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Abstract: The role of the en route air traffic control specialist (ATCS) is vital to maintaining safety
and efficiency within the National Airspace System (NAS). ATCSs must vigilantly scan the airspace
under their control and adjacent airspaces using an En Route Automation Modernization (ERAM)
radar display. The intent of this research is to provide an understanding of the expert controller
visual search and aircraft conflict mitigation strategies that could be used as scaffolding methods
during ATCS training. Interviews and experiments were conducted to elicit visual scanning and
conflict mitigation strategies from the retired controllers who were employed as air traffic control
instructors. The interview results were characterized and classified using various heuristics. In
particular, representative visual scanpaths were identified, which accord with the interview results of
the visual search strategies. The highlights of our findings include: (1) participants used systematic
search patterns, such as circular, spiral, linear or quadrant-based, to extract operation-relevant infor-
mation; (2) participants applied an information hierarchy when aircraft information was cognitively
processed (altitude -> direction -> speed); (3) altitude or direction changes were generally preferred
over speed changes when imminent potential conflicts were mitigated. Potential applications exist in
the implementation of the findings into the training curriculum of candidates.

Keywords: air traffic control; eye tracking; conflict mitigation; visual search; informational hierarchies

1. Introduction

The role of air traffic control specialist (ATCS) is vital to maintaining safety and effi-
ciency within the National Airspace System (NAS). En route ATCSs are assigned to work
sectors, complex and dynamic virtual demarcations of airspace that differ along several di-
mensions (e.g., high or low altitude, international or regional airports, letters of agreement).
En Route Automation Modernization (ERAM) radar displays represent these demarcations
and present information including the location of aircraft that enter the airspace. Within
the designated airspace, ATCSs’ must identify and attend to these aircraft, guiding them to
their destination in a timely manner, while maintaining safety protocols (e.g., vertical and
horizontal separation) and coordinating with other controllers.

To achieve efficiency and effectiveness in aircraft conflict detection and aircraft conflict
mitigation, the controllers constantly apply visual search strategies to extract operation-
relevant information from the environment (e.g., altitudes, speeds, directions, destinations)
needed to make decisions. ATCSs translate these decisions into clearances, which they
relay to pilots, using correct phraseology, via radio or data communications. The inherit
nature of the environment, sheer number of air traffic characteristics, plus the required
interactions with other ATCSs, lead to a myriad of applicable conflict mitigation strategies.
Novice controllers must learn myriad strategies, and under which circumstances each
strategy should be applied. Analyses of expert controllers’ visual scanpaths, paired with
controller narratives of the conflict mitigation strategies used, could provide valuable input

Aerospace 2021, 8, 170. https://doi.org/10.3390/aerospace8070170 https://www.mdpi.com/journal/aerospace

https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-4058-4584
https://doi.org/10.3390/aerospace8070170
https://doi.org/10.3390/aerospace8070170
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/aerospace8070170
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace8070170?type=check_update&version=2


Aerospace 2021, 8, 170 2 of 16

to the design of the training curriculum for future air traffic controllers. Eleven retired air
traffic controllers, employed as instructors by the Federal Aviation Administration (FAA)
(Washington, DC, USA) Academy participated in an eye-tracking experiment, using a
high-fidelity simulation of an en route sector, with the goal of mapping their visual search
strategies and conflict mitigation heuristics. The task was carried out through (1) content
analysis of in-depth post-experiment interviews, and (2) finding the representative visual
scanpaths (from the eye-tracking data collected from the experiment) which accords with
the protocol analyses results.

1.1. Eye Tracking Technology and Visual Scanning Strategies

Advances in eye tracking technology have augmented our capacity to explore and
understand how individuals interact with their environment in the presence of diverse
visual stimuli [1–3]. Environmental cues that draw attention, dictate responses, and signify
possible actions become more accurately and precisely specifiable. For example, the use
of eye-tracking technology has enabled researchers to explore how users interact with
interfaces [4], the environmental information they gather, and the workload imposed by a
given task [5].

