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Abstract: Current practices for investment and technology decision making in aeronautics largely
rely on regression-based cost estimation methods. Although quick to implement and easy to use, they
suffer from a variety of limitations, both in temporal space and scope of applicability. While recent
research and development in this area addresses these to a certain extent, aerospace engineering
still lacks a flexible and customizable valuation framework. To this end, a generic environment for
economic and operational assessment of aircraft and related products named LYFE is presented. This
tool employs a discrete event simulation which models the product life cycle from its order through
decades of operation and maintenance until disposal. This paper introduces its key characteristics
and default methods alongside its modular program architecture. The capabilities are demonstrated
with a case study of on-wing engine cleaning procedures which are triggered by a customized
decision making module. Thereby, the impact on engine health, fuel efficiency and overall economic
viability is quantified. On the whole, the framework introduced in this paper can be used to analyze
not only physical products but also operational procedures and maintenance strategies as well as
specified decision making algorithms in terms of their impact on an aircraft’s or system’s life cycle.

Keywords: life cycle modeling; discrete event simulation; operation management; technology
assessment

1. Introduction

Aircraft manufacturers and operators face an ever-increasing economic pressure while
dealing in a highly complex and competitive environment. Typically characterized by
low profits and high investment cost [1], strategic decisions for or against a product or
strategy can impact the company for decades to come [2], especially if the long operational
phase of aircraft are considered. Thus, a priori analyses of the expected economic impact
of any major decision are of eminent importance in profit driven businesses [3]. These
Overall Economic Assessments (OEAs) are often integrative in nature, i.e., information from
various stakeholders and disciplines such as operations, maintenance, aircraft performance,
as well as relevant boundary conditions and off-design cases have to be collected and
combined. Their output is expressed in a set of differential metrics (e.g., A cost) which
represent the expected superiority of one alternative over another. In aeronautical practice,
these OEAs are mostly based on Cost Estimation Relationships (CERs), which correlate
selected aircraft characteristics or operational parameters with the certain cost elements
provided in confidential economics databases from the manufacturer or operator [4,5].

Although CERs are quick to implement and fast to evaluate, their applicability is
limited in terms of what can be assessed. Strictly speaking, the results are valid only
for the operation of former and current aircraft generations, and deviations from them
often do not extrapolate well [4,6,7]. Furthermore, the fixed nature of static equations
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requires that the Object of Interest (Ool) directly affects the input parameters, or else the
impact remains unnoticed. Another notable shortcoming, especially when operational
aspects are of interest, is the limited consideration of the complex interrelations of the air
transportation system. These cover the temporal, spatial, and partially the physical domain.
For instance, the effect of specific maintenance actions (of both scheduled and unscheduled
nature) on the aircraft’s performance and airline’s economics cannot be accounted for with
the existing conventional methods. Although there are specific studies and methods that
deal with such detailed problems on their own, their consideration in a comprehensive
OEA is rarely seen. Finally, the lack of a standard assessment framework impedes the
comparability of technologies in terms of their overall economic and operational impact.

Therefore, a framework is needed which tackles these shortcomings. For one, this
tool should enable the analysis of various products, regardless of whether it is an aircraft
design, a physical technology, an operational decision or a maintenance strategy. For study
cases where information is rare, the tool should provide default assumptions, which should
be easily replaceable when more detailed information and/or models become available.
Considering the long operational times of aircraft, another central objective is the ability to
capture not only primary (i.e., “intuitive” or “obvious”) effects of an Ool induced change
in the aircraft’s life but also secondary ones occurring much later (i.e., “down the river”).

To this end, an object oriented, modular and hierarchical detail oriented framework for
OEA is developed which incorporates a discrete event simulation of an aircraft’s life cycle.
These events include, but are not limited to, the order and delivery of aircraft, various
flights, scheduled and unscheduled maintenance, periodically recurring payments, and the
resale of the aircraft. This tool is customizable by design, where nearly all parts of the code
can be replaced and tailored for the problem at hand, while the source code itself remains
untouched. The present paper introduces this framework (which is intended to be publicly
available in the future), the methodology behind it, and demonstrates its capabilities with
a case study. For the latter, the on-wing maintenance action of engine cleaning is modeled
and assessed in terms of fuel burn and overall economic efficacy on an Airbus A321 aircraft.
This study includes a (simplified) model of the engine degradation (i.e., a gradual increase
of Exhaust Gas Temperature (EGT)) and the repercussions on the specific fuel consumption
and Engine Shop Visits (ESVs). By considering the interrelations between the predicted
deterioration, the resulting fuel efficiency and the current fuel price, the cost for an engine
wash event and the time until the next shop visit, a decision making algorithm of the
technology aiming for the lowest operating cost is studied.

The remainder of this paper is structured as follows. Section 2 provides some fun-
damentals on economic assessments in general and aeronautical engineering. Addition-
ally, relevant literature and tools that are comparable to the present work are discussed.
Section 3 presents the newly developed framework starting with central goals and require-
ments. Subsequently, the modular program architecture is presented, which is followed
by a description of the default modules and methods. In Section 4, the aforementioned
exemplary technology assessment is performed. This includes a description of the inputs,
the customized module for optimized engine wash event scheduling, and its impact on the
airline’s economic value. The paper concludes with a summary in Section 5.

2. Fundamentals

Although the topic of cost estimation has been intensively studied in engineering
sciences in the past [8,9], there is no consistent standard or even taxonomy apparent [10].
Ambiguities can be found in (a) the nature of the methods used, which influences the
effort for and accuracy of the study; (b) the temporal space that is covered by the analysis,
i.e., one, multiple, or all life cycle phases; and (c) the extent of the considered monetary
elements. This section attempts to provide an overview in these domains with the goal of
situating the scope of the presented framework adequately.
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2.1. General Cost Estimation Methods

Various classifications for cost estimation methods exist, including top-down and
bottom-up, genetic and causal, as well as qualitative and quantitative approaches. As
Altavilla et al. [2] showed, the latter breakdown is most prominent in the general engi-
neering design domain, see Figure 1. Each approach has its own benefits, drawbacks and
ideal phases of applicability. The methods in the qualitative category require only little
information but are less accurate and hence more useful in earlier design phases. As they
heavily depend on historic data and expert knowledge, particular care has to be taken with
respect to their applicability. Quantitative techniques also make use of historic data but
incorporate an elevated level of modeling. This ranges from a combination of product
specific and regression based CERs up to detailed event and/or agent based modeling.
As such, the level of information required to perform such an estimation is comparatively
high, making them more appropriate in later design phases.

Cost Estimation

Techniques
[

v v
Qualititative Quantitative
Approaches Approaches

[ [

v v v v
Intuition Analogy Parametric Analysis
Based Based Based Based

Figure 1. Classification of product cost estimation based on Niazi et al. [11].

Due to the complexity of setting up a cost evaluation process, companies and research
institutions often confine themselves to one or few particular techniques, which are usually
integrated in (partially) automated product design frameworks. However, when it comes to
assessments in multidisciplinary and complex environments such as the air transportation
system, a modular, flexible, extensible, and method overarching system is necessary, as
correctly described in Leung [12] and Curran et al. [4]. As it will be explained in Section 3,
the work presented here aims to fill this gap by combining multiple techniques, which
allows to cover development stages ranging from early to detailed design without the
necessity to change the basic procedure or underlying assumptions.

2.2. Valuation Practice in Aeronautics

While the previously mentioned techniques are more universal in nature, the clas-
sification in this subsection is more specific to the aeronautical engineering domain. In
here, available methods mainly differ in considered temporal phases and modeled cost
elements. They can be clustered into Direct Operating Cost (DOC) methods and life cycle
based approaches. Both are described below.

2.2.1. Direct Operating Cost Methods

DOC represent cost elements that are directly affected by the aircraft such as fuel,
maintenance, various fees, and aircraft financing expenses and, together with the Indirect
Operating Cost (I0C), make up the Total Operating Cost (TOC) of an airline, as shown
in Figure 2. As it is common to compare different aircraft using their associated DOC per
year, per flight hour, or per flight cycle [13], parametric techniques were developed to
predict these cost based on easily available aircraft information [14,15]. These techniques
are known as DOC methods and are a prevalent approach for the evaluation of aircraft
designs, technologies, and occasionally operational procedures [4].
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Figure 2. Typical Airline TOC breakdown, based on Clark [13].

A variety of DOC methods is available throughout research and industry. The most
frequently used ones are the NASA method [16], the Association of European Airlines
(AEA) methods [17,18], and one presumably originating from Lufthansa [19], which was
last updated in 2010 [20]. Applications include technology unspecific studies such as in
Lee et al. [21] or Ali and Al-Shamma [22], where various conventional aircraft are assessed
economically and compared to one another, as well as more specific investigations such as
in Xu et al. [23], Elham and van Tooren [24], and Pohya et al. [25] where formation flights,
winglet shapes, and hybrid laminar flow control are evaluated, respectively. An example
of a debatable application can be found in Cuerno-Rejado et al. [26], where a highly
unconventional joined-wing aircraft design was compared to a conventional reference
using the DOC approach. The result showed no changes in maintenance or ownership
expenses (the latter was omitted in the study, while its impact was mentioned qualitatively),
but only in fuel cost, which is questionable considering the substantially different airframes.
A more recent stream recognizes the limitations of available methods to accurately predict
maintenance cost and hence create their own CERs using more specific input parameters
for the (static) equations, e.g., Fioriti et al. [27].

