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Abstract: Small unmanned aerial systems (UASs) present many potential solutions and enhancements
to industry today but equally pose a significant security challenge. We only need to look at the
levels of disruption caused by UASs at airports in recent years. The accuracy of UAS detection and
classification systems based on radio frequency (RF) signals can be hindered by other interfering
signals present in the same frequency band, such as Bluetooth and Wi-Fi devices. In this paper,
we evaluate the effect of real-world interference from Bluetooth and Wi-Fi signals concurrently on
convolutional neural network (CNN) feature extraction and machine learning classification of UASs.
We assess multiple UASs that operate using different transmission systems: Wi-Fi, Lightbridge 2.0,
OcuSync 1.0, OcuSync 2.0 and the recently released OcuSync 3.0. We consider 7 popular UASs,
evaluating 2 class UAS detection, 8 class UAS type classification and 21 class UAS flight mode
classification. Our results show that the process of CNN feature extraction using transfer learning
and machine learning classification is fairly robust in the presence of real-world interference. We
also show that UASs that are operating using the same transmission system can be distinguished. In
the presence of interference from both Bluetooth and Wi-Fi signals, our results show 100% accuracy
for UAV detection (2 classes), 98.1% (+/−0.4%) for UAV type classification (8 classes) and 95.4%
(+/−0.3%) for UAV flight mode classification (21 classes).

Keywords: unmanned aerial vehicles; unmanned aerial systems; interference; UAS detection; RF
spectrum analysis; machine learning classification; deep learning; convolutional neural network;
transfer learning; signal analysis

1. Introduction

Deloitte Economics recently reported that UASs could tackle issues in industry prob-
lems, such as logistics and road congestion [1]. In the UK, the Royal Mail have started
a trial using UASs for mail delivery to remote parts of the island [2]. The current scope
of the benefits UASs could bring to the economy has been branded limitless. However,
in February 2021, concerns were raised over small UASs that could be purchased at retail
shops such as Costco and the need for dependable countermeasures [3]. Nassi et al. [4]
consider societal threats, in particular those surrounding security and privacy for areas
that allow UAS flights. Nassi et al. highlighted the ‘detection purpose problem’ asking
the question, how do you know whether a UAS flying over a back garden is delivering a
pizza or being used for illegitimate purposes? They suggest ways of authenticating UASs
and UAS operators. Altawy and Youssef [5] consider security, safety and privacy issues
raised by UAS use in national airspace and conclude that security will enable the next
generation of UAS. Lykou et al. [6] consider asymmetric threats to Airports from UASs in
three categories: spying; carrying chemical radiological, biological, nuclear and explosive
materials; and conducting cyber-attacks. Since 2016, a number of security incidents have
occurred around airports and other buildings deemed critical national infrastructure.
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The Department for Transport, the Military Aviation Authority and the British Airline
Pilots’ Association commissioned a study to consider whether critical damage (major
structural damage) could occur from mid-air collisions between UASs and manned aircraft.
The report showed that helicopter windscreens, especially those which were not bird strike
certified, were vulnerable to UASs weighing 400 g, as were tail rotors. Passenger airlines
were more resilient, showing critical damage to occur with 2 kg UASs, but in both cases,
the structure of the UAS also had an effect on the damage [7]. The last UK AIRPROX
board summary for 2019 reported 125 aircraft to small UAS incidents with a 62% chance
of an encounter with a small UAS being risk bearing [8]. Incidents with small UASs are
not always illegitimate; for example, a small UAS being used for demonstration purposes
at Goodwood Aerodrome lost control and crashed close to an active airport airspace [9].
The largest incident to disrupt airport activities happened in 2018 at Gatwick Airport.
Table 1 shows a selection of events that have disrupted airports since December 2018, but
this is by no means an exhaustive list.

Table 1. UAS Airport Disruptions.

