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Abstract: This paper investigates the fault tolerance control of hypersonic aircrafts with L1 adaptive
control method in the presence of loss of actuator effectiveness fault. The hypersonic model considers
the uncertainties caused by the features of nonlinearities and couplings. Elasticity is taken into
account in hypersonic vehicle modeling which makes the model more accurate. A velocity L1

adaptive controller and an altitude L1 adaptive controller are designed to control flexible hypersonic
vehicle model with actuator loss fault. A PID controller is designed as well for comparison. Finally,
the simulation results are used to analyze the effectiveness of the controller. Compared to the results
of PID controller, L1 controllers have better performance.

Keywords: hypersonic UAV; elastic model; lose effectiveness; fault tolerance; L1 adaptive control

1. Introduction

Hypersonic vehicles refer to aircrafts, missiles, artillery shells and other vehicles with
or without wings that travel at more than five times the speed of sound. Characterized
by high penetration rate, hypersonic vehicles have great potential value both in military
and economy. X-51, the first flight with an air-breathing scramjet engine in America, is a
milestone in the development of hypersonic vehicle [1]. A program named “Promethee”
was launched in France to study hypersonic vehicles [2]. In Banalor, India has made great
efforts to hypersonic aerodynamics [3]. And China has made huge progress in air-breathing
systems in recent years [4]. Hypersonic vehicle, for its important application value in the
military field, has arisen extensive attention from a number of countries [5]. It is of great
importance to study the control of hypersonic vehicles.

Hypersonic vehicle is designed with complex stress conditions, and the applicability
of mathematical model determines its control effect to a certain extent. In 2007, Parker
put forward a control model of hypersonic vehicle [6], which was made intuitively by
abstracting formulas from various stress conditions. Fiorentini made some improvements
to Parker’s model [7]. In Fiorentini’s study, the model was further reduced to four formulas
and some variables with little influence were omitted. However, both models are only
applicable to rigid bodies. The high speed of hypersonic vehicle has certain influence on
its elasticity. Zong put forward a hypersonic model that took elasticity into account [8]. Liu
developed a more accurate elastic replacement model [9]. In the modeling, comprehensive
algorithm [10], quantitative echo [11], two-stage orbit [12] and other new methods based
on the BGK scheme of gas dynamics were adopted. Today, the modeling of hypersonic
vehicle is still a heated issue.

Hypersonic vehicle plays an important role in aircraft application, so that its security
must be guaranteed. If a hypersonic vehicle is working in a tough environment, more
uncertainties and a greater chance of failure may occur. Tang studied the fault tolerance
of full state constrains [13]. Sun studied methods for dealing with input saturation and
state constraints [14]. Cheng focused on the breakdown and rebound of the actuator [15].
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And An focused on the attack constraint [16]. There are many methods used for fault-
tolerant control. Some traditional control methods, such as PID, can tolerate failures, but
only applicable for simple systems. Some advanced methods, such as Barrier Lyapunov
function based adaptive finite time control [17], second-class fuzzy technology and cuckoo
search algorithm, have achieved good results in complex systems [18]. L1 adaptive control
is usually not applied to fault-tolerant control, while L1 adaptive fault-tolerant control is
usually applied to four-rotor vehicles, such as [19–22]. It is of great significance to apply L1
adaptive control in fault-tolerant control of hypersonic vehicles.

First, the hypersonic mathematical model is determined as a non - minimum phase
flexible model in this paper. In order to simplify the structure of the controller and take the
elastic model into consideration, a hypersonic model is established as a reference model [8].
The model contains not only elasticity but also uncertainty, so it is particularly important
to study this model. As the modal frequency of aircraft structure is closer to the rigid
modal frequency, the influence of elastic effect on the flight dynamics of elastic aircraft
becomes increasingly significant. In particular, the processing and stability characteristics
will become more complex and serious, and the "rigid aircraft" analysis method cannot be
studied. Therefore, it is urgent to establish a multi-disciplinary coupling flight dynamics
model of elastic vehicle. In this paper, the elastic engine model is taken as a part of the
hypersonic vehicle model to make the mathematical model closer to the actual hypersonic
vehicle dynamics. Second, the failure of the actuator is a loss failure. In reality, due
to the wear and tear of the vehicle and the inherent age limit, loss failures often occur.
Pneumatic rudder plays a decisive role in aircrafts, which is a guarantee to avoid loss
failure. Proposed by Hovakimyan et al. in 2011, L1 adaptive control is a fast and robust
adaptive control method as stated in [23]. By adding a low-pass filter to the control law
design, the separation of control law from adaptive law design is ensured. According to
the particularity of the supersonic aircraft model, the height controller needs to derive the
relationship between control value and state by backstepping. Then, in this paper, the L1
adaptive control method is introduced to control the hypersonic vehicle with elasticity
and loss fault. L1 adaptive fault-tolerance control is an active fault-tolerant control that
readjusts the parameters of the controller according to the fault, and can deal with the fault
actively. Besides, the adaptive fault tolerance of fault occurrence amplitude is superior
to passive fault tolerance control. In order to improve the performance of the control
system to a greater extent, traditional L1 adaptive control needs to combine with fault
tolerance control.