As a parametric technique, DOC methods suffer from typical CER limitations. For
instance, the operational and financial data of airlines, on which the methods are based on,
are typically not available to the public. This makes it difficult to decide whether an Ool
is inside or outside of the area of applicability. Additionally, it is not possible to quantify
the accuracy or associated uncertainty when using these CERs. Due to their top-down
regression approach, relevant repercussions of one event (e.g., an unscheduled maintenance
that is required) on another (e.g., the next flight(s)) cannot be captured. Table 1 summarizes
the characteristics of DOC methods.
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Table 1. Scope and limitations of DOC methods, based on Schnieder [15] with own additions.

In Scope Out of Scope
Period of Consideration
The settled state of an aircraft, i.e., between the 5th and 15th Initial and late phases as well as age-related effects, e.g.,
year of operation. increase of maintenance cost or decrease of fuel efficiency.

Operational Content

One representative flight connection, characterized by a fixed = Different routes, regions, and flight schedules. Network and

range and average utilization. fleet compilation as well as commonality effects.
Object of Interest
Technologies or aircraft alternatives that affect the Ools that do not solely affect these independent variables,
independent variables of the CERs, e.g., max. takeoff weight. e.g., operational procedures and maintenance strategies.

Level of (temporal) Detail

Relationship between the average flight time and average Particular and discrete temporal effects, e.g., from flight

annual utilization. delays or unscheduled maintenance.

2.2.2. Life Cycle Based Methods

With the increased computational power and integrative approach to product design,
a shift towards a more holistic and life cycle driven approach has been observable [28,29].
In the aviation sector, these typically take one of two forms:

(a) Those that focus on the long operational phase of aircraft, where temporal effects
such as learning curves and aging are investigated and the complexity of the air
transportation system is modeled with more detail (e.g., Justin and Mavris [30]).

(b) Those following the “cradle to grave” approach incorporating all life cycle phases.
This is usually comprised of the manufacturing, operational, and end of life phase
and follows the integrated product development paradigm (e.g., Curran et al. [31]).

To differentiate these two streams, the former is called life cycle costing (LCC), while
the latter is termed whole life cycle costing, (WLCC) which is adapted from the nomenclature
in civil engineering (e.g., in Abdelhalim Boussabaine [29] and Viavinette and Faulkner [32])
as well as general cost engineering (e.g., Altavilla et al. [2]).

Compared to the DOC methods, the added value of the LCC approach is created by
the consideration of learning curves, aging and degradation effects, or other case specific
aspects (e.g., modifications or retrofits during a major maintenance check and the assess-
ment on fleet level, as investigated in Pohya et al. [33]). LCC methods can give valuable
insights on how the (economic) efficiency of a product changes over time (e.g., through de-
terioration) and what countermeasures (e.g., through maintenance) are efficient. However,
due to their detailed nature, they are often specifically tailored to the case study at hand.
This typically requires a tedious collection of detailed information which is hardly reusable.
Moreover, such specific approaches do not ensure comparability of different studies to one
another. Generic LCC models are rare and seldom publicly available.

The WLCC approach typically expands the classical manufacturers’ perspective on
product design by the operators” point of view, i.e., by direct operating cost. The aim is
to develop a product that is not only cost efficient in production but is also competitive
in operation. Similar to DOC methods, WLCC methods make use of CERs and calculate
Research, Development, Testing, and Evaluation (RDTE) cost as well as recurring and non-
recurring cost using aircraft attributes (e.g., aircraft weight) and manufacturing parameters
(e.g., cadences). As such, they suffer from similar drawbacks as DOC methods, e.g., they
neglect long-term effects and process induced repercussions and do not allow flexibility
and extensibility outside of the static input parameter space. Examples of well established
WLCC methods can be found in Raymer [34] and Roskam [35]. The following summarizes
the prevalent valuation practice in aeronautics:
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* Asatop-down tool, DOC methods are fast and easy to use but show a lack in their
scope of applicability, both in temporal space and Ool [4].

e LCC methods tackle this limitation by considering age related effects and often a case
specific modeling of the environment but require laborious preparation as a bottom-
up approach. Due to the more tailored nature, their versatility and subsequently
comparability is often limited.

¢ WLCC methods are primarily used for integrated product development and expand
the manufacturers’ point of view by operating cost. As they are often based on CERs,
they suffer from the same detriments as DOC methods.

*  With the dominating CER approach taken by most studies, the impact of specific
decisions (e.g., maintenance actions) on the complex air transportation system cannot
be captured in detail.

Additionally, the nature of costing methods neglects revenues and hence reduces the
economic value of a technology to its impact on the expenditures. Depending on the Ool,
the loss of revenues due to a missed flight may have an even greater impact on the overall
airline economics than the cost of correcting the cause.

2.3. Comparable Work

To situate the assessment environment presented in this study, comparable work
is briefly reviewed here. This selection does not claim to be exhaustive but rather in-
formative and intends to give an overview of current economic evaluation research in
aerospace engineering.

Frank et al. [36] present a modular and design oriented environment for assessing the
flying, economic, and safety performance of suborbital vehicles. While modules such as
the aerodynamics, structures, and propulsion leverage advanced physics and surrogate
based approaches, the life cycle cost were estimated with CERs. A similar environment for
spacecraft assessment is presented by Yao et al. [37]. Here, the focus lies less on exploring
the design space and more on the comparison of different systems during their operational
phase and their impact on the Net Present Value (NPV). Furthermore, the authors made
an effort to provide Uncertainty Quantification (UQ) features by integrating Monte Carlo
Simulation (MCS) capabilities into the framework.

Thokala et al. [38] focus on integrated aircraft design and estimate the acquisition cost
using a hierarchical product definition tool called DecisionPro [39], while using a discrete
event simulation named Extent [40] for estimating the operating and maintenance cost.
Combined in a MATLAB environment, their framework is also capable of performing
Design of Experiments (DOE) and MCS. This framework was used to design unmanned
air vehicles in Thokala et al. [41] and to calculate overall maintenance cost of aero-engines
in Wong et al. [42]. Both Extent and DecisionPro are well developed and commercially
available. However, as such, their flexibility and capability to be custom-tailored to more
complex Ools is limited.

Zhao et al. [43] recognize the need for an aircraft assessment method that is applicable
both in early and detailed design. They suggest a two-leveled approach, where first, costs
are estimated with preliminary weight based estimation relationships. Once detailed
information in the form of a bill of material is available, WLCC can be calculated using
more detail driven CERs, although again with weight as the single cost driving parameter.
Thus, the available level of detail when modeling relevant interactions remains restricted.
Xu et al. [44] also take the aircraft designers perspective into account and briefly present an
object-oriented WLCC tool which tracks the cost of manufacturing, operating, maintaining,
and disposal of components. Although this framework seems to model the components
in detail, it is not clear how the objects interact, costs are calculated, and whether the
framework offers interfaces for customization.

Justin and Mavris [30] developed a modular framework named ICARE, which takes
the airline’s perspective and calculates all aircraft and engine related operating cost and
revenues. These include ownership cost; base; heavy component (including the engines);



Aerospace 2021, 8, 187

7 of 34

and unscheduled maintenance cost, fly-away cost, and ticket and ancillary revenues.
Similar to the framework presented in this paper, ICARE combines various literature and
databases to calculate these elements and is able to quantify the value of different aircraft
and engines. However, it seems as ICARE incorporates neither a Discrete Event Simulation
(DES) nor agent-based modeling approach for capturing secondary impacts nor to have
the inherited capability to be extended and customized to a particular Ool at hand.

To summarize, the majority of the discussed aeronautical assessment frameworks
focus on aircraft design and the manufacturers’ perspective, strongly simplifying the
interaction-intensive operational phase. Furthermore, the environments show a lack of
ability to be customized to different case studies. Few acknowledge the fact that the
level of information varies significantly throughout the product development and hence
provide hybrid models with low and high level methods. The space sector pursues a more
advanced and modular approach, while uncertainties in assumptions and scenarios are
addressed with the provision of MCSs capabilities.

3. Evaluation Framework

The Python based framework named Life Cycle Cash Flow Environment (LYFE) aims
to provide a generic (i.e., not project or case specific) environment. This section presents
key goals and requirements (Section 3.1), explains the program characteristics (Section 3.2),
and describes the default modules and methods (Section 3.3). It should be noted that,
due to the required flexibility of the framework, not all available methods and features
can be discussed in one paper. Thus, the following is rather a representative excerpt of
the functionalities.

3.1. Goals, Requirements, and Scope
The vision of LYFE can be described as:

LYFE is the standardized and universally accepted cost-benefit tool for aeronautical
applications for researchers and industry alike.

To make this possible, a variety of different aspects have to be considered. Table 2
summarizes LYFE’s top-level goals, requirements, and the scope delineation. In addition
to these features, the two essential and unique characteristics of LYFE as a generic OEA
framework are (a) the incorporation of a discrete event simulation and (b) its customizability
through the modular program structure.

Table 2. Top level goals, requirements, and scope of LYFE.

Goals

)
@)

®)
4)

Enable life cycle based economic assessments focusing on all relevant cashflow elements.

Enable optimizations within the products’ life cycle in terms of economics and operational efficiency, e.g., through
improved decision making.

Enable valuable insights on the relevant dependencies and limiting factors through thoroughly defined

functional relationships.

Enable the analysis of primary (i.e., direct and immediate) and secondary (i.e., indirect and /or with time delay)
effects throughout the simulation.

Requirements

)
@

®)

Simulate all Object of Interest relevant events throughout the product’s life cycle consistently.

Enable the simulation of a variety of Object of Interests with no or only very little custom code modifications.
Eliminate the necessity of changing the core source code by providing defined interfaces for the integration of
user-generated tools and adaptions, ranging from minor modifications to major alterations.

Scope Delineation

)
@)

®)

No process simulation or optimization at single workstep level (e.g., within a maintenance check).
Not a “live” replication of a specific product, i.e., not the digital twin, but capable of recreating observed and

predicting future events of a specific aircraft.