Date Location Observation Disruption

2021 Auckland Airport, New
Zealand [10]

Pilot sighting of drone 30 m from
helicopter and 5 m above Flights grounded 15 min

2021
Piedmont Triad International
Airport, North Carolina Airport,
USA [11]

Drone sightings over airport Flights suspended 2 h, 1 flight diverted

2020 Adolfo Suárez-Barajas Airport,
Spain [12] 2 pilot sightings of drones Flights grounded 1 h, 26 flights diverted

2020 Frankfurt Airport, Germany [13] Pilot sighting of drone Flights grounded 2 h, flights diverted
and cancelled

2020 Stansted Airport, UK [14] Military helicopter confirmed sighting of
drone No flight disruption, one police arrest made

2019 Changi Airport, Singapore [15] Drone sightings in vicinity of airport 37 flights delayed, 1 flight diverted

2019 Dubai Airport [16] Drone sightings in vicinity of airport 30 min suspension of flights

2019 Dublin Airport, Ireland [17] Pilot sighting of drone Flights grounded 30 min, 3 flights diverted

2019 Frankfurt Airport, Germany [18] Sighting of drone Flights grounded 1 h, 100 take-offs and
landings were cancelled

2019 Frankfurt Airport, Germany [19] Sighting of drone Flights grounded 30 min

2019 Heathrow Airport, UK [20] Undisclosed number of sightings Flights grounded for 1 h

2019 Heathrow Airport, UK [21] Heathrow Pause group planned drone
flights to disrupt flights 1 attempted flight which was unsuccessful

2019 Kansai International Airport,
Japan [22]

Drone sighted hovering near terminal and
flying over runway 1 week prior aircrew
sighting of drone in vicinity of incoming
aircraft

1 h suspension flights 40 min suspension
of flights

2019 Newark Airport, USA [23]
2 pilot sightings on route into Newark,
above Teterboro airport, drone coming
within 9 m of aircraft

Flights disrupted for short duration

2018 Gatwick Airport, UK [24] 170 sightings, 115 sightings deemed
credible

Airport closed for 33 h, 1000 flights cancelled,
140,000 passengers affects at a cost of GBP
50 million. 18 month police operation costing
GBP 800,000 across 5 different forces.

A number of different ways of detecting and classifying UASs are being researched and
implemented today, including a number of significant European Projects. The European
ALADDIN project integrates RADAR, acoustic and optical sensors to perform detection,
classification and localisation with a command and control node. The project boasts an
integrated system that counters malicious UASs [25]. Another project called SafeShore
aims to detect UAS launching from boats and people in the sea. The project seeks to achieve
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this using three-dimensional LIDAR integrated with acoustic, radio and imagery data [26].
While current research and development programs, such as SafeShore and ALADDIN,
look to combine and integrate various types of detection and classification methods, each
individual method is still advancing with current research.

With respect to current literature we will first consider audio detection and classifica-
tion methods. Many commercial UASs have an audio signature at 200 Hz, and detection
methods have been evaluated using microphone arrays. Mezei et al. [27] use correlation
with varied results, improving with the use of high-quality microphones and a larger sam-
pling rate. We note that this technique succeeded with a technique using feature extraction
and machine learning techniques in [28,29]. This method is short range at 100 m [27] and
has shown to be susceptible to noise [30]. Shi et al. [29] design a detection and localisation
system using audio signals and an array of microphones. The system works in real time
and uses TDOA and a Bayesian filter for localisation.

Another well-documented detection and classification method is the use of video and
imagery data. Thai et al. [31] use a CNN for feature extraction of motion patterns and
k-nearest neighbour (kNN) to classify results. Schumann et al. [32] use a convolutional
neural network (CNN) to detect UASs for the birds vs. drones competition. They find that
when they increase the training data to include images from the web from many varied
scenarios, their results increase in accuracy. The birds vs. drones challenge [33] is set up
because drones can be confused with birds. As such, false detection rates have shown to
be high with video detection methods [30]. Coluccia et al. [34] consider the results of
the 2020 drones vs. birds competition and in particular consider the top three performing
algorithms. They observed the biggest challenges to be detection at a distance and moving
cameras, recommending that training and test data be expanded to include this. Further,
discrimination between birds and UASs becomes considerably harder with distance.