Investigation into the relationship between humans’ cognitive processes and eye
movements, such as eye fixations and saccades, among others, became a pivotal research
area in the domain of air traffic control when more accurate eye trackers became available
in the 1980s and 1990s [6,7]. More recent research in en route air traffic control involves
an investigation into the differences in eye fixation durations or frequency based on
expertise [8,9], and how eye tracking can be used to train novices [10–13]. Especially, in [10],
experts’ visual scanpaths were used to train novices, in which the novices significantly
reduced false alarms (i.e., believing that aircraft conflict will occur when the conflict does
not actually happen). Furthermore, the visual scanpaths were characterized to analyze
(1) how conflicts are detected [14], (2) how visual groupings are formed [15], and (3) how
the individual gathers information [16].

Analysis of visual scanpaths (see Figure 1) can be challenging due to the variability
involved in humans’ eye movements [17–19]. Nonetheless, advances have been made in
this area, for example, by grouping the individual scanpaths of experts per a particular
criterion, such as their geometrical shape [20]. One way that the knowledge embedded
in an experts’ visual search strategy can be transferred is via their visualization in the
form of scanpaths, the sequential accumulation of eye fixations and saccades over time
(Figure 1) [10]. Research in this area has shown that novices modify their own visual search
strategies when presented with the strategies used by an expert. This type of intervention
has led novices to exhibit lower rates of false alarms in a conflict detection task [21], as well
as to higher degrees of task accuracy [22]. Thus, a better understanding of expert strategies
in air traffic control can be beneficial in the ATCS training process.
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Figure 1. Representative example of a scanpath.

1.2. Impact of Increased Air Traffic Demand on the ATCSs Task

Visual search is one of the ATCSs’ key tasks. They must be able to create, maintain
and update their understanding of the environment as it evolves over time. Developing an
understanding of the environment is often referred to as creating a “mental picture” within
the ATCS community [23], a representation of current traffic and environmental conditions.
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The mental picture paradigm is related to Neisser’s cyclic theory of perception, which is
defined as the cyclical update of an individual’s understanding of the environment, which
influences the individual’s future actions when the individual constantly interacts with
the environment [24,25]. Neisser’s theory could imply that experts can have an integrated
experiential model that reduces the perceived complexity of the environment, leading them
to develop certain strategies, such as visual scanning and conflict mitigation strategies.

Continuously maintaining a “mental picture” is a difficult task due to the dynamic
nature and complexity of the environment, which can negatively impact performance by
taxing the mental resources of the controller [26–30]. In addition, the information associated
with each individual aircraft (e.g., altitude, speed, and direction) needs to be continuously
monitored to identify potential conflicts and anticipate future events [31–33].

One partial source of future environmental complexity is the increased aggregated
demand within the air traffic sector [34], which may exacerbate the workload placed on
the ATCSs [35]. The incorporation of new technologies and procedures into the training
curriculum for future ATCSs will be important in mitigating the adversarial effects that
this rise in aggregated demand may have on operations. For example, deficient visual
search strategies can lead to significant sources of error in aviation [36,37], such as poor
judgement in both decision-making and communication [38]. Thus, the incorporation of
an experts’ visual search and the conflict mitigation strategies they lead to into the training
curriculum of candidate ATCSs could help alleviate the negative impact that increased
aggregated demand may have on future controllers.

1.3. Scope of Research

The aim of the research presented in this paper is to investigate how the controllers
visually search for potential aircraft conflicts and how to mitigate those conflicts using real-
istic scenarios that are very similar to those used in the air traffic training academy. In more
detail, interviews are held with the controllers to classify their visual search and conflict
mitigation strategies, then, based on the answers regarding their visual search strategies
(such as circular or linear), collected eye tracking data are used to find representative visual
scanpaths that match with their verbal answers.

2. Materials and Methods

The eye movements of the participants were recorded when they participated in all
of the scenarios. Interviews with the participants were held after all the scenarios were
administered, so the interview results are not associated with any specific scenario. The
goal of the interview was to better understand the heuristics, and the environmental cues
that might affect the participants’ decision making processes. During the interview, we
replayed a few recordings (after they went through all the scenarios) as needed if the
participants felt the need to see them to better explain their search and/or mitigation
strategies. Details are as follows.