No detailed simulation of all stakeholders within the environment, but capable of replicating relevant key
stakeholder behavior through response surfaces or simplified models.
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3.2. Program Characteristics

The goals, requirements and intended scope of LYFE lead to its specific program
structure and characteristic features, which are described next.

3.2.1. Program Structure

LYFE itself acts as a top-level caller, which reads settings defining how the simulation
will be run (e.g., single simulation, sensitivity analysis, MCS). Once these are processed, the
core module AirLYFE takes over and performs an aircraft-centered and operator oriented
simulation. This includes, but is not limited to, the purchase of the aircraft; performed
flights; scheduled and unscheduled line and base maintenance with corresponding down-
times; monthly recurring costs of any kind, such as insurance, interest, or leasing rates;
and the resale, recycling, or disposal of the aircraft. The level of detail varies with the
users’ level of available information. If, for example, certain fees or maintenance cost are
unknown, regression equations provide estimated values (similar to the approach of DOC
methods). Alternatively, custom functions or lookup tables for the event attributes can be
specified. Figure 3 shows a schematic overview of the modular and customizable designed
program structure.
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d )
prepare determine determine
rez;iﬂ(;:el;all > reascit?;nodsule —> default ~—» event opportu- event’s appenld e;l/ent done?
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Figure 3. Modular program structure of AirLYFE with individual modules in green, their initialization and main functions
in blue, databases in orange, and optional (i.e., user specified) procedures in dashed boxes.
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The simulation starts with reading and processing the user inputs and making it
available for each and every submodule. This also contains various databases, which will
be explained later. Afterwards, the submodules are called. Each consists of an initialization
and a main function, with a pseudo code given in Code Excerpt Al in the Appendix B. In
the initialization part, preparatory work is performed, which aims to speed up the overall
runtime. This includes precalculating rates, selecting relevant airports out of the database,
and various other submodule specific tasks. After all submodules have been initialized,
the simulation enters a while loop, calling the submodules’ main functions, which all have
the same basic structure. At first, a set of n constraints is used to determine whether one of
the events that the submodule can create is due, i.e.,

Cave = {ci}, with ¢;:B™ x R™ x R™ x R"™ — B. 1)

Here, B=[0, 1] and R describe the boolean and simulation parameter space, and 7,
1, ne, and ny represent the fixed and user specified, the fixed and module specific, the
customization, and the dynamically changing domain, respectively. These constraints may;,
for instance, consider the aircraft’s health status for maintenance events, the operational
schedule for flight events, or specific user written algorithms. If no event is due, the
submodule is skipped and the simulation enters the next one. If an event is due, the
respective event instance is created and filled with relevant attributes such as the duration,
associated cost and revenues or, more specifically, the route which is flown or the interval
trigger which caused the maintenance action. This event is then appended to an event
calendar, which triggers an update of several simulation parameters. These include, for
instance, the current simulation date and time or the condition of the aircraft and its
components. Each submodule has access to two types of databases (in the sense of globally
accessible sets of data and variables). The first is static in nature and holds parameters that
do not change throughout the simulation, including aircraft performance maps, generic
airport information, or user specified configuration files. The second is more dynamic
and holds current snapshots of changing parameters, such as the event calendar itself, the
current simulation time and date, and the asset’s (i.e., aircraft’s and/or engine’s) current
condition. The simulation continues in the while loop until the Ool specified lifetime is
over. This triggers the automatic report generation, which calculates not only operational
efficiencies and statistics but also generic economic parameters. If desired, more specific
metrics can be defined in the custom report generation. It should be noted that this process
always runs at least twice: once for the reference case and once for the case under study.
The overall results are then usually expressed as an absolute or relative change, e.g., ANPV.

3.2.2. Discrete Event Simulation

The goal to capture both primary and secondary effects throughout the life cycle
prescribes a DES combined with an object oriented approach. Primary effects are those
that affect the Ool (or a stakeholder) immediately. Secondary effects are those that occur
either much later or as a result of a more complex interaction network. For instance, a
certain technology may affect the fuel burn and subsequently fuel cost (primary), whereas
a maintenance action for said technology may lead to a prolongation of the downtime,
affecting the subsequent flight schedule (secondary). Combined with the later explained
customizability, the DES approach ensures that various decision making strategies can be
implemented and evaluated with respect to their primary and secondary effects on the
life cycle.

In LYFE, each event is an object with certain attributes, depending on the respective
class definition. The event’s parent class definition includes the discrete beginning, du-
ration, and finish time, as well as cost and revenue dictionaries. Child class definitions
are specific to the type of event. Flight events for example include the information of the
origin and destination airport, the aircraft that flies this route, associated fees, and many
other elements. Apart from the event, the assets (i.e., aircraft and engines) and databases
(e.g., airports) have their own classes, attributes and methods, see Figure 4.
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class: Event class: Aircraft class: Engine class: Airport

Attributes:

Methods:

name, type, t_beg, t_dur, t_end, cost, revs, ...

Attributes:
timezone,
takeoff_curfew,

Attributes:
thrust_rating,
exhaust_gas_temp,

Attributes:
entry into service,
engines, components,

inflate_cpi(), calc_times(Q), ... performance, components, landing_curfew,
’[ health_status, remaining_useful_life, temps_day_mu,
[ | technology_factor, aircraft, temps_day_sigma,

class: Flight

seating_layout, ... health_status, temps_night_mu,

class: Maintenance

calc_cost(),
calc_revs(Q),
age_aircraftQ), ...

Methods: ce temps_night_sigma,
Attributes: i calc_fuelQ), Methods: winds_mu,
orig, dest, aircraft, Attrll‘mtes: deteriorate(), ... deteriorate(), winds_sigma, ...
fuel ... location, tasks, swap_aircraftQ), ...
h’d i hierarchy, ... o
Methods: Methods: object: A320-200 object: HEL

object: CFM56

calc_cost(),
restore_health(), ...

object: B747-8 object: CPH

object: MUC

object: CF6-80

object: HEL-CPH

object: A-Check

object: CPH-HEL

| |
| object: C-Check |
| |
| |

object: HEL-MUC object: ESV
object: ... object: ...
Figure 4. Excerpt of available classes and their attributes and methods in (Air)LYFE.

The event calendar grows dynamically with each appended event and, when the
simulation is finished, contains anywhere between 50 and 300 k individual events per
aircraft, depending on the use case and considered lifetime. The required runtime for a full
simulation varies between 30 s and two minutes (on a regular single-core CPU laptop). An
excerpt of a simulated event calendar is shown in Figure 5, including flights from and to
the aircraft base, a few maintenance checks, and some monthly recurring payments.

HEL-CPH - ] curfew (|
CPH-HEL A . in MUC (|
HEL-RVN - ] ]
RVN-HEL - ] ]
HEL-MUC ] ]
MUC-HEL{ [] O
HELKTT | ] ]
KTT-HEL - ] ]
preflightcheck | | i 11 | 1 1 1 061
daily check . .
A-check -
crew salaries <> monthly
maint. support <> recurring [ flight events
capital cost | <> payments I maintenance events
o000 0600 0 B0 0000 0600 1200 1800 0000
31 July 1 August 2 August

time (UTC), [-]

Figure 5. Excerpt of an event calendar of a Helsinki (HEL) based short range aircraft including flight events (blue),
maintenance events (red), monthly recurring payments (green), and the takeoff and landing curfews from the Munich

(MUQ) airport (hatched).

Each time an event is appended into the event calendar, the global clock is updated to
the event’s end time, and two routines are triggered. The first includes a deterioration of the
aircraft’s and engine’s health, e.g., through general aging or specified engine degradation.
The second inflates the event’s associated cost and revenues to (a) the current simulation
time, (b) a predefined fiscal year for the later calculation of economic metrics, and (c)
the source’s fiscal year. The latter primarily serves verification and debugging purposes.
It should be noted that, given the decades of an aircraft’s operational time, the correct
consideration of the time value of money is crucial. Therefore, the fiscal inflation procedure
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itself uses the Consumper Price Index (CPI) published in [45] for historic simulation times
and a default of 2% annual inflation for future cash flows.

3.2.3. Modularity and Customizability

Apart from software engineering reasons and collaboration advantages, the key reason

behind the modularity is that it enables customization on different levels. As it is highly
difficult to code a framework that, by default, is able to model all relevant aspects of all
potential case studies while not being prohibitive in runtime and complexity, the essential
paradigm was to provide a high-quality standard set of methods and functions with the
ability to be modified and extended through defined interfaces. There are several built-in
ways of customization:

1.

Choosing alternative default methods: The individual modules typically offer different
methods for triggering events and calculating attributes. As it will be described in
more detail in Section 3.3, this includes whether the aircraft is purchased or leased, a
flight schedule is flown sequentially or randomly, maintenance is performed on an
interval and/or condition base, and whether the aircraft is sold or disposed of at its
end of life. These features are well documented and require no coding effort, as all
inputs are provided either through an Excel sheet or configuration text file.

Modify events that are about to be appended: When researchers wish to alter a default
method to recalculate or calibrate an event’s attribute (e.g., cost, revenues, or fuel
burn), they can modify the event right before it will be appended to the calendar. If
this option is set, AirLYFE calls the user written modifying function from within the
simulation and expects a modified event in return, which is shown in the upper part
of Figure 3 (dashed boxes). An example would be an adjustment of fuel burn that
considers airport (e.g., runway altitude) and weather specific parameters (e.g., wind
speed and temperature). This customization represents the lowest level code intrusion,
as the calling mechanisms remain untouched and no new events are created, while
the effort and required coding experience are low.