RADAR has been shown to be very effective at detecting aircraft across large distances
but has failed when trying to detect smaller UASs. This is determined to be due to
their size and lack of noise and signal emissions [30]. Mendis et al. [35] use a radar
sensor and a deep belief network (DBN) to classify three types of micro UASs with an
accuracy of over 90%, but the paper only considered a lab environment. Zulkifli and
Balleri [36] design and develop a radar system to detect nano-drones using a micro-Doppler
technique. Semkin et al. [37] consider radar cross-sections for detection and classification
in urban environments and suggest further work to include the use of machine learning.
Practical issues with RADAR detection systems include the cost of implementation and
the requirement for licenses for transmission [6]. Andraši et al. [38] consider thermal
detection using heat signatures and found that engines that were electrically powered
(compared to fuel powered) only gave off a very small signature as they were so efficient.
However, the heat from the batteries instead of the motors could provide a signature for
detection at night time, but a human in the loop was required due to noise interference.
Yaacoub et al. [30] suggest that thermal detection systems are associated not only with
high cost, like with RADAR, but short detection distances and low detection accuracy.
Coluccia et al. [39] provide a comprehensive review of radar systems for UAS detection
and classification. They consider the main challenges relating to detection, verification and
classification. They also focus on the latest technology with respect to frequency modulated
continuous wave (FMCW) radar and spatially distributed sensors. Passafiume et al. [40]
investigate the reliability of FMCW radar images for the classification of a UAS by the
amount of motors it has, and they rule out the rotation speed from effecting classification.

RF detection systems boast advantages such as range, cost and the ability to perform
triangulation to determine location. RF systems in conjunction with machine learning
have proven successful in recent research [41–45]. RF has its own challenges as with
the other detection methods previously discussed. It requires an active RF signal with
the controller, and it suffers from interference in congested RF environments [6]. This
paper extends previous work conducted by Swinney and Woods [44,45] by expanding the
open ‘DroneDetect’ dataset [46] to 21 classes for 7 UAS types and flight modes to include
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hovering, switched on but not taken off and flying. Secondly, the work on interference
is extended to the evaluation of environments where both Bluetooth and Wi-Fi signals
are present concurrently. The paper is constructed as follows: Section 2 discusses the
methodology, Section 3 the results and Section 4 the conclusions.

2. Materials and Methods
2.1. Experimental Setup

The experimental setup can be seen in Figure 1, and it was used to create the DroneDe-
tect dataset [46]. The yellow box shows the laptop that is running GNURadio. GNURadio
is an open-source toolkit designed for signal processing with SDRs [47], and it was used to
capture the signals.

Figure 1. Experimental Setup.

The SDR used in our experiments was the BladeRF by Nuand. It has a frequency range
of 47 MHz to 6 GHz and is low cost at USD 480 [48]. The Palm Tree Vivaldi Antenna [49,50]
with a frequency range of 800 MHz to 6 GHz was chosen due to its small, portable and low
cost ($18.99 [51]) attributes. Signals were recorded with a centre frequency of 2.4375 GHz
and a sample rate of 60 MBits/s over a 28 MHz bandwidth. Each sample was the result
of 20 ms of recording time in complex form, and the dataset comprised of 500 samples
per class. Table 2 describes the classes evaluated over a mix of quadcopter and fixed-wing
UAS. To capture the class ‘switched on’, the UAS and controller were placed 4 m from the
antenna on the ground. Hovering was conducted at an altitude of 20 m and flying at an
altitude of 20 m within a radius of 40 m around the antenna. Bluetooth interference was
added by playing music through an end device (JBL Charge Bluetooth Speaker) placed
2 m from the antenna and the connecting phone next to the antenna. Wi-Fi interference
was added by playing a YouTube video over a phone hotspot, end device (Apple MacBook)
placed 2 m from the antenna and a connected phone hotspot next to the antenna. Both
interference sources were active during dataset collection.

2.2. Graphical Signal Representation

For each 20 ms sample, a power spectral density (PSD) and spectrogram were plotted
using Python3 MatplotLib using 1024 FFT, a Hanning window and a 120 overlap. PSD is
a representation in the frequency domain considering the power distribution at various
frequencies. The spectrogram provides a representation of the power of the signal in
the time domain. Considering the signal in different graphical representations allows us
to benefit from transfer learning, a technique shown by Swinney and Woods in [44,45].
Figure 2 shows a capture of the spectrum in the time domain where no UAS signals
are present, only the interference. The yellow bursts of horizontal activity represent the
Bluetooth signal, and the larger vertical band spanning the lower end of the frequency
range at the beginning of the time frame is the Wi-Fi signal.
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Table 2. UAS Classes.