Since we consider aeroelastic model in this paper, the generalized aeroelastic force
will affect the force and torque of the hypersonic vehicle. It makes the whole system more
likely to get into an unstable state and increases the difficulty of control. When the faults
of actuators occur the control ability will reduce significantly and the impact of elasticity
on the system stability will be intensified. Therefore, to improve reliability of the control
system, fault-tolerant controller with rapid response is necessary for the elastic hypersonic
vehicle. We propose a L1 adaptive fault-tolerant control method which combines the L1
adaptive control method and fault-tolerant control theory. Firstly, L1 adaptive control
is a model following reconfiguration fault-tolerant control which does not require high
linearity of the model and can be applied to nonlinear model like the hypersonic aircraft
used in this paper. The internal structures of L1 adaptive methods vary with model. The
states, disturbances and reference trajectory of hypersonic vehicles can all be considered
in designing adaptive parameters of controller. So L1 adaptive control can have more
targeted control effects for the specific aircraft. Secondly, as an improved method of L1
adaptive control, L1 adaptive fault-tolerance controller’s response speed is fast due to its
structure of separating feedback control and adaptive law. For elastic hypersonic vehicle,
the fast reaction rate is necessary. Besides that, it can also reduce the influence time of faults
and improve flight quality. Finally, low-pass filters are designed to add into L1 adaptive
fault-tolerant controllers to restrain high frequency oscillation of control inputs. It can
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avoid the irreversible results produced by the interaction of high-frequency oscillation and
aeroelasticity.

The paper is organized as follows. First, the dynamic model of the hypersonic aircraft
is built in Section 2. Then, the L1 adaptive controller is designed and the stability is proved
in Section 3. In Section 4, the simulation results are shown and analyzed. Finally, conclusion
of the whole paper is present in Section 5.

The main contributions of this paper can be highlighted as follows.
(a) We build a hypersonic aircrafts model with loss fault and take elasticity into

account. We simplify the model to a control-oriented model.
(b) We investigate the combination method of L1 adaptive control and fault tolerance

control. We propose two kinds of combination methods to suit different aircraft modeling
situations.

(c) We apply L1 adaptive fault tolerance control method to hypersonic aircraft model
and keep the hypersonic aircraft with elasticity tracking the reference longitudinal velocity
and altitude in loss fault situations which have better performance than PID controller.

2. Problem Formulation
2.1. Dynamic Motion Equations

Assuming that the earth is flat, the earth coordinate system is chosen as the inertial
seat. The frame beam is a free beam structure at both ends, and the first three elastic modes
are considered. In [7], a model of rigid-body vehicle dynamics is proposed. Table 1 lists the
meanings of each parameter appearing in the model.

Consider the decoupled longitudinal dynamic merely, the longitudinal rigid-body can
be written as:

mV̇ = T cos α− D−mg sin γ

ḣ = V sin γ

γ̇ = L+T sin α
mV − g

V cos γ ,
θ̇ = Q
IyyQ̇ = M

(1)

where m is mass, V, h, γ, θ and Q denote five rigid body states of the system, named
velocity, altitude, track angle, pitch angle and pitch angle rate, α = θ − γ is attack angle, T,
D, L, M present thrust, drag, lift and pitching torque, g is acceleration due to gravity, Iyy
denotes moment of inertia along the longitudinal direction.

In Equation (1), the forces and the torques are calculated as follow:

T = q̄S(CT + CT
φφ + CT

ηη)

D = q̄S(CD + CD
δe

2
δe

2 + CD
δe δe + CD

ηη),
L = q̄S(CL + CL

δe δe + CL
ηη)

M = q̄c̄S(CM + CM
δe δe + CM

ηη) + zTT

(2)

where φ and δe are control inputs, respectively fuel equivalent ratio and elevator deflection
angle, c̄ is mean aerodynamic chord, S presents the reference area, zT denotes the thrust-to-
moment coupling coefficient, q̄ is dynamic pressure and expressed as:

q̄ =
ρV2

2
=

ρ0e−(h−h0)/hs V2

2
, (3)
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where ρ is air density, ρ0 is air density at nominal altitude, h0 presents nominal altitude
and hs denotes inverse of the air density exponential decay rate. Other coefficients CT , CT

φ,
CD, CL, CM are given by:

CT = CT
α3

α3 + CT
α2

α2 + CT
αα + CT

0

CT
φ = CT

φα3
α3 + CT

φα2
α2 + CT

φαα + CT
φ0

CD = CD
α2

α2 + CD
αα + CD

0 ,
CL = CL

αα + CL
0

CM = CM
α2

α2 + CM
αα + CM

0

(4)

Table 1. Explanation of Parameters.