Add a custom module: If additional events are required, users may write their own
custom module and make it available through the predefined interfaces shown in the
lower part of Figure 3. In this case, AirLYFE runs the initialization as well as the
main function of the custom module in the same way as with the other submodules.
Since the static and dynamic global variables are also accessible, users have a higher
degree of flexibility and can, for instance, trigger a particular maintenance action
by setting the corresponding Remaining Useful Life (RUL) to zero. Examples for
custom events include randomly occurring damages due to foreign objects, a specific
flight event that is not foreseen in the standard schedule, or a specific maintenance
event in which the aircraft undergoes a certain modification leading to a change in
the upcoming maintenance schedule. This includes the execution of airworthiness
directives, service bulletins, or engineering orders. Furthermore, this customization
approach can be used to analyze the impact of predictive maintenance measures by
defining component specific (and possibly non-deterministic) deterioration curves
and the respective maintenance planning actions in the custom module. This type of
adjustment requires a slightly higher coding expertise but offers increased access and
customization to the study at hand.

Replace default modules and procedures: If the general module and function calling
mechanism of LYFE is to be modified, users may replace complete modules or the
entirety of LYFE’s core (i.e., AirLYFE) without having to change the actual source code.
This is possible due to an interface that either calls the default or a user specified set
of modules. In practice, this is usually preceded by a copy and paste of the existing
code, which is then altered to fit the study. An example would involve alternative
ways of scheduling and triggering flights, e.g., with a temporal and spatial driven
demand model or modeling maintenance checks with more detail, e.g., with a process
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and/or spare parts based approach. This customization requires the highest amount
of coding expertise and is thus more suitable for experienced LYFE users.

At the end of an assessment study, the modifications are reviewed by the development
team and, if applicable and useful, incorporated into the next LYFE release. Furthermore,
these files are archived and made accessible through the documentation to other users,
aiming towards a library of best-practices.

3.2.4. Uncertainty Quantification

Additionally to the modular and discrete event approach, LYFE addresses the con-
cerns of practitioners and OEA recipients regarding model and input uncertainties [4]
with an inherent set of features for UQ. This includes sensitivity analyses, built-in Monte
Carlo sampling, and the capability of being run on multiple cores (i.e., parallel computing)
for faster computation times. In an effort to address user friendliness, LYFE creates the
required input files (e.g., for each sample in an MCS) dynamically and incorporates an
automatic random seed management system for repeatability and comparability between
reference and study cases. To do so, users can select any of the predefined or user-specified
parameters to be varied in a top-level .ini file, as shown in Code Excerpt A2 in the
Appendix B. Each parameter can then be assigned a Probability Density Function (PDF),
a lower and upper bound, and a number of samples to create. Available default distribu-
tions include uniform, triangular, and normal, as well as the option to provide discrete
histograms out of which LYFE then creates the random samples. Furthermore, users can
specify whether they wish to perform a local (i.e., one-at-a-time) or global (i.e., combined)
sensitivity analysis. The latter includes the calculation of variance based sensitivity indices
based on Sobol [46], which requires a specific sampling sequence based on Saltelli [47].
Alternatively, the Fourier Amplitude Sensitivity Test (FAST) method from Cukier et al. [48]
is available. For regular MCSs, LYFE can use either Full Factorial Sampling (FFS) or
Latin Hypercube Sampling (LHS).

3.3. Available Modules and Methods

In this section, AirLYFE’s four standard modules (1) Ownership, (2) Operations,
(3) Maintenance, and (4) End of Life are explained, and their default methods are discussed.
Additionally, (5) the aircraft database including the performance maps as well as the (6) air-
port database are presented. Finally, the output generation in terms of (7) a standardized
report is discussed.

3.3.1. Ownership

This submodule covers not only the actual events regarding buying the aircraft but
also handles recurring events or payments which reflect ownership cost, such as insurance,
interest, or lease payments. The ownership costs are therefore

Cpurchase + Cinterest +c insurance (lf bought)
Clease (if leased)

Cown = f(aircraft price) = { 2)

Aircraft Price Estimation: The aircraft price evidently plays a major role for the overall
cost-benefit assessment. Its value can be either set manually or estimated automatically. In
the latter case, a weight based regression on Airbus and Boeing list prices of 2018 [49,50]
with

Prist = $88.9M - m0:3669 _ $254 1M (3)

oew,tons

is used. Figure 6 shows the regression, which has an R? of 0.98. As airlines rarely pay the
list price [51], a discount is included, which defaults to 30%.



Aerospace 2021, 8, 187

13 of 34

2 _ -
R*=0.98 s
$400M |- JPtae
i g ©
3 $300M | /}/’
2 i K
U 7@
& $200M [- 0
Q. ad
S100M f A Airbus
| / @ Boeing
$0M |- - - - - Regression
Il Il Il Il Il Il Il
0 50 100 150 200 250 300

operating empty weight, [kg] x103
Figure 6. LYFE’s default weight dependent estimation of the aircraft list price (in 2018 USD).

Financing: If the aircraft is chosen to be bought, either from the operator’s own money
or loaned from a bank, the ownership module follows the ordering procedure outlined in
Marx et al. [52]. It involves a downpayment of 3%, a delivery payment of 77%, and the
rest distributed equally in annual payments. Insurance is modeled as monthly payments
and is calculated using a constant share of the aircraft price (the default is 0.35% per year).
Interest is modeled using a loan structure with constant principal payments and declining
capital interest payments, as described in Clark [13]. To avoid a doubled weighting of the
aircraft price (i.e., though the purchase and again through the principal payments), only
the capital interest payments are taken into account. If the user chooses leasing, only the
monthly recurring payments are modeled.

3.3.2. Operations

As its name suggests, the operations module deals with the aircraft’s operation, i.e.,
it creates and appends all flight events. Based on a flight schedule which is provided by
the user, the operations module aims to fly the aircraft as often as possible (current work
focuses on the integration of fleet wide operations, which follows a more demand oriented
flight scheduling, see Pohya et al. [33]). Local airport curfews are taken into consideration,
as shown in Figure 7. In this example, the aircraft lands at Airport A and cannot proceed
to Airport B due to an expected landing curfew, shown by path 1. In the second path, a
takeoff curfew at Airport A prohibits the aircraft from flying. In the third and final path,
both takeoff and landing are allowed. After each path trial, the operations module is exited
and the subsequent maintenance module tries to perform due maintenance actions, making
use of the waiting time. Recall Code Excerpt Al for a pseudo code of this process.

A curfew
Ajrport B | ......................................................................................

flight plan

Airport A | .................................
-24h

0:00

waiting time

" \l
Ly 7

Figure 7. The waiting mechanism during curfews.

There are two options for users to define the flight plan. Either a particular route
schedule is specified (which is to be flown sequentially or in a random manner), or a his-
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togram with average routes and frequencies is provided. The former includes information
regarding the origin and destination airports, distances, burned fuel, frequencies, flight
durations, taxi and turnaround times, and the passenger and cargo load factor for each
route, see Figure Al in the Appendix A. Disruptions in the flight schedule, e.g., through
unscheduled maintenance, and their repercussions on the airline’s cost, e.g., through de-
lays and cancellations, are incorporated automatically in LYFE using cost models from
Eurocontrol [53,54]. As each flight comes with its specific expenditures and revenues, their
calculation is explained next.

(a) Flight Revenues

The revenues are comprised of ticket, ancillary, and cargo revenues:

Tops = Tticket (1 + fancillary) + T cargo- (4)

Modeling the revenues directly not only enables the calculation of industry standard
investment metrics such as the NPV or Internal Rate of Return (IRR) but also ensures that
the economic penalty of missing flights (e.g., due to unforeseen maintenance events) are
considered correctly.

Ticket Revenues: By default, the ticket sales are calculated in AirLYFE through a
distance based and seat class differentiated model, based on a regression analysis with R
values between 0.7 and 0.83:

frirst = 0283 - 4,
fpremium =0.126-4,

fbusiness =0212,4d (5)
feconomy =0.078-d (6)

The input data were taken from an extract of a commercially available database (See
Sabre Data & Analytics [55]) reflecting the years 2018 to 2019. Figure 8 depicts the regression
for each of the four classes.

$10k [reconomy I premium economy I-business -first
a R? =0.785 R% =0.713 R? =0.831 R? =0.709
s n ~ 120,000 n = 17,600 n ~ 46,400 n % 20,100
g $5k | L - - -
Z 7 ot 7 i
f’ ———— " _f’;"f.-r y .—"”—
- $0k | BT || e RN | ' | g

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

flown distance, [km]x103

Figure 8. AirLYFE's default distance dependent ticket price model.

Ancillary Revenues: Aside from the ticket prices, ancillary revenues are another
income. These include fees associated with excess or heavy bags, extra leg room seating,
and onboard services (e.g., food or duty-free sales). Based on a study from IdeaWorks [56],
ancillary revenues are modeled using a specified share of ticket revenues, ranging from
7 to 34% and default to 20%.

Cargo Revenues: As a third income element, the operator may transport some cargo
and obtain revenues per carried weight and distance. The internally used value is taken
from the DOC method provided in Risse et al. [20] with

$0.42

ton - km M cargo d 7)

R cargo —
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(b) Flight Costs

The costs of each flight can be broken down to:

Cops = Cfuel T Cerew T Cfees- ®)

Fuel Cost: Fuel cost plays a major role for many assessment cases and depends on the
aircraft’s required fuel burn multiplied by the current fuel price, i.e., Crue] = Mpyel * Pruel (£)-
AirLYFE provides historical fuel price data dating back to 1990 as well as three scenarios
for the future development from 2019 to 2050, which are based on predictions of the US
Department of Transportation [57] considering various macroeconomic assumptions. These
are depicted in Figure 9 where the simulation period of the later performed case study
is highlighted.