Classification Type Class Description

Detection 1 No UAS detected
Detection 2 UAS detected
midrule Type 1 No UAS detected
Type 2 Mavic 2 Air S detected
Type 3 Parrot Disco detected
Type 4 Inspire 2 Pro detected
Type 5 Mavic Pro detected
Type 6 Mavic Pro 2 detected
Type 7 Mavic Mini detected
Type 8 Phantom 4 detected
midruleFlight Mode 1 No UAS detected
Flight Mode 2 Air Mode 1—Switched on
Flight Mode 3 Air Mode 2—Hovering
Flight Mode 4 Air Mode 3—Flying
Flight Mode 5 Disco Mode 1—Switched on
Flight Mode 6 Disco Mode 3—Flying
Flight Mode 7 Inspire Mode 1—Switched on
Flight Mode 8 Inspire Mode 2—Hovering
Flight Mode 9 Inspire Mode 3—Flying
Flight Mode 10 Mavic 1 Mode 1—Switched on
Flight Mode 11 Mavic 1 Mode 2—Hovering
Flight Mode 12 Mavic 1 Mode 3—Flying
Flight Mode 13 Mavic Pro 2 Mode 1—Switched on
Flight Mode 14 Mavic Pro 2 Mode 2—Hovering
Flight Mode 15 Mavic Pro 2 Mode 3—Flying
Flight Mode 16 Mini Mode 1—Switched on
Flight Mode 17 Mini Mode 2—Hovering
Flight Mode 18 Mini Mode 3—Flying
Flight Mode 19 Phantom 4 Mode 1—Switched on
Flight Mode 20 Phantom 4 Mode 2—Hovering
Flight Mode 21 Phantom Mode 3—Flying

Figure 2. Spectrogram: No UAS present.

Figure 3 shows the same data represented in the frequency domain through a PSD.
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Figure 3. PSD: No UAS present.

Figures 4 and 5 show Phantom 4 when it is switched on in the presence of Bluetooth
and Wi-Fi interference in spectrogram and PSD representations, respectively. We can see
some clear activity in the lower end of the spectrum.

Figure 4. Spectrogram: Phantom 4 switched on.
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Figure 5. PSD: Phantom 4 switched on.

If we compare Figure 5 with Figure 3, we can see there is a distinct difference between
the shape of the signals. Figures 6 and 7 show Phantom 4 hovering at an altitude of 20 m.
If we compare Figure 6 with Figure 4, we can observe an increase in activity in yellow.

Figure 6. Spectrogram: Phantom 4 hovering.
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Figure 7. PSD: Phantom 4 hovering.

Comparing Figure 7 to Figure 5, we can see two spikes in activity compared to three
in Figure 7 at the centre frequency. Figures 8 and 9 show Phantom 4 flying. It is clear from
looking at Figure 9 compared to Figures 5 and 7 that there is another increase in the number
of spikes in power at different frequencies.

Figure 8. Spectrogram: Phantom 4 flying.
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Figure 9. PSD: Phantom 4 flying.

Now, we move on from Phantom 4, which is a quadcopter-style UAS, to the Parrot
Disco, which is fixed wing. For the Disco, we only have two flight modes, as it is not
capable of hovering. Figures 10 and 11 shows the Disco switched on in spectrogram and
PSD representations, respectively.

Figure 10. Spectrogram: Disco switched on.
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Figure 11. PSD: Disco switched on.

When we compare the Disco switched on in Figure 10 to the Phantom 4 in Figure 4, we
can see that the disco is a more concentrated signal with less bursts of activity. However, when
we compare Figure 11 to Figure 5, we can see a visible difference in the frequency domain.

Figure 12. Spectrogram: Disco flying.
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Figure 13. PSD: Disco flying.

Figures 12 and 13 shows the Disco flying. We see an increase in power across the
whole band in Figure 11 compared to that in Figure 10 and also with the PSD in Figure 13
compared to Figure 11. It is important to note that what we are observing in the RF
spectrum is the transmission system. Table 3 lists the UASs we are looking at against their
respective transmission systems.

Table 3. UAS Transmission Systems.