Parameter Explanation Parameter Explanation

m mass q̄ dynamic pressure
V velocity ρ air density
h altitude ρ0 air density at

nominal altitude
γ track angle h0 nominal altitude
θ pitch angle hs inverse of the air

density
exponential decay

rate
Q pitch angle rate Ni generalized force
α attack angle ηi and η̇i six elastic states
T thrust ζi damping factor
D drag ωi natural oscillation

frequency
L lift n loss rate
M pitching torque γr reference pitch

angle
g acceleration due

to gravity
vi(i = V, γ, Q) uncertainties

Iyy moment of inertia
along the

longitudinal
direction

θ̂T(t) adaptive variable

φ fuel equivalent
ratio

KV velocity gain

δe elevator
deflection angle

ςV control law

c̄ mean
aerodynamic

chord

Ki(i = 1, 2) adaption gain

S reference area Pi(i = 1, 2) the solution of
Lyapunov
equation

zT thrust-to-moment
coupling

coefficient

D1(s)(i = 1, 2) low-filter

For hypersonic vehicles, rigid-body dynamic model can not analogy the real dynamic
situation of hypersonic vehicles. In order to obtain a more accurate result, the elasticity
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of hypersonic vehicles must be considered. The flexible engine model of air-breathing
hypersonic aircraft with non-minimum phase shown in [8] is presented as follow:

η̈i = −2ζiωiη̇i −ωi
2ηi + Ni(i = 1, 2, 3), (5)

where Ni present generalized force, ηi and η̇i present six elastic states, ζi is the damping
factor, ωi is the natural oscillation frequency. In Equation (5), the forces and the torques are
calculated as follow:

Ni = q̄S(Ni
α2

α2 + Ni
αα + Ni

δe δe + Ni
ηη + Ni

0)
(i = 1, 2, 3)

Kj
η = [Kj

η1 , Kj
η2 , Kj

η3 ]
(K = C, N; j = T, D, L, M).

(6)

The elasticity of hypersonic vehicles is relate to the attack angle. When hypersonic
vehicle takes large maneuver, the elasticity makes great influence on stress situation. The
model of hypersonic vehicle model becomes more accurate but more difficult to control.

According to Equation (2), it can be seen that the coupling between elevator and lift
affects the track angle, which causes a problem that the control law of elevator derived by
standard inversion method based on the dynamics of altitude h and track angle γ makes
the internal dynamic pitch angle and pitch angular velocity unstable. In order to solve this
problem, the elevator deflection angle δe in the track angle γ is regarded as uncertainty so
that the effect of δe on altitude only appears in pitch angular velocity and the correlation of
h is improved. In addition, all items except pitch angle θ are considered as uncertainties in
the track angle formula. Besides, in order to decouple the longitudinal velocity and height
in the controller, we consider the δe in the longitudinal speed as uncertainty and ignore
the effect of fuel equivalent in pitch angular velocity. Finally, the control oriented model is
obtained by simplifying the model, which is written in the form of the sum of constant,
control quantity and uncertainty in Equation (7). The longitudinal velocity control logic
can be set as fuel equivalent ratio-longitudinal thrust-longitudinal velocity and the altitude
control logic is elevator deflection angle-pitching moment-pitch angular velocity-pitching
angle-track angle-altitude.

2.2. Loss Fault and Model Simplification

For hypersonic aircrafts, when there’s a loss fault, it always comes to the pneumatic
rudder. Specific to this paper, it is elevator deflection. Reflected on the model, it is a loss
rate n acting on δe. According to Equations (1)–(4), each state is influenced by elevator
deflection angle. It will cause plenty of extra calculation and deform the control effect if n
is multiplied directly .

Treat δe as an uncertainty in V, ignore others except θ in γ̇ and treat φ an uncertainty
in Q as well. The model shown as Equation (1) can be simplified as:

V̇ = q̄S(CT cos α−CD)−mg sin γ
m + q̄SCT

φ cos α
m φ + vV

= V0 + Vcφ + vV
ḣ = V sin γ
γ̇e = θ + vγ ,
θ̇ = Q

Q̇ = zT q̄SCT+q̄c̄SCM
Iyy

+ q̄c̄SCM
δe

Iyy
nδe + vQ

= Q0 + Qcnδe + vQ

(7)

where γe = γ− γr, γr is the reference pitch angle and vi(i = V, γ, Q) present uncertainties.
Although the control right is sacrificed after simplification, the designs of controllers
become more convenient and increase the speed of fault tolerance control.

In aircraft control, the selected control variables are variables of actuator such as
rudder deflection, motor speed, etc. or the variables that have operation relationship with
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the actuator such as force and torque. The fault mode selected in this paper is the loss fault
acting on the actuator which makes the control value reduced in the simulation part. Then,
the goal of fault tolerance control is to ensure that the final output control value is close to
the output value of the fault-free state. The main methods are as follows:

1. Use the fault-tolerant ability of L1 adaptive controller
In the formula u(t) = θ̂T(t)x(t) + kgr(t), θ̂T(t) is an adaptive variable which is ad-

justed according to the error of the return controller outputs. When there is no fault in
the actuator, the adaptive variable is affected by the error. In order to make the controller
fault-tolerant, fault information is added into the adaptive variable to make it follow the
fault of the actuator. The corresponding increase or decrease is made to ensure that the final
control value remains unchanged. This method is suitable for the system whose control
variable is the actuator variable and the system with simple structure.