$2.0 |- historic
| | - — — base

~ low

50

% $15F high

A i

)

-

Sqol——— pumuang A L

)} -

2 _--

= ! il
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T $0.5 |

=
simulation period of

$0.0 |- K
case study
| | | | . | | |
1990 2000 2010 2020 2030 2040 2050

year

Figure 9. Implemented fuel price scenarios based on US Gulf Coast kerosene-type jet fuel spot price,
taken from the US Energy Information Administration [57].

Navigation and Airport Fees: The cost for Air Navigation Service Providers (ANSP)
and airports are calculated using the model from Liebeck et al. [16], which takes the
Maximum Takeoff Weight (MTOW) in tons as input:

$L5 MTOW (domestic) $0.136

t
, Chay = ————— .500NM - VMTOW  (9)
$45 MTOW (internat.) NM - v/ton

Clanding =

Crew Cost: The costs for the cabin and flight crew are calculated using a recreation
from an Eurocontrol model [54]. This involves (a) a determination of how many crew
members per aircraft are required, (b) the number of required crew complements, and
(c) an estimation of their salary. This model considers not only the number of seats but
also the seating class distribution, the type of aircraft (narrowbody or widebody as well
as the number of decks), and typical salaries for junior and senior crew members as well
as captains and first officers. The user can choose from three available scenarios which
represent low-cost, intermediate, and flagship carrier practices. Thus, the crew costs can be
expressed as:

Cerew = f(aircraft) = cpo + Ccaptain + Cjunior + Csenior (10)

3.3.3. Maintenance

The maintenance module deals with scheduled and unscheduled maintenance, both
of which are explained below.
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(a) Scheduled Maintenance

In the scheduled portion of the maintenance module, the aircraft’s and engine’s
health are constantly monitored. Required and recommended maintenance actions are
automatically triggered, depending on the location, time, and cost. To do so, either a
dedicated maintenance schedule can be provided, or if such information is not available, a
regression based method is used. Additionally, users can define systems and components
for condition based maintenance. In either case, maintenance costs consist of the cost of
material, labor, and fixcost:

Cmnt,sched = Cmaterial =+ Clabor + Cfixcost (11)

The monitoring and triggering process is detailed next, followed by a description of
potential input sources.

Monitoring and Triggering Process: Per default, the performed flight cycles, flight
hours, and age are compared to internally set intervals for each check. If one of these is
reached, the corresponding maintenance event is triggered, created, and appended to the
calendar. This is illustrated in Figure 10 for the A-check (top) and C-check (bottom). Here,
the A-check specific counters continuously increase until the flight hours reach their limit of
750 hin Q4 of 2021, triggering the first A-check and resetting the counters. The next A-check
is then due in Q2 of 2022, caused by the time interval of 120 days. In between, the counters
get reset as well due to a scheduled C-check, which includes the tasks of an A-check in this
example. The hierarchy (i.e., which maintenance events include which) is specified freely
by the user. Additionally, it is possible to define specific condition degradation behaviors
and triggering thresholds for user selected systems and components. The conditions may
represent a generic health index or a specific parameter such as the EGT. The condition’s
degradation can be defined to increase or decrease in a linear, regressive, or progressive
manner with each flight hour, flight cycle, and/or time. This condition based approach
complements the regular interval based maintenance schedule.

800 | A-check FH limit:

w i 790 hours time limit:
g 600 120 days
o 5
U 400
m =
i 200 |
g Of
= : ,
§ m flight hours
g 4000 flight cycles
&
g i —— time passed
]
&
~ 2000 time limit:
g 720 days
% i /

o] PR ———— e e e

| L L | L L | L I | | , |
Q321 Q4-21 Q1-22 Q22
time, [-]

Figure 10. The monitoring and triggering process shown for the A-check and C-check.

Sources for the Input Masks: For aircraft that exist and have gone through their first
major check cycles, the magazine Aircraft Commerce regularly publishes articles covering
interviews with maintenance organizations and aircraft operators. These include not only
a breakdown of the maintenance schedule (e.g., when and which maintenance check is
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due and what it consists of) but also the associated cost. If such an article is available for
the aircraft under investigation, an input mask asks for this schedule and reads the values
right from it. Figure A2 in the Appendix A shows an excerpt of a check based maintenance
file. For new aircraft designs and those that have not been operated long enough to
gather sufficient data, AirLYFE provides a fallback mechanism which is based on the
DOC method from Refs. [19,20]. Since the underlying CER does not differentiate between
different discrete maintenance visits but instead provides annual average maintenance
cost, they are internally translated to letter checks using typical breakdowns published
Aircraft Commerce articles of other aircraft.

(b) Unscheduled Maintenance

Unscheduled maintenance is incorporated with a low level and intermediate level
method. Users can choose between these two, depending on the focus of the Ool. The low
level method does not model explicit events but instead corrects the scheduled mainte-
nance cost using a factor f which represents the unscheduled cost portion of labour and
material. For this, the age dependent model from IATA is used, which is documented in
Suwondo [58] and takes values from 0.5 at the beginning up to 2.3 at the end of an aircraft’s
life. Consequently, the total maintenance cost are

Cmnt,tot = Cmnt,sched + Cmnt,unsched = f * Cmnt,sched- (12)

The intermediate alternative of modeling unscheduled maintenance is currently in
development and requires a simplified and user specified Master Minimum Equipment
List (MMEL), where components under investigation are specified along with their number
and dispatch status (i.e., GO, GO IF, or NO GO), and a cross-reference on the maintenance
schedule where the respective corrective maintenance action is defined. Randomized
failures of these components can then be triggered at any time throughout the simulation
according to a user specified failure function.

A third alternative for users to model unscheduled maintenance is to utilize the custom
module and code their own failure triggering mechanisms and corrective maintenance
actions, which is then integrated into the simulation as described in Section 3.2.3.

3.3.4. End of Life

By default, the trigger that ends the simulation is the lifetime in years but can be set
to any changing parameter within the simulation, e.g., number of flight cycles performed.
The standard option is to sell the aircraft for a residual value. The factor for its calculation
is determined using a regression model based on data from Clark [13], which takes the
aircraft’s body type and its age a (in quarters) as input:

97.8—0.85 - a
f={ 1+0.0065a
19.1+30.2 - exp(—0.014-a +0.5)*> (widebody)

(narrowbody)

The residual value is then calculated using the list price from Equation (3),
i.e, prv = f - piist- Future work focuses on a more detailed alternative that includes the
current condition of the aircraft, following the full-time and half-time valuation in air-
craft finance.

3.3.5. Aircraft Performance Database

AirLYFE provides default performance data for 35 different Airbus and Boeing aircraft,
based on a commercially available mission calculation tool [59]. For this, a full factorial
simulation of each aircraft was performed, and the outputs (i.e., fuel, time, and emissions)
were saved as response surfaces. The inputs cover variations in distance d and payload
mpr, as well as three technology factors, i.e., drag, mass (as a change in Operating Empty
Weight (OEW)), and Specific Fuel Consumption (SFC). The input space for the payload and
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range was mapped with 144 samples (12 each, from min to max), whereas the technology
factor space was covered with 1331 samples (11 each, from —5 to +5%). This is shown in
Figure 11, where the left plot depicts the payload-range boundary, grid points, and the
areas of inter- and extrapolation. The right plot represents the technology factor mapping
which is behind each of the grid points. With these response surfaces, AirLYFE calculates
the fuel burn, flight time, and emissions with a multi-linear interpolation in the five input
dimensions [60], i.e.,

fuel burn = f(d, mpy, Adrag, AOEW, ASFC) (13)

This performance model, which is attached to each aircraft object, allows users to
quickly and easily simulate the impact of a variety of technologies. Furthermore, the impact
of aircraft and engine deterioration can be modeled by gradually increasing the drag or
SFC, e.g., by a certain percentage per flight. Alternatively to this approach, it is possible to
precalculate the required fuel burn per mission and feed this information to the operational
schedule shown in Figure Al.

bounds « grid points

interpolated extrapolated

+15
+10

Y

A block fuel, [%]

+0

-2.5

ol

Il
1000

2000 3000 4000 A drag, [%] -5.0 —5.0
range, [NM]

A SEC, [%]

Figure 11. Aircraft performance response surfaces with a payload-range variation (left) and the impact of the three
technology factors drag, Operating Empty Weight (OEW), and Specific Fuel Consumption (SFC) (right).

3.3.6. Airport and Weather Database

The airport database that was compiled for LYFE comprises about 6000 different
airports worldwide and includes information (all gathered from publicly available sources)
such as:

*  The latitude and longitude (e.g., for calculating great circle distances);

®  The timezone and local curfews (required for the flight schedule);

e  The runway altitude as well as representative weather information including wind
speed, local day and night temperatures, surface pressure, and rainfall.

The weather information includes mean values and standard deviations for each
month, enabling the generation of random but representative weather information. For this
database, publicly available climate data (i.e., European Centre for Medium Range Weather
Forecasts (ECMWF) [61]) from 2017 to 2019 were analyzed on every airport coordinate
and processed. Figure 12 shows a map of the available airports and their average daytime
temperature in July for illustration purposes. These weather parameters are not actively
used per default but are available for users if they wish to model, for instance, a temperature
dependent degradation behavior, as for example in Wehrspohn et al. [62].
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Figure 12. Available airports in LYFE with representative average daytime temperatures in July.