UAS Type Transmission System

Mavic 2 Air S OcuSync 3.0
Parrot Disco Wi-Fi
Inspire 2 Pro Lightbridge 2.0

Mavic Pro OcuSync 1.0
Mavic Pro 2 OcuSync 2.0
Mavic Mini Wi-Fi
Phantom 4 Lightbridge 2.0

The DJI range of UASs use three types of transmission system: Wi-Fi, Lightbridge and
OcuSync. The Mavic Mini uses Wi-Fi and operates in the 5.8 GHz range (5.725–5.850 GHz)
and in the 2.4 GHz range (2.4–2.4835 GHz), with an effective isotropic radiated power
(EIRP) or transmission power of 19 dBm at 2.4 GHz [52]. The Lightbridge 2 has a maximum
(interference free) transmission distance of 5 km, the EIRP of the antenna is 100 mW at
2.4 GHz, and it can operate in the 5.8 GHz range (5.725–5.825 GHz) and the 2.4 GHz range
(2.4–2.483 GHz) [53]. The OcuSync scans the band for any interference and decides which
transmission channel is best. It then automatically switches between channels during the
flight. OcuSync 1.0 and 2.0 have a range of 7 km; they differ due to Ocusync 2.0 being able
to utilise 2.4 and 5.8 GHz frequency diversity. OcuSync 1.0 has an EIRP of 26 dBm [54] and
OcuSync 2.0 an EIRP of 25.5 dBm. The OcuSync 3.0 range is increased again to 12 km [55]
and EIRP 26 dBm [56]. The Parrot Disco uses the SkyController 2, which is a Wi-Fi-based
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protocol with a range of 2 km using MIMO antennas in the 2.4 and 5.0 Ghz frequency
bands [57].

2.3. Classification

Once the datasets of spectrogram and PSD graph images were created and saved
as 224 × 224 pixels, a pre-trained VGG16 CNN on ImageNet [58] was used as a feature
extractor. Through a process of transfer learning, neural networks trained for one purpose
can be used for another purpose. ImageNet is an object detection database consisting
of millions of images. Using a pre-trained VGG-16, we are able to utilise the process of
transfer learning. This means we do not need to train our weights from scratch, a procedure
which needs a massive amount of data and time. Table 4 shows the structure of a VGG-16
CNN [59].

Table 4. VGG-16 CNN.

Layer Type Size Feature Map

Input Image 224 × 224 × 3 1
2× Convolutional 224 × 224 × 64 64
Max Pooling 112 × 112 × 64 64
2× Convolutional 112 × 112 × 128 128
Max Pooling 56 × 56 × 128 128
2× Convolutional 56 × 56 × 256 256
Max Pooling 28 × 28 × 256 256
3× Convolutional 28 × 28 × 512 512
Max Pooling 14 × 14 × 512 512 v
3× Convolutional 14 × 14 × 512 512
Max Pooling 7 × 7 × 512 512 v

At the end of the last pooling layer, we are left with 25,088 features. These features
are then used to train machine learning classifiers, logistic regression (LR) and k-nearest
neighbour (kNN). LR works by fitting an ‘S’ shaped curved, otherwise known as a Sigmoid
function, to our features. The equation representing the sigmoid function can be seen in
Equation (1).

sigmoid(x) = 1/(1 + e−x ) (1)

LR estimates the discrete value based on a set of independent variables. It estimates
the probability of occurrence by measuring the relationships between one (or more) of those
variables and a categorical dependant variable. Limited-memory Broyden–Fletcher–Goldfarb–
Shanno was chosen as the solver for our experiments as it deals with multiclass due to its
ability to handle multinomial loss [60]. kNN, on the other hand, uses the dataset to find
the closet point to the input point. The classifier then works by using a majority vote of
neighbours. The Minkowski distance was utilisied as part of our experiments and can be
calculated as show in Equation (2).

sum(|x− y|p)(1/p) (2)

The k-nearest neighbour of the particular data point is then found and assigned to the
class that has the highest probability.

P(y = j | X = x) =
1
K ∑

iεA
I(y(i) = j) (3)

Equation (3) shows the probability of an input x being assigned to the class that has
the highest probability [61]. For each of the models, fivefold cross validation was used to
indicate whether the model was overfitting. Hyper-parameter regularisation for LR and
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the number of neighbours for kNN were optimised using threefold nested cross-validation.
The same process was followed for classification as described in previous work, and more
information can be found in the references [44,45].