2. Add compensators to the designed controller
Make the control quantity output under the non-fault state into the ideal control

quantity. Under the loss fault condition, the ideal control quantity can be written as the
sum of the failure control quantity and the compensation quantity. Then, in the process
of modeling, the sum of failure control value and the compensation value can represent
the ideal control quantity all the time. So the compensation value becomes a part of the
control quantity with the design of the controller. This method is suitable for the system
whose control variables are not actuator variables. Only a part of the control variables in
this system are affected by the fault, and only the part responding to the fault needs to be
fault tolerant.

3. L1 Adaptive Controller Design

It should be noted that the italic style of L1 here is a special symbol.
Figure 1 shows the internal structure of L1 adaptive controller, it consists of four parts:

control law, state predictor, adaption part and kinematics and dynamics. The part of control
law outputs the control values to other three parts. Adaption part is influenced by the
difference of state predictor and force model and outcomes adaptive quantities to control
law and state predictor.

Figure 1. L1 adaptive controller.

As illustrated in Figure 2, there are two L1 controllers in the control system. One is
used to control velocity and the other is altitude controller. The reference altitude and
longitudinal velocity are designed in advance and two controllers accept real state value
from the aircraft model. Fuel equivalent ratio and elevator deflection angle are output to
flexible hypersonic model.
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Figure 2. Fault tolerance of hypersonic aircraft by L1 adaptive control.

3.1. Velocity Controller

The velocity error dynamic is defined as follows:

V̇e = V̇ − V̇r = V0 + Vcφ + vV − V̇r. (8)

Define the control value as uV = φ and design the control input φ:

φ = −KVVe −V0 + V̇r + ςV , (9)

KV is the velocity gain and ςV is the control law needed to be design. Equation (8) can be
written as follow:

V̇e = V0 + Vcφ + vV − V̇r
= −KVVe + (Vc − 1)φ + vV + ςV ,
= −KVVe + σ1φ + vV + ςV

(10)

where σ1 = Vc − 1 which is bounded and satisfies |σ1| ≤ κ1 and vV satisfied |vV | ≤ µ1.
The state of velocity control is x1 = Ve and the control system can be described as:

ẋ1 = A1x1 + b1(σ1φ + vV + ςV),
y1 = c1x1

(11)

where A1 = −KV , b1 = 1 and c1 = 1. The state predictor subsystem of velocity is
presented as:

˙̂x1 = A1 x̂1 + b1(σ̂1φ + v̂V + ςV), (12)

where σ̂1 and v̂V are given by projection operator and have the same boundaries as σ1 and
vV respectively:

˙̂σ1 = K1 proj(σ̂1,−b1φP1 x̃1) .
˙̂vV = K1 proj(v̂V ,−b1P1 x̃1)

(13)

In Equation (13), x̃1 = x̂1 − x1, K1 is the adaption gain and P1 is the solution of
Lyapunov equation A1

T P1 + P1 A1 = −Q1, where Q1 > 0 is known. The control law is
defined as follow:

ςV(s) = D1(s)χ1(s), (14)

D1(s) is a low-filter needed to be chosen. The χ1(s) is laplace transformed from:

χ1(t) = −σ̂1φ− v̂V . (15)
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Definition 1. For a n×m-dimensional output system G(s), its L1 norm is defined as ‖G(s)‖L1
=

maxi=1,2,...,n

(
m
∑

j=1

∥∥Gij(s)
∥∥

L1

)
, where Gij(s) is the element of row i and column j.

Lemma 1. For a stable MIMO system, if the input is u(t) and the output is y(t), then ‖y(t)‖L∞
≤

‖G(s)‖L1
‖u(t)‖L∞

where ‖u(t)‖L∞
= max(y(t)).

Corollary 1. For a stable MIMO system, if the input is bounded, then the output is bounded as
well which means max(y(t)) is bounded.

Lemma 2. For series system G(s) = G1(s)G2(s), G1(s) ∈ Rn×l , G2(s) ∈ Rl×m, there is
‖G(s)‖L1

≤ ‖G1(s)‖L1
‖G2(s)‖L1

.

Theorem 1. (L1 small gain theorem): For a system with input u(t) and output y(t): y(t)=N1(s)
(u(t)− N2(s)y(t)), where N1(s) is the transfer function of forward path and N2(s) is the transfer
function of feedback loop. If ‖N1(s)‖L1

‖N2(s)‖L1
< 1, then the system is asymptotically stable.

Lemma 3. If A ∈ Rn×n, b ∈ Rn×1 is controllable, the matrix N is full rank.

Lemma 4. If A ∈ Rn×n, b ∈ Rn×1 is controllable and (sI − A)−1b is asymptotically stable,
there is a matrix c ∈ R1×n which enables c(sI − A)−1b become the minimum phase system with
relativity of 1.