2.1. Apparatus

The FAA provided use of a Kongsberg I-Sim simulator for this study. I-Sim simulators
present a high-fidelity simulation of an actual radar display used in air traffic control. A
24-by-24-inch monitor was used to present the simulated radar sector. The eye movements
were recorded using a Tobii TX300 eye tracker. The sampling rate of Tobii TX300 was
300 Hz. The visual angle error of the eye tracker was 0.4◦, meaning that the eye fixation
coordinates collected by the eye tracker can be different up to approximately 1 cm from
the actual eye fixation location (or coordinates) when the participant is 1 m away from the
display. The eye fixation threshold was set to 60 ms, meaning that an eye fixation occurred
if a participant observed a location for more than 60 ms. A simulated radio communication
channel was used for communication between the participant ATCS and the pseudo pilot,
with a frequency of 300 Hz.
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2.2. Participants and Scenarios

Twelve realistic scenarios of a high-fidelity en-route air traffic control simulation were
presented to eleven male retired ATCS, recruited with the assistance of the FAA Civil
Aerospace Medical Institute (CAMI) in Oklahoma City, OK, USA. The retired controllers’
age ranged approximately between 50 and 60.

The developed scenarios were similar to those used at the FAA Academy for training.
Examples of the scenarios are provided in Figures 2 and 3. The scenarios were designed to
present the participants with a nominal en-route control environment. None of the scenarios
contained hazardous weather elements (e.g., wind or rain) or additional off-nominal situa-
tions (e.g., dynamic restricted airspace). A pseudo-pilot coordinated the aircraft movements,
with the control clearances issued by participants, as well as making scripted pilot requests
at various intervals. The scenarios were ordered randomly for each participant to reduce
the impact of possible confounding effects (e.g., fatigue). Each scenario lasted from approxi-
mately 15 to 20 min. Therefore, the total experiment time per participant for all 12 scenarios
was approximately 4 h. Each participant took a short break of approximately 5 min or less
after going through each scenario.
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Figure 2. Example scenarios: (a) Layout of aircraft during an experiment using one of the scenarios;
(b) Example of aircraft conflicts highlighted in red and yellow (left side shows the aircraft layout at a
certain point in time, and the right side shows the future conflict locations.
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The questionnaire was designed in a structured manner to elicit tacit knowledge from
the participants (Table 1). In addition, the structure enabled us to quantify and compare
responses across participants. The questionnaire was divided into four main stages; the
first one, Overall scanning strategy, was created to better comprehend participant visual
search strategies. The second and third stages, “Searching for conflicts” and “How conflicts
are detected”, were designed to identify the environmental cues that ATCS observe, in
what order observations are made, their reasoning, and how their decisions shape their
strategies. Lastly, “Control strategies” focused on how ATCS mitigate conflicts.

Table 1. Interview questionnaire.

Stage Question

Overall scanning strategy

What shape best describes your strategy overall?
Why do you prefer your search method?

What is your visual search strategy?
How do you prioritize aircraft conflicts?

Searching for conflicts What is the order in which you read information?
What kind of situations cause priorities to change?

How conflicts are detected
If aircraft are converging, what information do you observe and

in which order?
If aircraft are overtaking, what information do you observe and in

which order?

Control strategies In general, how do you control a conflict?
Why do you prefer your chosen control strategy?

2.3. Procedure

The participants were instructed to control the simulated en-route traffic and resolve
any potential conflict situations. During the experiment, the ATCSs were not allowed to
use the vector key (which allows them to see the trajectory of the aircraft for 8 min in the
future). The ATCS provided a verbal response once they believed all the potential conflicts
had been resolved, after which the scenario was stopped.
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2.4. Data Analysis

The eye-tracking data collected for each participant were overlaid onto the respective
scenarios in order to analyze, recognize and characterize the visual search strategies.
Four analysts, who are the authors, evaluated the self-reported visual search and conflict
detection strategies. For each participant, the transcribed reports were interrogated for
quotations dealing with visual scanning methods, aircraft selection methods, and mitigation
methods. All four analysts came to an agreement with the finalized classifications, provided
in this paper.

The interviews were recorded, then transcribed. After this, we followed the procedure
of the content analysis [39,40] by (1) identifying the key words or key phrases used by the
controllers, (2) creating classifications based-on those key word or key phrases, and then
(3) tallying frequencies and providing the actual quotes. Note that the participant could
freely answer the interview questions provided in Table 1, but the researchers (i.e., authors
of this paper) interacted with the participant to obtain more concrete answers. For example,
when asking questions related to the visual scanning strategy, the researchers would guide
the participant to elicit a specific geometric shape, and the participant provided a specific
term, such as circular search or spiral search. If the participant answered that s/he did not
follow a specific search strategy, then the answer was classified as a random search.