Accuracy and F1-score were used to evaluate the models’ performances. To under-
stand both metrics, we first must understand that a true positive is when the algorithm
predicted, for example, that Phantom 4 was present and it was there in the data. A true
negative is where the prediction was no Phantom 4 and the prediction was correct or true.
A false positive is where the algorithm thinks Phantom 4 was there but it was not, and,
lastly, the false negative predicts that it was not there but it actually was. Accuracy and
F1-score can now be defined. Accuracy is show in Equation (4).

Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalsePositive + FalseNegative
(4)

F1-score includes the metrics precision and recall. Equation (5) shows the formula for
precision showing how many positive predictions were correct.

Precision =
TruePositive

TruePositive + FalsePositive
(5)

Equation (6) shows the equation for recall and considers the correctly predicted
positives as a fraction.

Recall =
TruePositive

TruePositive + FalseNegative
(6)

F1-score can then be calculated as seen in Equation (7).

F1-score =
2 (Precision ∗ Recall)

Precision + Recall
(7)

3. Results

Table 5 shows that in the presence of real-world interference Bluetooth and Wi-Fi
signals, we can still detect a UAS with 100% accuracy and 100% F1-score using LR and PSD
graphical representation. UAS-type classification produces 98.1 (+/−0.4)% accuracy and a
98.1 (+/−0.4)% F1-score, with PSD and LR and UAS flight mode classification achieving
95.4 (+/−0.3)% accuracy and a 95.4 (+/−0.3)% F1-score.

Table 5. Results accuracy (%) and F1-score (%).

Classifier Metric Detection Type Flight

LR

PSD Acc 100(+/−0.0) 98.1 (+/−0.4) 95.4 (+/−0.3)
PSD F1 100(+/−0.0) 98.1 (+/−0.4) 95.4 (+/−0.3)
Spec Acc 96.7 (+/−1.5) 90.5 (+/−0.8) 87.3 (+/−0.4)
Spec F1 96.7 (+/−1.5) 90.5 (+/−0.9) 87.3 (+/−0.4)

kNN

PSD
PSD Acc 99.6 (+/−0.2) 93.5 (+/−0.6) 86.5 (+/−0.5)
PSD F1 99.6 (+/−0.2) 93.4 (+/−0.7) 86.3 (+/−0.5)
Spec Acc 88.0 (+/−1.3) 75.1 (+/−1.5) 64.6 (+/−0.9)
Spec F1 87.9 (+/−1.4) 75.3 (+/−1.5) 64.8 (+/−0.8)

Accuracy and F1-score decrease as the classes increase, but high accuracy is main-
tained for flight mode classification. The table shows that LR outperforms kNN in all the
experiments. Time domain features from the spectrogram graphical signal representations
are less robust to the interference than frequency domain PSD features are.

Figure 14 shows the confusion matrix for UAS-type classification. We can observe that
the classifier has some misclassification between the Mavic Pro and the Mavic 2 Pro. If we
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go back to Table 3, we can see that the Mavic Pro uses OcuSync 1.0 and that the Mavic
2 Pro uses OcuSync 2.0. The main difference between the two transmission systems is that
OcuSync 2.0 utilises both the 2.4 and 5.8 GHz frequency bands. The misclassification is
likely due to the similar nature of the systems in the 2.4 GHz band.

Figure 14. UAS type classification confusion matrix.

Figure 15 shows the confusion matrix for 21 class UAV flight mode classification. We
can observe that the misclassification occurs again between the classes of Mavic Pro and
Mavic Pro 2, which we can put down to the similarities between OcuSync 1.0 and 2.0.
The second area of misclassification occurs between Phantom 4 switched on and Phantom
4 flying. However, the misclassification is small.
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Figure 15. UAS flight mode classification confusion matrix.

4. Discussion

Overall, we have shown that although UASs can prove a serious security challenge,
especially in airfield scenarios, detection and classification can be achieved amongst real-
world interference. Using CNN feature extraction with transfer learning and machine learn-
ing classifiers, UASs operating with the same transmission systems can be distinguished
amongst concurrent Bluetooth and Wi-Fi signals. For UAS detection, 100% accuracy can be
achieved, and for UAS types and flight mode classification, values of 98.1% (+/−0.4%) and
95.4% (+/−0.3%), respectively, are achieved. Future work should consider more than one
UAS of the same type entering the airspace to evaluate how specific the neural network
feature extraction is. Further to this, metrics such as detection distance and detection time
can be applied for a trained model to detect and classify a UAS in real time to understand
real-world feasibility.
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