant Velocity

In order to verify the impact time cooperative guidance law based on coordination
variables designed in this paper, the following simulations are carried out. Suppose that at
the initial moment, four missiles take off from different positions and need to reach the
designated target point at the same time. The initial flight path angles of four missiles
are 30, 30, −60, 60 deg respectively. Other parameters are same as Section 5.2.2 and the
simulation results are demonstrated in Figure 8.

Figure 8. Simulation 5.3.

Figure 8a–f show the missile trajectory, the leading angle, the impact time error, the
acceleration command, the weight coefficient of each missile and the change curve of
the total cost of formation calculated according to Equation (58) over time. It can be
seen from the Figures that during the flight of the four missiles, the desired impact time
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obtained through mutual information exchange is 34.29 s, and all four missiles can reach
the designated target point within the calculated coordinated impact time. It can be seen
from Figure 8c that the coordination variable converges faster, and the impact time error
of each missile gradually converges to zero. It can be seen from Figure 8e that the weight
coefficient of missile 3 is relatively large, so it has the greatest impact on the result of the
negotiation. Therefore, the impact time of missile 3 is the first to converge to 0, this is
verified in Figure 8c. It can be seen from Figure 8f that, in order to achieve the cooperative
attack of multiple missiles, the total cost of formation members is relatively large in the
initial stage. As the subsequent acceleration command amplitude of each missile decreases,
the total cost of formation gradually decreases until it converges to 0.

In order to illustrate the optimality of the desired impact time obtained through
negotiation, Figure 9 shows the curve of the total cost in formation flying with the impact
time of 40 s and 45 s, which are compared to the total cost of formation varies with time
under the cooperative condition.

Figure 9. The designated impact time and the total cost of the formation under coordination condition.

It can be seen from Figure 9 that when the guidance law based on coordination
variables is adopted, the total formation cost spent during the flight of the missile formation
is less than the total formation cost under the desired impact time, which illustrates the
optimality of the designated impact time obtained through negotiation.

5.4. Performance of Three-Dimensional Impact Time Control Cooperative Guidance Law under
Time-Varying Velocity

Considering the impact time constraint, the designated impact time is 150 s, and
the other simulation parameters remain unchanged. The simulation results of the three-
dimensional cooperative guidance law based on the desired impact time are shown in
Figure 10.

Figure 10a–e show the variation curves of the three-dimensional flight trajectory,
impact time error, flight path angle, heading angle and the leading angle of velocity in
yaw channel with time. It can be seen from Figure 10a that all four missiles can reach the
specified target point. As can be seen from Figure 10b, the impact time errors of the four
missiles converge to 0 at the terminal moment, which satisfies the requirement of attacking
the target at the same time within the specified time. As can be seen from Figure 10e,
the amplitude of the leading angle of velocity in the yaw channel increases at the initial
stage, and then gradually converges to 0. This is because, in order to meet the impact time
constraint, the leading angle of the missile in the initial stage increases and maneuvers
laterally to extend the flight time. At the same time, the lateral maneuver increases the
amplitude of heading angle in Figure 10d in the initial stage.

It can be seen from Figure 10c that the trend of flight path angle has almost no change.
As can be seen from Figure 10e, the leading angle of yaw channel converges to 0 at the
terminal time.
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Figure 10. Simulation results of three-dimensional cooperative guidance law based on desired impact time.

6. Conclusions

This paper aims to avoid problem of multi-missile cooperative attack on stationary
target, a two-dimensional impact time control cooperative guidance law under constant
velocity and a three-dimensional impact time control cooperative guidance law under
time-varying velocity are proposed. First, a more accurate time-to-go estimation method
is derived, which is more accurate than the existing methods in [32,33]. Based on the
time-to-go estimation method, the MPNG law is designed, which is also effective when the
initial leading angle is zero. Second, a two-dimensional impact time control cooperative
guidance law under constant velocity is designed under cooperative guidance architecture
with centralized coordination, which is using the MPNG law as the local guidance, and
the desired impact time as the coordination variables. Finally, a method of solving the
expression of velocity is derived, and the analytic function of velocity with respect to
time is given, a three-dimensional impact time control cooperative guidance law under
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time-varying velocity based on desired impact time is designed. Simulation results verify
the effectiveness of the method proposed in this paper.
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