3.3.7. Economics and Report

At the end of a simulation, an Excel based report is generated. In here, different eco-
nomic metrics as well as statistical Key Performance Indicators (KPIs) are calculated.
These include, but are not limited to, the NPV, IRR, LCC, the return on invest, the
benefit-cost-ratio, cost per available seat mile, break even load factor, and KPI break-
downs per flight hour and flight cycle. Out of these, the NPV and IRR are the most
frequent used in investment decision making [13,63]. The former takes the annual cash
flow (CF = revenues — cost) as well as the time value of money (using a discount rate r)
into account and is defined as

ey -y CF 14
L (19

These economic metrics and operational statistics are summarized in the first sheet.
Additional sheets include periodic breakdowns (both annually and monthly), as well as
diagrams for visualization and sanity check purposes. Figure A3 in the Appendix A depicts
the summary sheet with generic information in the upper table, followed by the annual
monetary breakdowns in the lower table.

4. Case Study

Due to the variety of available features, a single use case will not be able to show
LYFE'’s capabilities in their entirety. However, a demonstrative case study can facilitate the
understanding about the default modules and methods as well as show a typical situation
where the framework is customized. For this, the on-wing maintenance action of engine
wash is assessed on an Airbus A321 type of aircraft with respect to its impact on the
operational and economic value. This section begins with providing some background
information on this topic. Next, the methodology for the assessment is presented, including
a description of the custom module which contains decision making algorithm. Finally, the
results in terms of improved fuel efficiency and decrease of operating cost are shown.

4.1. Background and Study Assumptions

Readers that are unfamiliar with aircraft engine maintenance and engine wash find
a brief overview here. Furthermore, the underlying assumptions regarding the aircraft
and engine under study are explained in this section. It is highlighted that this case study
serves demonstrative and representative purposes and was performed using only publicly
available information.
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4.1.1. Basics and Incentive

Aircraft engines are a highly complex and expensive asset which represent about a
fifth of an aircraft’s price. Their maintenance, which constitutes for about 35 to 40% of
the airline’s Direct Maintenance Cost (DMC), can be divided into on-wing and off-wing
measures. Off-wing maintenance are usually ESVs, where the engines receive, depending
on the workscope, a partial or full overhaul [64,65]. These ESVs are typically scheduled
when either the monitored health of the engine approaches a critical value or the RUL
of Life Limited Parts (LLPs) is depleted [66]. The former is typically represented by the
EGT, which increases with the engine’s level of deterioration. Manufacturers specify an
engine-specific upper limit (EGT max) which must not be exceeded due to thermal stress
reasons. ESVs can cost several million dollars and last 4-6 weeks. Considering the high
airworthiness requirements, operators thus strive to keep their engines in good condition
at all times. One additional measure to do is the on-wing engine wash, where water and
cleansing additives are pumped into the engine’s intake. Several Maintenance, Repair,
and Overhaul (MRO) providers and engine manufacturers offer this procedure, such
as Lufthansa Technik [67], General Electric (GE) [68], or Pratt & Whitney [69]. Engine
Wash (EW) removes accumulated dirt, improves fuel efficiency, and decreases EGT up to
15 °C [64]. It is typically performed for one engine at a time for safety reasons and lasts
one to four hours, depending on the provider. The overall effectiveness of EW depends on
multiple factors. Apart from their cost, they include:

e The timing, as dirt has to be accumulated first, before it can be washed away:.

*  The sensitivity of the engine’s SFC on the EGT increase, as this determines the resulting
fuel burn savings. This is cited to be within the range of 0.07 [70,71] to 0.1% [30] of
SFC increase per °C of EGT.

e The fuel price, which determines the potential cost savings an EW can bring.

¢ The value of additional time on wing, since the partial restoration of EGT can lead to
a delay of ESV.

Interested readers are refered to Ackert [64,65] and Hutter [70] for further literature
on engine deterioration and maintenance.

4.1.2. Assumptions and Simplifications

For this study, we have chosen the CFM56-5B3 engine with a simulation lifetime
of 25,000 EFC. For an operational input, the annual flight schedule of an A321-211 from
Finnair based in Helsinki was used. This schedule consists of 1746 flights (53 unique
routes), has an average Engine Flight Hour (EFH)/Engine Flight Cycle (EFC) ratio of 1.6,
and is depicted in Figure 13.

The maintenance schedule for the airframe was built based on an Aircraft Commerce
article [72] and consists of regular transit, pre-flight, daily and weekly checks for line
maintenance, and equalized A-checks and C-checks that are repeated in an six-cycle
manner for base maintenance. Heavy component maintenance and recurring fees for
rotables were also considered. This input schedule is the one shown in Figure A2 in the
Appendix A. The engine maintenance was modeled with automatically triggered ESVs.
If either the Exhaust Gas Temperature Margin (EGTM) approaches zero or the RUL of
one of the LLPs falls below 1% of the LLP margin, the next ESV at the maintenance base
is scheduled. According to Aircraft commerce [66,72], CFM56-5B operators often follow
an alternating ESV workscope strategy, where the core receives a restoration during the
first ESV, and a full overhaul is performed at the second. This was incorporated into
the maintenance input, along with the four groups of LLPs lives (High Pressure Turbine
(HPT), High Pressure Compressor (HPC), fan, and Low Pressure Turbine (LPT)) and their
associated replacement cost.
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Figure 13. Route network of an Airbus A321-211 from Finnair (MSN 1185, Tailsign OH-LZC. Time
period from 1 January 2019 to 31 December 2019 extracted from flightradar24.com (accessed on
1 September 2020)).

For the Exhaust Gas Temperature Increase (EGTI), a simplified EFC dependent model
was created, based on interviews of MRO providers [66]. This increase was divided into
two parts, one due to an increase of wear and tear and one due to the accumulation of
dirt. The shape of the latter was modeled without any available data, solely based on an
educated guess, and is visualized in Figure 14 (blue hatched area), along with the wear
induced EGTI (orange hatched area) and the impact of an engine wash. Note that only
the dirt induced EGTI is removed, and the wear induced EGTI stays unaffected. The
mathematical representation is given in Equations (15) and (16).
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Figure 14. Exhaust Gas Temperature Increase (EGTI) of the CFM56-5B3 including an engine wash.
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EGTi = EGTigin + EGTivear = 79.4 - (1 - 0.999803") (15)
EGTigi = 15 - (1 — 0.9993F¢) (16)

For the translation of EGTI to fuel burn, a value of 0.01% SFC increase per °C of EGTI
was used. Furthermore, the EGTM restoration after an ESV was implemented assuming
that a core restoration reaches 60% and a full overhaul 80% of the original margin of 66 °C.
Other assumptions regarding this study are:

¢  The engines do not switch the aircraft type (e.g., from an A321 to an A320 or A319
after downrating the engine) during their life.

®  One engine wash event costs $ 3000 (including material and labor) and has a duration
of two hours.

*  Only one aircraft with one set of engines is simulated. Engine fleet effects (e.g., spare
parts management) are neglected.

. Unless otherwise specified, the default methods for calculating cost and revenues
are used.

e The entry into service of the aircraft is January 2000.

4.2. Methodology and Module Modification

The study comprises two simulations. The first serves as a reference and does not take
any EWs into account. In the second simulation, EWs are triggered by an optimization
algorithm, which is implemented into the custom module of AirLYFE. The overall effec-
tiveness is then compared to the reference case using the total EW cost and saved fuel cost
as economic KPIs and the fuel efficiency improvements as an operational metric.

The implemented algorithm triggers an engine wash event only when the predicted
fuel savings outweigh the cost of the cleaning. As Figure 15 shows, the first step is to
predict the future engine health based on its current state and forecast the RUL, i.e., the
number of flight cycles left until an ESV is triggered. Then, two EGTI predictions are
performed: one assuming that no EW is scheduled, and the other assumes an EW event
before the next flight. Both curves are then translated to ASFC forecasts. For the next step,
the average flown mission (in terms of payload and range) is fed to the aircraft performance
model, along with the two ASFC vectors. This results in two vectors for the fuel burn, one
with a washed and the other with an unwashed engine. These are then transformed to
absolute fuel cost savings using the last paid fuel price. If these fuel cost savings are greater
than the cost for an engine wash, it will be scheduled for the next opportunity. It should be
noted that the average flown mission was chosen intentionally over using the actual future
flight schedule in order to be slightly more realistic in the prediction. The same applies for
the underlying fuel price, i.e., although the future fuel price is theoretically available, the
latest paid price is used in the decision making, intentionally introducing an imperfection
in the forecast.

A pseudo code of the custom module, which also includes the engine deterioration
specified by Equations (15) and (16) is given in Code Excerpt A3 in the Appendix B. To
speed up the computational time, the EGTI is precalculated in the init () function and
used as a lookup table in the main () function. This also contains the triggering mechanism
of the ESVs and the decision of workscope, i.e., which LLPs to include.

Apart from the custom module, only the report generation has been modified to
capture repeated snapshots of the engine’s EGT and fuel efficiency.
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Figure 15. Decision making algorithm for triggering fuel cost optimized EW events.

4.3. Results

The results of the demonstrative study are also divided into two categories: those
of the reference simulation (without any engine cleaning procedures) and those with the
fuel cost optimization strategy in place. Note that all monetary values refer to the fiscal
year 2021.

4.3.1. Reference Case (No Engine Wash)

In order to facilitate the interpretation of assessment results, the reference to which the
study case is compared has to be well understood. Therefore, its overall economic results
are presented first, followed by a more detailed look into the unwashed engines’ condition
and fuel performance.