Proof. By changing the low-filter D1(s) to satisfy the L1-norm stability condition, just
ensure the Lyapunov function is negative definite, the control system is stable and according
to Theorem 1 the system satisfies:

‖G1(s)‖L1
‖σ‖L1

< 1, (16)

where G1(s) = (s− A1)
−1b1(1− D1(s)). The Lyapunov function is defined as follow:

EV = P1 x̃2
1 + K1

−1σ̃2
1 + K1

−1ṽ2
V , (17)

where σ̃1 = σ̂1 − σ1, ṽV = v̂V −vV . The derivative of EV can be written as:

ĖV = 2P1̇̃x1 x̃1 + 2K1
−1̇̃σ1σ̃1 + 2K1

−1̇̃vVṽV
= 2P1(A1 x̃1 + b1σ̃1φ)x̃1 − 2K1

−1ṽVv̇V
+2K1

−1ṽV (̇̂vV + K1b1P1 x̃1)

+2K1
−1σ̃1 (̇̂σ1 + K1b1uV P1 x̃1)

≤ −Q1 x̃2
1 − 2K1

−1ṽVv̇V
≤ −Q1 x̃2

1 + 2K1
−1|ṽVv̇V |.

(18)

Let vV be continuously differentiable with uniformly bounded derivaties vV1, so we
can obtain |ṽT

Vv̇V | ≤ 2µ1vV1 and then ĖV ≤ −x̃T
1 Q1 x̃1 + 4K1

−1µ1vV1.
Define a constant:

Ξ1
∆
= 4

λmax(P1)

λmin(Q1)
µ1vV1 + 4

(
max |σ1|2 + µ1

2
)

. (19)

First, assume there exists t1 > 0 and EV(t1) > K1
−1Ξ1. Because max K1

−1(σ̃T
1 σ̃1 +

ṽT
VṽV) ≤ 4K1

−1(max |σ1|2 + µ1
2), it follows from Equation (17) that

P1 x̃2
1 ≥ 4K1

−1 λmax(P1)

λmin(Q1)
µ1vV1, (20)
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and

Q1 x̃2
1 ≥ P1 x̃2

1
λmin(Q1)

λmax(P1)
= 4K1

−1µ1vV1. (21)

So it can be obtained that when EV(t) > K1
−1Ξ1 (K1 is always above 1),

ĖV ≤ −Q1 x̃2
1 + 2K1

−1|ṽT
Vv̇V |

≤ −4K1
−1µ1vV1 + 4µ1vV1 ≤ 0.

(22)

Then assume t1 ≥ 0, EV(t) ≤ K1
−1Ξ1, we obtain P1 x̃2

1 ≤ EV ≤ K1
−1Ξ1. Since

λmin(P1)‖x̃1‖2 ≤ P1 x̃2
1, (23)

there is

‖x̃1‖L∞
≤
√

Ξ1

λmin(P1)K1
, (24)

the velocity control system is stable.

3.2. Altitude Controller

By combining the last four formulas in Equation (1) with small angle approximation,
the altitude dynamic can be obtained. δe does not have direct relation with h, so it has to
set up the relationship from the twice formula to the end. In order to simplify the structure
of controller, normal adaptive control is used except the last step. The reference altitude is
given and the reference track angle can be designed as:

ḣe = ḣ− ḣr = Vγ− ḣr = V(γe + γr)− ḣr. (25)

In order to make h track hr, γr is designed at first:

γr =
1
V
(−Khhe + ḣr). (26)

Equation (25) can be written as:

ḣe = −Khhe + Vγe. (27)

The track angle can be obtained:

γ̇e = θ + vγ = θe + θr + vγ, (28)

so

θr = −Kγγe −vγ. (29)

Equation (28) can be written as:

γ̇e = −Kγγe + θe. (30)

The pitch angle rate can be expressed:

θ̇e = θ̇ − θ̇r = Q− θ̇r = Qe + Qr − θ̇r, (31)

Qr can be written as:
Qr = −Kθθe + θ̇r. (32)

Equation (31) can be written as:

θ̇e = −Kθθe + Qe. (33)
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Now, the relationship between δe and h is built as:

Q̇e = Q0 + Qcnδe + vQ − Q̇r. (34)

According to Equations (28)–(32), Qr can be expressed as:

Q̇r = −Kθ θ̇e + (−Kγγe −vγ)
′′

= −Kθ θ̇e − Kγ(−Kγγe + θe)
′ − v̈γ

= −(Kθ + Kγ)(−Kθθe + Qe)
+Kγ

2(−Kγγe + θe)− v̈γ

= (Kθ
2 + KθKγ + Kγ

2)θe
−(Kθ + Kγ)Qe − Kγ

3γe − v̈γ,

(35)

so Equation (34) can be written as

Q̇e = Q0 + Qcnδe + vQ + (Kθ + Kγ)Qe
−(Kθ

2 + KθKγ + Kγ
2)θe + Kγ

3γe + v̈γ.
(36)

Define the control value uQ = nδe, and use L1 adaptive controller to design the ideal
control input δe as:

δe = −KQQe −Q0 + (Kθ
2 + KθKγ + Kγ

2)θe
−(Kθ + Kγ)Qe − Kγ

3γe − v̈γ.
(37)

Equation (34) can be written as follow:

Q̇e = Q0 + Qcnδe + vQ − Q̇r
= −KQQe + (Qcn− 1)δe + vQ + ςh
= −KQQe + σ2δe + vQ + ςh,

(38)

where σ2 = Qcn− 1 and it is bounded as |σ2| ≤ κ2 and vQ satisfies |vQ| ≤ µ2. The state of
altitude controller is x2 = Qe and the control system can be described as:

ẋ2 = A2x2 + b2(σ2δe + vQ + ςh)
y2 = c2x2,

(39)

where A2 = −KQ, b2 = 1, c2 = 1. The state predictor subsystem of altitude is presented as:

˙̂x2 = A2 x̂2 + b2(σ̂2δe +
_
vQ + ςh), (40)

where σ̂2, v̂Q are given by projection operator and have the same boundaries as σ2 and vQ:

˙̂σ2 = K2 proj(σ̂2,−b2δeP2 x̃2)
˙̂vQ = K2 proj(v̂Q,−b2P2 x̃2).