3. Results
3.1. Visual Search Strategies of Former ATCS

Self-analysis results indicate that visual search strategies tend to have a recognizable
geometrical shape (Table 2). The table shows that a sizeable number of participants (54%)
prefer a visual search strategy which resembles a circular or spiral geometrical pattern.
Other visual search strategies could be identified as: (1) linear (9%), (2) quadrants (9%) (i.e.,
where the screen is divided into two or more sections); (3) mixed (9%) (i.e., a combination
of multiple geometrical patterns); (4) random (18%) (i.e., where no particular geometric
shape can be derived). Note that Table 2 and other tables presented in this paper were
developed based on the controllers’ verbal inputs. Representative examples of the visual
search strategies for the geometrical shapes can be seen in Figures 4 and 5.

Table 2. Shape of visual search strategy and starting location.

Geometrical Pattern Freq. Starting Location Freq. Participant

Spiral 4
High density-based 3 P2, P10, P11

Sector center 1 P9

Circular 2
High density-based 1 P1
Preference based on

training and experience 1 P3

Linear (e.g., zigzag-like
movement) 1 Low density-based 1 P5

Quadrants 1 Areas of conflict 1 P4

Mixed (e.g., circular and
linear combined) 1 High-density based 1 P6

Random 2
Incoming sector traffic 1 P8

High density-based 1 P7

Furthermore, most participants selected their preferred starting location (i.e., where
the first fixations of the visual search strategies occur) in high-density areas (54%). Note
that “high-density areas” refers to areas that have a higher number of aircraft compared to
other areas. Other reported areas were: (1) sector center (9%); (2) low-density areas (9%);
(3) possible areas of conflict (9%); (4) incoming traffic onto the sector (9%); (5) no specific
location (9%).
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The reasoning reported by each participant for these strategies contained mixed
reports, and thus, no explicit general trend can be derived from their categorization (Table 3)
or quotations (Table 4). The motives behind the participants’ visual search strategies consist
of the following factors: (1) allows a continuous rather than disjointed (i.e., constantly
moving between far-away areas) visual search strategy (18%); (2) emphasizes time-sensitive
(18%) or high-density (9%) areas; (3) enables faster visual scanning (9%) or recognition
of an incorrect altitude for direction of flight (9%); (4) based solely on prior training and
experience (36%).
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Table 3. Reason behind preferred visual search strategy.

Reason Freq. Participant

Continuous scan rather than disjointed 2 P1, P11
Focus on time-sensitive areas 2 P9, P5

Faster scan 1 P2
Focus on high-density areas 1 P10

Aid in recognizing wrong altitudes for direction of flight 1 P7
Preference based on training and expertise 4 P3, P4, P8, P6

Table 4. ATCSs quotations on reason behind their preferred visual search strategies.

Reason Quotations from ATCSs

Continuous scan rather
than disjointed

(P1: circular) I guess it has more continuity rather than jumping
all over? You have more of a flow to what you are looking at.

(P11: spiral) Well, I think if you stay with a sweep around the
sector you will not miss or are at least less likely to miss anybody.

Focus on time-sensitive areas

(P9: spiral) If the group is in the left of the sector it is more time
critical to make control judgements

(P5: linear) The whole thing is a big puzzle with smaller
puzzles. If you eliminate the smaller conflicts first, it gives you
more time to look at what else is going on.

Faster scan (P2: spiral) The main reason is because that is the fastest way to
get to everybody

Focus on high-density areas (P10: spiral) I usually try to focus on the most complex area.

Aid in recognizing wrong
altitudes for direction of flight

(P7: random) If they are at the wrong altitude for the direction
of their flight, I need to fix that

Preference based on training
and experience

(P3: circular) It is just me and there is no particular reason. It is
just how I do it.

(P4: quadrants) I just found that it works better for me that way.

(P6: mixed) I guess I was trained that way and I think it is a
more thorough way to do it.

(P8: random) That really comes with experience. To tell
somebody that there is a certain order is something that I am
not sure would be very helpful.