Figure 16 (top left) shows the cashflow in terms of the aircraft’s annual revenues
and expenditures as well as the NPV from 1996 (where the aircraft is ordered) until 2014
(where the 25,000 flight cycle limit terminates the simulation). Three typical periods can be
distinguished: (a) the non-operating phase in the first few years, where the aircraft is in
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production and first payments are due but no revenues are generated (1996-2000), (b) the
first part of the operating phase, where the aircraft is flying and creating a positive cash
flow but the NPV is still negative due to the previous financial burden (2000-2005), and (c)
the second part of the operating phase, where the NPV is positive and the aircraft is adding
economic value for the operator. In the final year, the costs and revenues are reduced
significantly due to the fact that the simulation ends before the end of 2017, i.e., this year is
not fully exploited, leading to a final NPV of $65.6M. The other three plots of Figure 16
provide a more detailed breakdown of the operating cost. The ownership costs (bottom
left) show, apart from the dominating purchase cost, the declining payments for capital
interest and the constant and comparatively low insurance cost. The flyaway costs (top
right) comprise crew expenses, fees, and fuel cost. The constant character of the navigation
and airport charges indicates a fairly constant annual utilization. The high variation of
the fuel cost can be explained by the historic fuel price change from initially $0.25/kg
in 2000 to $1/kg between 2011 and 2014 and back to $0.5/kg between 2015 and 2017
(see Figure 9). The annual maintenance cost breakdown (bottom right) reveals a highly
fluctuating behavior, with a honeymoon phase (low cost due to the aircraft being new) in
the beginning and several distinct peaks in the mature phase. These peaks are due to heavy
component maintenance, larger base checks, and/or ESVs.
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Figure 16. Graphical visualization of overall economics (top left), ownership cost (bottom left), flyaway cost (top right),
and maintenance cost (bottom right).

With the focus of the present study on EW, the engines’ condition is of primary
interest. Figure 17 shows the course of the monitored parameters EGT (top) and fuel
efficiency (bottom). As the top plot shows, the regressive EGTI triggers the first ESV at
about 9000 flight cycles. The performed workscope restores 60% ~ 40 °C of EGTM. The
second ESV at 12,540 flight cycles, which is again triggered by the consumed EGTM, is able
to restore 80% ~ 53 °C of EGTM (due to the full overhaul workscope) and additionally
replaces the LLPs of the HPT section. The subsequent three ESVs are triggered by the LLPs
of the HPC, fan and LPT section (in this order). The EGT at these ESVs is fairly close to
the EGT may, indicating an overall efficient engine maintenance schedule. Its restoration is
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slightly lower since it is assumed that only a certain condition of the overhauled engine
can be reached. In the bottom plot, the fuel efficiency 7, shows a spread from 2.5 to
3.4 (L/pax/100km), originating from (a) the wide spread of flown distances (ranging from
360 to 1820 NM) and (b) the effect of the engine deterioration on SFC. Depending on the
performed workscope, an ESV leads to an improvement of #,.; 0of 0.1 to 0.15L/pax/100 km
(=3 to 6%, depending on the route). It should be noted that the occurrence of ESVs, their
cause (EGT or LLP), and the resulting fuel efficiency values are well in line with the practice
reported by A321 and CEM56-5B3 operators in Aircraft Commerce [72].
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Figure 17. Development of Exhaust Gas Temperature (EGT) (top) and fuel efficiency (bottom) of the
reference case, i.e., without Engine Wash.

4.3.2. Fuel Cost Optimized Use of EW

The effect of the automatically triggered EWs on the engine’s health, fuel efficiency and
overall resulting fuel savings can be seen in Figure 18. In total, the optimization algorithm
schedules 216 cleaning events, distributed into five periods. The number of EWs per period
correlates with the fluctuating fuel price and is lower in the beginning (i.e., between 0 and
3200 EFC, where 10 EW events are triggered at a fuel price of $0.25 per kg) and higher in
the later phases (e.g., between 17,000 and 20,000 EFC, where 23 EW events are triggered at
$1 per kg). This leads to an improved but fluctuating fuel efficiency improvement as shown
in the center plot, ranging from zero to 1.9%. Accumulated throughout the simulation,
this improvement leads to fuel and CO; savings of 780 and 2500 tons, respectively (these
are not shown but can be approximated well with ACO, = 3.18 - Afuel). As the spikes
in EGT and Ar¢,e) show, the optimization algorithm tends to schedule cleaning events in
the beginning of each period. The reason for this is that with each performed EFC, the
prognostic horizon (i.e., number of EFC until the next ESV) decreases, which in turn leads
to smaller potential fuel savings that need to outweigh the EW cost. In other words, it is not
useful to perform an EW shortly before an ESV, as the EGT will be restored soon anyway.
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Figure 18. Effects of EW on the EGT (top), fuel efficiency (center), and accumulated fuel burn
(bottom).

As for the impact of EW on airline economics, Figure 19 reveals that a total of $ 300k
is spent for the cleaning events, while $ 462k are saved through the improved fuel burn,
leaving an added value of $ 162k for the operator. As the bottom plot shows, the predictive
nature of the optimization algorithm leads to an initially negative economic performance,
as the accumulated fuel cost savings do not yet compensate the accumulated EW cost.
After about two years and 2900 EFC, the profitable phase begins, which shows increasing
overall operating cost savings. The fluctuating behavior is caused by several factors. For
one, the scheduling process does not forecast the actual flown schedule but extrapolates
it in a simplified manner from the average distance and utilization, leading to slightly
different savings than expected. Furthermore, the fuel price development is chosen to be
unknown to the algorithm (as it more accurately represents the reality), which also affects
the anticipated cost savings.

Despite being a demonstrative and simplified assessment, this example provides
meaningful insights, explainable repercussions, and directions for further studies in this
area. The latter may include the effects of EW on the subsequent ESV workscope, a more
detailed modeling approach for the EGTI, alternative optimization algorithms, or the
systematic treatment of uncertainties in the prognosis. This also includes a validation of the
EGTI models and its repercussions on the SFC, fuel burn, and ultimately cost savings. In
light of the presented LYFE framework, this example aimed to show the advantages of the
available aircraft performance databases (where no additional fuel burn calculations were
required) as well as the usefulness of the customization interfaces, where a user-written
and study specific module (including the engine degradation model and optimization
algorithm) was seamlessly incorporated with little effort, while no alterations of the source
code or general structure of LYFE were necessary.
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Figure 19. Accumulated fuel cost changes (compared to the reference, (top)) and accumulated engine
wash cost (bottom).

5. Summary and Outlook

This paper presented a generic assessment framework for aeronautical applications
named Life Cycle Cash Flow Environment (LYFE). LYFE aims to replace the conventional
and prevalent Cost Estimation Relationship based methods, which suffer from a range of
limitations. Based on a discrete event simulation, the presented tool is capable of capturing
primary (i.e., immediate) and secondary (i.e., time delayed) effects of various changes
in a product’s life cycle. This includes, but is not limited to, the integration of physical
technologies, the degradation of structures and systems, specific maintenance actions, and
operational decision making. The modular structure and customizable nature of the frame-
work facilitates this wide range of applicability. For demonstrative purposes, the process
of on-wing engine cleaning was evaluated on an CFM56-5B engine of an Airbus A321
aircraft. This included a custom module which contained an engine deterioration model
and a predictive Engine Wash scheduling algorithm that aimed to minimize operating
cost. Hereby, interrelations between the engine’s health, its manifestation in the Specific
Fuel Consumption, the partial Exhaust Gas Temperature restoration capabilities of Engine
Washes and Engine Shop Visits, and the exchange of Life Limited Parts were considered in
the assessment. The results have revealed valuable insights and potential directions for
future work in this area. Apart from that, the general future LYFE development will focus
on improving user friendliness and further detailing the default modules, with the intent
of being the standardized and publicly available cost-benefit tool for aeronautical product
evaluations.
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Appendix A. Input and Output Screenshots
) , ) Discrete Route Based
Institute of Maintenance, 4 .1 Aircraft Lifecycle .
DLR Repair and Overhaul Cashflow Environment Fllght Schedule Input
TYPE NAME ORIG DEST DIST DIST FREQ DUR TAX_IN TAT TAX_OUT FUEL PLF CLF
type of name of origin destination | great circle flown duration taxi-in turnaround | taxi-out payload cargoload
the event | the event airport airport distance distance (block time} time time time factor factor
str str str str float, km float, km t time, hh:ss | time, hhss | time, hh:ss | time, hhss float, kg float, % float, %
Flight HEL_CPH HEL CPH 893 973 1:28 0:30 0:d3 0:30 80% %
Flight CPH_HEL CPH HEL 893 920 1:15 0:30 1:09 0:30 80% 0%
Flight HEL_RVN HEL RN 697 941 1:05 0:30 0:34 0:30 80% 0%
Flight RVN_HEL RN HEL 697 655 1:03 0:30 2:56 0:30 80% 0%
Flight O5L_HEL OSL HEL 764 787 1:08 0:30 8:53 0:30 80% 0%
Figure A1. Excerpt of LYFE’s Excel-based input mask for discrete flight operations.
) ) ) , Discrete Schedule Based
Institute of Maintenance, ARl Aircraft Lifecycle R
DLR Repair and Overhaul Cashflow Environment Ma|ntenance |nput
NAME TYPE REPT INCL DUR INT_FH INT_FC INT_DD MH_R MH_NR MH_TOT FIXCOST MATERIAL  LABRATE FISCYEAR
name of the | type of the | repetition included downtime interval interval interval manhours | manhours | manhours fixcost materials / labor rate | fiscal vear
event event type in other? duration flighthour | flightcycle days routine other total consumables ¥
str str str str float, hrs float, hrs float float, days | float, hrs float, hrs float, hrs float § float, § float, § int
Preflight |line repetitive Daily 0,5 1 V] 0,5 0] 0,5 % - 3 715 70 2006
Daily line repetitive Weekly 1 1,25 2 2 4 5 5 350 | § 70 2006
Weekly |line repetitive none 2 - 7 3.7 76 11,3] % 3 700 % 70 2006
Al line repetitive C 2 750 120 95 175 270 % 3 6339 3 70 20
A2 line repetitive C 2 750 120 162 299 461( 3 10810 3 70 20m
A3 line repetitive C 2 750 120 95 175 270 % 3 6339 S 70 20m
Ad line repetitive C 2 750 - 120 210 388 598| 3 14012 % 70 20m
a1 base repetitive  [none 48 7500 5625 720 3000 1160 4160( § § 37000 % 70 2017
c2 base repetitive  [none 160 7500 3625 720 3700 1104 4804( § § 50000 % 70 2017
3 base repetitve  [none 43 7500 5625 720 5800 1944 7744| § § 80000\ % 70 2017
c4 base repetitve  [none 518 7500 5625 720 4200 1181 5381| ¢ 3§ 40000| % 70 2017
5 base repetitive none 48 7500 5625 720 3400 1364 4764 $ 3 50000 | 3 70 2017
€3 base repetitive none 160 7500 5625 720 9000 9000 18000( $ - 3 20000 | 3 70 2017
LDG h-comp repetitive none 24 28000 18350 36500 - - -] $ 348650 % - 3 70 2006
BRKS h-comp repetitive none 4 2100 - 5 134400 % 5 70 2006
TYR-MNT repetitive  [TYR-RPL 2 1500 5 9.600| % 5 70 2006
TYR-REPL |h-comp repetitive none 4 6000 5 6400 % 5 70 2006
WHLS  |h-comp repetitive none 4 300 3 1.800 | § 3 70 2006
THR-REV  |h-comp repetitive none 5] 12000 5 348000 % 3 70 2006
APU h-comp repetitive none 12 4600 5 200000 S 3 70 2006