(41)

In Equation (41), x̃2 = x̂2 − x2, K2 is the adaption gain and P2 is the solution of Lyapunov
equation A2

T P2 + P2 A2 = −Q2, where Q2 > 0 is known. The control law is defined
as follow:

ςh(s) = D2(s)χ2(s), (42)

D2(s) is a low-filter needed to be chosen. The χ2(s) is laplace transformed from:

χ2(t) = −σ̂2δe −vQ. (43)
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Proof. By changing the low-filter D2(s) to satisfy the L1-norm stability condition and just
ensuring that the Lyapunov function is negative definite, the control system is stable and
according to Theorem 1 the system satisfies:

‖G2(s)‖L1
‖σ‖L1

< 1, (44)

where G2(s) = (s− A2)
−1b2(1− D2(s)). The Lyapunov function is defined as follow:

EQ = P2 x̃2
2 + K2

−1σ̃2
2 + K2

−1ṽ2
Q, (45)

where σ̃2 = σ̂2 − σ2, ṽh = v̂h −vh. The derivative of EQ can be written as:

ĖQ = 2P2̇̃x2 x̃2 + 2K2
−1̇̃σ2σ̃2 + 2K2

−1̇̃vQṽQ
= 2P2(A2 x̃2 + b2σ̃2δe)x̃2 − 2K2

−1ṽQv̇Q
+2K2

−1ṽQ (̇̂vQ + K2b2P2 x̃2)

+2K2
−1σ̃2 (̇̂σ2 + K2b2uhP2 x̃2)

≤ −Q2 x̃2
2 − 2K2

−1ṽQv̇Q
≤ −Q2 x̃2

2 + 2K2
−1|ṽQv̇Q|.

(46)

Let vQ be continuously differentiable with uniformly bounded derivaties vQ1, so we
can obtain |ṽT

Qv̇Q| ≤ 2µ2vQ1 and then ĖQ ≤ −x̃T
2 Q2 x̃2 + 4K2

−1µ2vQ1.
Define a constant as:

Ξ2
∆
= 4

λmax(P2)

λmin(Q2)
µ2vQ1 + 4

(
max |σ2|2 + µ2

2
)

. (47)

First, assume there is a constant t1 > 0 and EQ(t1) > K2
−1Ξ2. Because max K2

−1(σ̃T
2 σ̃2 +

ṽT
QṽQ) ≤ 4K2

−1(max |σ2|2 + µ2
2), it follows from Equation (45) that

P2 x̃2
2 ≥ 4K2

−1 λmax(P2)

λmin(Q2)
µ2vQ1, (48)

and

Q2 x̃2
2 ≥ P2 x̃2

2
λmin(Q2)

λmax(P2)
= 4K2

−1µ2vQ1. (49)

So it can be iferred that when EQ(t) > K2
−1Ξ2 (K2 is always above 1):

ĖQ ≤ −Q2 x̃2
1 + 2K2

−1|ṽT
Qv̇Q|

≤ −4K2
−1µ2vQ1 + 4µ2vQ1 ≤ 0.

(50)

Then assume t1 ≥ 0, EQ(t) ≤ K2
−1Ξ2, we obtain P2 x̃2

2 ≤ EQ ≤ K2
−1Ξ2. Since

λmin(P2)‖x̃2‖2 ≤ P2 x̃2
2, (51)

there is

‖x̃2‖L∞
≤
√

Ξ2

λmin(P2)K2
. (52)

The Lyapunov function of the whole altitude controller consists of not only the func-
tion of Q, but also the Lyapunov function of h, γ and θ. Because of the commom adaptive
control method used in deriving h, γ and θ, the Lyapunov function of them are much easier.
The Lyapunov function of the whole altitude controller is expressed as

E = Eh + Eγ + Eθ + EQ. (53)
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The derivative of E can be written as:

Ė = Ėh + Ėγ + Ėθ + ĖQ
= −Khhe

2 − Kγγe
2 − Kθθe

2 + ĖQ,
(54)

ĖQ ≤ 0 is proven above, and −Khhe
2, −Kγγe

2, −Kθθe
2 are definitly non-positive, so the

Lyapunov function of the whole altitude controller is negative definite and the altitude
control system is stable.