Participants reported a strong (91%) hierarchy in which information is processed:
(1) altitude; (2) direction; (3) speed. Only a single participant described an alternative order,
which, nonetheless, still placed altitude as the highest priority (Table 5).

Table 5. Order of information processed.

Order of Information Freq. Participant

Altitude Direction Speed 10
P1, P6, P7, P10, P11, P8, P5,
P9, P4, P3

Altitude Speed Direction 1 P2

To expand on this, participants were also surveyed regarding whether their established
hierarchy is affected by environmental factors (e.g., adverse weather conditions), as shown
in Table 6. Here, the majority of participants (64%) report that their information hierarchy
is not affected by environmental factors, but rather that their potential control action affects
this (45%). On the other hand, among those who reported that their information hierarchy
is affected by environmental factors, one explicitly mentioned that it is affected by the
urgency of a potential conflict.
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Table 6. Effects of scenario characteristics in the order of information processed.

Effect of Scenario Freq. Reason Freq. Participant

Environmental characteristic
does not affect order

of information
7

Control action affects order
of information. 5 P2, P6, P7, P8, P9

Used to predict aircraft behavior. 1 P4

Preference based on training
and experience. 1 P3

Environmental characteristic
affects order of information 4

Sector characteristics 3 P5, P10, P11

Conflict urgency 1 P1

3.2. Conflict Detection and Mitigation

Among the various types of conflict, participants strongly report that aircraft in a
converging conflict have priority over any others (82%), but after that, there is a lack of
consensus. Some participants place the most important subsequent conflict as: (1) head-on
(36%); (2) overtaking (18%); (3) diverging (9%); (4) parallel (9%). A single participant
reported that their conflict hierarchy places head-on first, followed by converging, and
parallel, respectively. Only two participants did not explicitly state a conflict hierarchy
(Table 7). The participants’ reasons for their established order showed clear tendencies
towards the maintenance of safety protocols (91%). In addition to environmental factors,
it may be possible that the established information hierarchy is affected by the type of
conflict. In the case of overtaking aircraft (Table 8), the priority of speed is higher than
direction, while altitude remains the most important variable (64%).

Table 7. Priority order of aircraft conflict types and their associated reason.

Order of Conflict Observed Freq. Reason Freq. Participant

Converging

Head-on Overtaking 4

Immediate
safety issue 3 P1, P2, P3

Loss of separation 1 P4

Overtaking Parallel/
Diverging 2 Time sensitive 2 P7, P9

Diverging Overtaking/
Parallel 1 Symbol

recognition 1 P5

Parallel
Overtaking/
Diverging/

Head-on
1 Immediate

safety issue 1 P6

Head-on Converging Parallel 1 Immediate
safety issue 1 P10

Order based on training and experience 2

Immediate
safety issue 1 P8

Time sensitive 1 P11

Table 8. Order of information observed for overtaking aircraft.

Order of Information Observed Freq. Participant

Altitude
Speed

* 5 P3, P5, P8, P10, P11
Direction 1 P4

Destination 1 P8

Direction
Speed 1 P9

* 1 P7
Speed Altitude Turns 1 P2
Speed * * 1 P6

* Information was not explicitly stated by participant (s).
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For the case of converging aircraft (Table 9), the established hierarchical information re-
mains as originally defined for most participants (54%): (1) altitude; (2) direction; (3) speed.
Although the majority of participants maintain that altitude is the most important variable
(91%), there is no consensus on what the subsequent order is. Only one participant did not
provide an explicit information hierarchy.

Table 9. Order of information observed for converging aircraft.

Order of Information Observed Freq. Participant

Altitude

Direction Speed 6 P4, P6, P7, P8, P10, P11
Position 1 P5
Speed

*
1 P1

Destination 1 P9
* 1 P2

Preference based on training and experience 1 P3
* Information was not explicitly stated by participant (s).

A key element in conflict mitigation is the selection of a variable from the hierarchy
of information used for de-conflict. The participants were surveyed on their preferred
conflict mitigation strategies (Table 10), with two principal conflict mitigation strategies
reported: (1) altitude, vector, and speed changes (36%); (2) vector and altitude changes
(36%). One participant described an alternative hierarchy, which consisted of changing
altitude, followed by vectoring.

Table 10. Preferred conflict mitigation strategies.