Figure A2. Excerpt of LYFE’s Excel-based input mask for discrete scheduled maintenance.
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#7 _ i! _ _ Results
Institute of Maintenance, Arll Aircraft Lifecycle
DLR Repair and Overhaul Cashflow Environment -Summa ry Sheet -
Info Simulation General
User A_Pohya Beg 13:56:21 EIS 1996-01
Project |EW_demo End 13:57:33 Lifetime 30
Case Reference Dur 72,82 RefPeriod |1995-01
KPI Value | Unit ‘ Description
NPV 21518738 UsSD MNet Present Value
IRR 14 % Internal Rate of Return
ROI 32,21 % Return on Invest
BCR 132,21 % Benefit to Cost Ratio
BEP 2007-6 - Break Even Period
PBP 2005-10 - Payback Period
CASK 0,0362 USD Cost per Available Seat Kilometre
CASM 0,0670 USD Cost per Available Seat Mile
BELF 59,44 % Break Even Load Factor
KPI Unit | perFC ‘ perFH | perMonth | perYear | perlife | Description
COST uso 8.275 5.347 820,956 9.851.477 206.881.011 Total Cost
REVS uso 10.941 7.069  1.085.379 13.024544 273515418 Total Revenues
CASH uso 2.665 1.722 264422 3.173.067 66.634 407 Total Cashflow
TMC UsD 1.951 1.260 193502 2322024  48.762.505 Maintenance Cost
KPI Unit | perFC ‘ perFH | perMonth | perYear | perLife | Description
FC hrs 1 1 99 1.190 25.000 Flightcycles
FH hrs 1,55 1,00 153,54 1.842,49 38.692,25 Flighthours
BH hrs 2,55 1.65 252,75 3.032,96 63.692,25 Blockhours
Dkm km 1075 695 106.681 1280175 26.883 672 Distance
DNM M 581 375 57.603 691.239 14.516.022 Distance
ASK km 224747 145215 22.296.379 267.556.545 5.618.687.448 Available Seat Kilometres
ASM NI 121.354 78410 12.039.081 144468977 3.033.848.514 Available Seat Miles
RPK km 179.798 116.172  23.169.845 214045 236 4494 949 958 Revenue Passenger Kilometres
RPM NIV 97.083 62.728 12.510.716 115.575.181 2.427.078.811 Revenue Passenger Miles

#7 ; ; i! . . Results
Institute of Maintenance, Aarll Aircraft Lifecycle
DLR Repair and Overhaul Cashflow Environment - Cost Breakdown Sheet -
OWNERSHIP FLYAWAY MAINTENANCE

YEAR PURCHASE | INTEREST | INSURANCE FUEL | FEES | CREW ESVs [ H-COMPs | BASE | LINE | suepoRrT
1996 $ 1282537 % % $ % - % % % - % - $ b}

1897 § 2850082 ¢ g S S - S g g S g S

1898 § 2850082 § S S S - S S g S $ S

1299 $ 2850082 § - 3 - S - S - S - S g - g $ - S -
2000 $32918442 § 3048004 § 149629|51.093989 $3063292 $1452624(5%5 § 14061 5 - $ 296819 § 429398
2001 % - $ 3106589 § 1496295 956376 $3045703 $1452624 (% $ 115661 % 204054 § 343383 § 439381
2002 g § 2878582 § 1496295 922642 $3.065245 $1452624 (% § 266851 % - ¢ 346066 § 439340
2003 S § 2650576 § 1496295109689 $2996868 $1452624(% § 18899 S 240164 § 378199 § 439595
2004 S § 2422569 § 149629 51558475 $3.086.735 $1.452624 (5% - § 17021 S - $ 345700 § 438516
2005 3 § 2020391 § 137.160| 52308215 $3.039848 $1331572(% 652387 § 266851 5 386770 § 341668 3§ 402.136
2006 3 $ 1985557 § 149629 (32564208 $3.061.336 $1452624(5%5 - g 115661 5 - $ 345288 3§ 438769
2007 % $ 1619796 § 137.160| 52697731 $2887468 $1331572(% - $ 281970 % 259059 § 333842 § 402145
2008 g § 1548544 § 149629 5$3879363 $£3.063.291 $1452624(% 240619 § 266851 S - $ 381485 § 436592
2009 S § 1320538 § 149629(52.199292 $3.035937 $1452624 (% - § 115661 § 238423 § 344875 § 437.109
2010 3 $ 1.092531 § 149629 (52907827 $3.071.110 $1452624(% 652387 § 117021 S - $ 347510 § 437332
2011 3 § 801190 § 137.160 | 33898143 $2989054 $1331572(% - § 433652 5 839344 § 342224 5§ 401.033
2012 % $ 655519 § 149629|54100708 $3063288 51452624 (% B40619 § 115661 % - $ 384977 § 437221
2013 g § 427512 § 149629 (53762981 $3.016403 $1452624 (5% - § 115661 § 839344 § 338112 § 437369
2014 g § 199506 § 149629 53602945 $£3.053523 $1452624 (5% - § 266851 % - $ 343732 § 437344
2015 S g 28501 § 149629|52010.125 $2975378 $1452624 |5 652387 § 281970 § 839344 § 338509 § 437369
2016 3 g 1583 § 124695 171390 § 326257 § 121052|% - g 1361 % - $ 62899 5 36391

Figure A3. Excerpt of AirLYFE’s Excel-based report with summary sheet (top) and annual cost breakdown sheet (bottom).
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Appendix B. Code and Configuration Excerpts

Code Excerpt Al. Pseudo code of a default module.

%MDPI Please put the caption align left like the figure captions.
#2import statements, including the Event Calendar
MBLB = ModuleGlobals() # Available throughout Module
4
def init(): # Called before the while loop
MELB.routes = load_routes(config)
MGLB.airports = load_airports()
8
def main(EvCal): # Called within the while loop
if is_due(EvCal):
évent = create_flight_event()
if modify():
évent = modify_event (event)
EfCal.append_event (event)
15
réturn EvCal
17
#8Auxiliary Functions
def is_due(EvCal):
takeoff_allowed = check_takeoff_curfews(EvCal)
2anding_allowed = check_landing_curfews(EvCal)
if takeoff_allowed and landing_allowed:
zeturn True
else:
feturn False

Code Excerpt A2. Example input mask for UQ.

1
ug_type = mcs # <none>, <local>, <global>, <mcs>
g8a_type = none # <none>, <sobol>, <fast>
més_sampling = lhs # <ffs>, <lhs>

5

8
diration_A_check_hrs_pdf = uniform
dération_A_check_hrs_min = 2
diration_A_check_hrs_max 6
diration_A_check_hrs_num = 1000

11

1z

fielprice_pdf = normal

féelprice_min = 1.5

fuelprice_min = 3.0

ftielprice_avg = 2.0

fielprice_sig = 0.2

fielprice_num = 3000
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Code Excerpt A3. Pseudo code of the custom module.

#limport statements, including the MGLBs of the maintenance and
#2operations module as well as the aircraft (stored in <GLBS>)
MBLB = ModuleGlobals() # Available throughout Module

4

def init():

#6precalculate deterioration curves (both wear&tear and dirt)
#7as lookup tables for faster performance saved to MGLB.
MBLB.engine_deterioration = calc_eng_deterioration()

9

def main(EvCal):

#1Let the aircraft age with every performed flight
GDBS.aircraft.engine.sfc_factor = deteriorate()

13

#4Model and monitor EGTI and trigger required

#5actions, e.g. ESVs and EWs.

éfi_due = optimization_algorithm()

&8v_due = monitor_and_trigger_esv()

18

#9Disable EW for the reference case
if GLBS.case_name == ’reference’:
ew_due = False

22

2¥ ew_due: # trigger engine wash.

#4this automatically restores EGTM partially
25. # (call auxiliary functions)

26 esv_due: # trigger engine shop visit.
#7this automatically considers LLP maintenance
28. # (call auxiliary functions)

29

30.# auxiliary functions
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