4. Simulation

The sample time is 0.01 s and the simulation time is 500 s. According to [24], m = 147.9
slug, ω1 = 21.17 rad/s, ω2 = 53.92 rad/s, ω3 = 109.1 rad/s. The parameters come from [8]
where g = 32.17 ft/s2, c̄=17 ft, S = 17 ft2, ζi = 0.02, Iyy = 86,722.54 slug · ft2/rad,
ρ0 = 6.7429× 10−5 slugs/ft3, zT = 8.36 ft, hs = 21,358.8 ft, h0 = 80,000 ft, V0 = 8000 ft/s.
Aerodynamic parameters are shown in Table 2. All results are based on simulation work
and some real limitation condition is not considered.

Table 2. Aerodynamic Parameters.

Mark Value Mark Value

CL
α 5.9598 CD

α −0.07402
CL

δe 0.7341 CD
δe

2
0.9102

CL
0 −0.02438 CD

δe 1.084 × 10−6

CL
η1 −0.03410 CD

0 −0.01988
CL

η2 −0.01737 CD
η1 0.001293

CL
η3 −0.06758 CD

η2 2.5523 × 10−4

CD
α2

7.9641 CD
η3 0.002707

N1
α2 −0.08928 N2

α2
8.8374 × 10−2

N1
α 0.3497 N2

α 9.5685 × 10−2

N1
0 2.7562 × 10−3 N2

0 1.3834 × 10−3

N1
δe 0.03902 N2

δe −2.4875 × 10−2

N1
η1 −9.3415 × 10−4 N2

η1 4.112 × 10−4

N1
η2 −6.7015 × 10−4 N2

η2 1.0924 × 10−4

N1
η3 −1.8813 × 10−3 N2

η3 8.5621 × 10−4

CM
α2

6.8888 N3
α2 −7.4826 × 10−2

CM
α 5.139 N3

α 0.103
CM

0 0.1628 N3
0 −1.9277 × 10−3

CM
δe −1.3642 N3

δe −4.2624 × 10−3

CM
η1 7.1776 × 10−3 N3

η1 3.2963 × 10−4

CM
η2 −0.03022 N3

η2 3.0022 × 10−4

CM
η3 −0.01067 N3

η3 6.5423 × 10−4

CT
φα3 −14.038 CT

α 0.03728
CT

φα2 −1.5839 CT
0 −0.02164

CT
φα 0.6934 CT

η1 0.0027609
CT

φ 0.1990 CT
η2 −0.0034979

CT
α3

1.0929 CT
η3 −0.005331

CT
α2

0.9714

4.1. Horizontal Flight

Set the target velocity and altitude as 8000 ft/s and 80,000 ft respectively, and use PID
controller to certify the accuracy and controlability of the model. Parameters of controller
is set as Kφ = [20, 0.1, 0] and Kδe = [20, 0, 0.1]. As shown in Figures 3 and 4, the model
can achieve horizontal flight under the control of PID controller. The longitudinal velocity
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error is almost 0 and the altitude error becomes stable at 0.05 f t. As control value, the fuel
equivalent is stable at its minimum value. In the horizontal flight mode, fuel equivalent is
ineffective and elevator deviation has a small deflection to balance gravity.

0 100 200 300 400 500

time (s)

-0.03

-0.02

-0.01

0

0.01

V
e 

(f
t/

s)

0 100 200 300 400 500

time (s)

0

0.02

0.04

0.06

he
 (

ft
)

X: 0.016

Y: -0.02036

X: 0.024

Y: -0.0004383

X: 0.333

Y: 0.05158

X: 19.39

Y: 0.04625

Figure 3. Velocity error and altitude error proposed by PID controller in horizontal flight and fault
free state.

0 200 400
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0.5

1

δe
 (
°
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0 200 400

time (s)

0.048

0.049

0.05

0.051

0.052

φ

X: 0.33

Y: 1.054

X: 12.84

Y: 0.9259

X: 14.48

Y: 0.05

Figure 4. Control value proposed by PID controller in horizontal flight and fault free state.

From 0 to 1, the loss fault rate increases by 0.05 each time. After a sequence of test, in
the state of horizontal flight, the maximum fault rate the PID controller can tolerate is 0.35.
Between 0.35–0.5, longitudinal velocity can be controlled but the altitude is unwarrantable.
If the actuator loss exceeds 0.5, the whole system will be out of contol. Figures 5–7 are the
comparison of PID controller and L1 adaptive fault tolerance controller at fault rate 0.45. It
is obvious that L1 adaptive fault tolerance controller is more advanced than PID controller
in horizontal flight. Both controllers have almost the same performance at longitudinal
velocity control. But both curves of altitude and track angle oscillate obviously with PID
controller. By contrast, the L1 adaptive fault tolerance controller makes both the altitude
error and track angle almost stable at 0.
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Figure 5. Comparison of velocity and velocity error, altitude and altitude error proposed by PID and
L1 controller in horizontal flight and fault state.

0 100 200 300 400 500

time (s)

0

10

20

δ
e
 (

r
a
d

)

0 100 200 300 400 500

time (s)

-0.1

0

0.1

φ

0 100 200 300 400 500

time (s)

-5

0

5

10

15

δ
e
 (

r
a
d

)

0 100 200 300 400 500

time (s)

0

0.2

0.4

φ

X: 56.56

Y: 11.56
X: 0.046

Y: 0.06906

X: 56.56

Y: 9.25 X: 0.041

Y: 0.06078

Figure 6. Comparison of control value proposed by PID and L1 controller in horizontal flight and
fault state.
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Figure 7. Track angle proposed by PID and L1 controller in horizontal flight and fault state.