Order of Conflict Mitigation Strategies Freq. Participant

Altitude change Vector change Speed change 4 P3. P5. P8, P10
* 1 P1

Vector change Altitude change * 4 P4, P6, P7, P9
Based on sector characteristics 2 P2, P11

* Information was not explicitly stated by participant (s).

Additionally, two participants did not explicitly state a hierarchy of conflict mitigation
strategies, but rather cited that the sector characteristics dictate the strategy they would apply.
Participants were also surveyed on the reasoning behind their established conflict mitigation
hierarchy (Table 11), with three major areas: (1) conflict characteristics (27%); (2) customer
service (27%); (3) sector characteristics (27%). Only one participant provided an alternative
motive, defined by the practicality of changing altitudes. The quotations explaining the
reasoning behind their conflict mitigation hierarchy can be found in Table 12.

Table 11. Reason for preferred conflict mitigation strategies.

Reason Freq. Participant

Conflict characteristics 3 P3, P6, P11
Customer service (e.g., provide a short-cut) 3 P4, P5, P7
Sector characteristics 3 P1, P2, P9
Practicality of altitude change 1 P10
Preference based on training and experience 1 P8
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Table 12. ATCSs quotations on reason for their preferred conflict mitigation strategies.

Reason Quotations from ATCSs

Conflicts
characteristics

(P3) It is hard to give a specific example because you are reacting in
many instances

(P6) Normally the speed comes into play as you are looking for the
traffic and you decide: “am I going to turn the slower aircraft behind
the faster aircraft”

(P11) I cannot really say that. Sometimes routes are so much easier, you
can just tweak a route or turn them behind him.

Customer service (e.g.,
provide a short-cut)

(P4) If I could give an aircraft a more direct route, he is happy. I am not
changing his altitude, so everyone is happy in that situation.

(P5) Airplanes like to stay on course and anytime you turn them, it
takes longer and costs more money as burn more gas.

(P7) If it’s shorter for the aircraft, that’s more efficient, as it saves them
time and fuel, which equates to efficiency. It is more efficient for me.

Sector characteristics

(P1) Altitude or vectoring would be best. Where I have worked, these
guys are coming cross country. If you start slowing down, they are
going to get irritated

(P2) If you are working on a low altitude near an airport, using speeds
and having them slow down, it works really well but not so much in
different airports

(P9) Sometimes you have to do just choose one due to the scenario.
There may be a scenario where you have to vector because there are
no altitudes

Practicality of
altitude change

(P10) I think altitude is the easiest because the pilot just has to go up or
down. In vectors, the pilots may start wondering, why are they on
this vector?

Preference based on
training and experience (P8) To me, it is just the easiest way to work airplanes.

4. Discussion

The objective of the present study was to identify the heuristics that experienced ATCS
application, subject to the information gathered and processed from the environment, as
they carry out the safe and expeditious control of air traffic, in order to incorporate what
we learn into the training curriculum. The interviews held with the participants, and the
subsequent two-fold analysis, composed of self-report and eye tracking methodologies,
highlight several types of applied heuristics, and the environmental cues that lead to them.

First, the visual search strategies tend to be composed of continuous movements that
resemble a spiral or circular geometrical pattern. This enables ATCS to cover the entirety
of the sector in a systematic manner, possibly reducing the rate of duplicate information
(e.g., reading the same data tag twice) that needs to be gathered and processed from the
environment. The starting location of these eye movements gravitates towards areas which
were self-defined as high-density, emphasizing safety, as aircraft are in close proximity
to each other, and the difficulty of maintaining separation is heightened. It is important
to distinguish that, although participants did not explicitly report a consensus on the
reasoning behind their preferred visual search strategies, the aggregate of their responses
suggests that the overall application is directed towards the maintenance of high degrees
of safety in the system.

Second, through their visual search strategies, the environmental and aircraft informa-
tion needed to build and maintain situational awareness is gathered. Participants concur that
the former is collected through a dynamic information hierarchy, prioritizing the altitude
of an aircraft over its direction and speed. This is likely driven by the three-dimensional
nature of the environment. For example, if most potential conflicts consist of horizontal
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geometries (e.g., sectors without airports, where changes in altitude for landing or taking-off
procedures are not needed) at different altitudes, the likelihood of possible conflicts among
them is significantly reduced. This leads to potentially fewer altitudes needing to be encoded
by ATCSs, as aircraft remain at pre-determined altitudes unless instructed otherwise. An
exception is when an airport exists within a sector, in which airports necessitate a change
in altitude during arrival or departure. In addition, the participants recognize that their
information hierarchy must be dynamic to account for the various possible types of conflict
that may be present, and the multiple ways they can be resolved. It is notable that, especially
around an airport, the pilots and controllers are not stuck thinking in two dimensions, but
can consider four dimensions (i.e., 3D plus time).