4.2. Pitching Maneuver

Pitching maneuver is a very important maneuver of hypersonic vehicle and it is more
difficult to control. Actuator loss fault may lead to terrible results especially on upward
flight. This paper uses the trajectory shown in [8] whichs has proved that aerodynamic
hazards will not occur in this flight trajectory. Longitudinal velocity function and altitude
function are shown in Equations (55) and (56). Vf inal = 10,000 ft/s and h f inal = 100,000 ft.
PID controller is used to make sure the model has the ability to achieve pitching maneuver.
Control parameters is set as Kφ = [20, 0, 0] and Kδe = [20, 0, 0]. As shown in Figures 8–10,
the model can make pitching maneuver. PID controller can make the longitudinal error in
0.6 ft/s and altitude error in 0.06 ft with no fault. As shown in Figure 9, fuel equivalent
contributes a lot in pitching maneuver. The track angle changes around 0.015 rad and
finally returns to 0.

Vr =



V0 , 0 ≤ t ≤ 100
V0 + 10(t− 100)2/29 , 100 ≤ t ≤ 110
V0 + 200(t− 105)/29 , 110 ≤ t ≤ 390,

V0 + 2000− 10(t− 400)2/29 , 390 ≤ t ≤ 400
Vf inal , t ≥ 400

(55)

hr =


h0 , 0 ≤ t ≤ 100

−105 cos[2π(t− 100)/300
−π/2] + h0 + (t− 100)/300

, 100 ≤ t ≤ 400.

h f inal , t ≥ 400

(56)
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Figure 8. Velocity error and altitude error proposed by PID controller in pitching maneuver and fault
free state.
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Figure 9. Control value proposed by PID controller in pitching maneuver and fault free state.
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Figure 10. Track angle proposed by PID controller in pitching maneuver and fault free state.

As the test in horizontal flight, it is figured out in pitching maneuver flight that
the maximum fault rate PID controller can tolerate is 0.15 which is apparently smaller
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in horizontal flight. Between 0.15–0.35, velocity can be controlled while altitude cannot.
Velocity and altitude will be out of control if the rate exceeds 0.4. The results at fault rate
of 0.35 are shown in Figures 11–13. Although PID controller has advantages in velocity
control, the altitude is completely out of control. PID has better performance in longitudinal
velocity control and can make the velocity error in 0.4 ft/s. Although L1 adaptive fault
tolerance controller makes the velocity error in 0.6 ft/s, the altitude error is almost 0. Taken
together, L1 adaptive fault tolerance controller is better.

In summary, Figures 3 and 4 are the results by using PID controller in horizontal flight
with no fault and it can make hypersonic vehicle stable. Figures 5–7 are the comparison
of PID controller and L1 controller in horizontal flight with 0.45 loss fault. It can be seen
that L1 controller has better performance especially in altitude control. Figures 8–10 are
the results by using PID controller in pitching maneuver with no fault and the hypersonic
vehicle can achieve pitching maneuver with no fault. Figures 11–13 are the comparison
of PID controller and L1 controller in horizontal flight with 0.35 loss fault. PID controller
is better at velocity control but considering the velocity control and altitude control L1
controller has advantages in fault tolerance state.
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Figure 11. Comparison of velocity and velocity error, altitude and altitude error proposed by PID
and L1 controller in pitching maneuver and fault state.
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Figure 12. Comparison of control value proposed by PID and L1 controller in pitching maneuver
and fault state.
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Figure 13. Comparison of track angle proposed by PID and L1 controller in pitching maneuver and
fault state.

5. Conclusions

This paper has presented L1 adaptive controllers for hypersonic aircraft to achieve
loss fault tolerance control. The nonlinear and coupling mathematical model with elasticity
of the hypersonic aircraft is built with the consideration of uncertainties. This paper investi-
gates the combination of L1 adaptive control method and fault tolerance concept applying
in hypersonic aircrafts. According to different aircrafts situations, this paper proposed two
combination methods of L1 adaptive control and fault tolerance control. One is based on
the fault tolerance ability of L1 adaptive controller, the other is adding compensators in
cotroller design progress. The fault tolerance control method is applied in hypersonic air-
craft, L1 adaptive controllers of velocity and altitude are designed respectively. Compared
with the results of PID controller in loss fault state, the L1 adaptive controller can make
sure that the hypersonic aircraft flight in an expected velocity and altitude at higher loss
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fault rate. Besides, it has better performance and less error than PID controller. L1 adaptive
controller is advantageous in fault tolerance control of hypersonic aircrafts. There are still
some things to do to enrich this paper. In the future work, we can add some other kinds of
faults such as stuck, drifting and saturated to prove the fault tolerance ability of L1 fault
tolerance adaptive controller and also there are many other advanced control methods or
strategies with superior performances can be taken into consideration.
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