The results corroborate the industry-established notion of altitude being prioritized.
In addition, if we use the scenarios as training tools, the fact that these scenarios present
examples of the prioritization of altitude being effective means that the scenarios will be
that much more useful as training examples.

Third, the participants apply a hierarchy of conflicts in their conflict detection task. In
this ordinal categorization, aircraft pairs whose geometrical shape indicates convergence
are given priority over all other configurations. Although there is no unanimous designa-
tion of the importance of subsequent conflicts, there is an agreement that the foundation
of this hierarchy is based on the maintenance of safety protocols. This is because recog-
nizing a converging conflict may require more time, due to the information that needs
to be compared. In the case of an overtaking conflict, all involved aircraft are flying at
the same altitude, heading in nearly, if not identical, directions. This generates a shift in
the weights assigned to the dynamic information hierarchy, as speed becomes the second
priority variable, over direction, for most participants.

Finally, the role that altitude plays in conflict mitigation strategies is quite significant.
This is consistent with the hierarchies reported by controllers in other studies [41]. Second
to altitude, the direction of flight is the next highest in the hierarchy. Here, ATCS are capable
of enhancing the experience of their customers by providing direct routes with greater
efficiency, taking advantage of favorable weather conditions, or maintaining altitude and
reducing fuel costs. Although altitude provides an immediate solution to an aircraft in
conflict, it requires aircraft to cross several transitory altitudes, potentially placing them
in another conflict. This divide highlights one of the multiple trade-offs that ATCS must
choose between to successfully and efficiently manage air traffic in a safe manner.

The retired ATCS applied a conflict mitigation hierarchy which is continually instanti-
ated with information gathered from the simulated environment through the application of
consistent visual search strategies. These strategies represent logical candidates to present
to novice ATCSs during training. Presenting expert search strategies to novices would en-
able the novices to try to incorporate the strategies into their own behavior and potentially
improve the efficiency with which they gather operationally relevant information from
the environment.

Limitations and Future Research

The purpose of this research was to investigate the visual search behaviors using real-
istic scenarios; therefore, many possible factors, such as the speed of convergence, altitude
changes, time to conflict, or number of aircraft on display at a certain timeframe, were not
controlled. In addition, the interview results were created based on verbal input after all the
scenarios were administered, and were not associated with a specific scenario in mind. Fi-
nally, other various eye movement metrics, such as eye fixation numbers/durations, pupil
sizes, saccadic transitions (e.g., Markov Chain), scanpath duration, scanpath frequencies,
and visual entropy were not analyzed.

Therefore, future research involves analysis visual search and conflict mitigation
strategies using various factors, as well as the eye movement metrics mentioned above. In
addition, we were able to identify the visual scanpaths within each scenario which could
be mapped with the experts’ verbal explanation of their visual search strategies, but we
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did not choose to include the sixty figures in this paper. We are currently in the process of
developing a robust algorithm to better classify and represent those outputs.

5. Conclusions

Self-reported responses, along with associated visual scanpaths obtained from eleven
retired ATCSs, were analyzed using a high-fidelity simulator to better understand the ATCSs’
cognitive and decision-making processes during visual search and aircraft conflict mitigation.
Results from the self-reported responses indicate that the participants prefer to apply a
systematic and continuous visual search strategy, utilizing a circle or spiral movement, and
starting in high-density areas. Furthermore, we were able to identify the visual scanpaths
that accord with their self-reported responses. In addition, the self-reported responses
suggest that information is gathered from the environment through a dynamic information
hierarchical heuristic (i.e., altitude -> direction > speed), which might be affected by aircraft
conflict characteristics. Similarly, the preferred conflict mitigation strategies, explained by
the retired ATCSs, were either modifying the altitude and direction, followed by the speed,
when imminent conflicts were detected.
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