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Abstract: The current study investigates the application of statistical methods to flight, which have
been used in science over time to understand complex physical and mathematical systems by using
randomly generated numbers as input into those systems to generate a range of solutions and,
specifically, how mathematics is used to examine airplane design and crash frequency. In order
to make very accurate predictions, one also requires an appropriate mathematical model. Using
randomly selected numbers, the Monte Carlo statistical method is able to make very accurate
predictions. With the Monte Carlo statistical method, by using significantly larger numbers of trials,
the likelihood of the solutions can be determined very accurately. Currently, Monte Carlo methods
are widely used and play a key part in various fields of science. Monte Carlo methods have vast
uses in trials with limited observations that cannot be replicated many times. This paper adds
new findings to the knowledge base on causes of crashes by airplane design. First, mathematical
methods are used in this paper to investigate what the most likely casualty number and range are in
the five years after the first flight based on 5000 simulations. Second, an investigation is performed
to determine if certain casualty numbers are outliers of certain airplane designs based on the number
of casualties reported using Monte Carlo analysis.

Keywords: Monte Carlo methods; flight; casualties

1. Introduction

Monte Carlo methods were invented in the 1930s by Enrico Fermi [1,2] and were used
to solve crucial problems in developing the atomic bomb in the 1940s. It was not possible
to make many experiments of explosion. Therefore, scientists had to rely on simulations.
Enrico Fermi invented the Monte Carlo method for studies in neutron diffusion in Rome.
Fermi did not publish the Monte Carlo method as a stand-alone article but used it to solve
many problems in his other publications. Fermi took great delight in impressing greatly
his Roman colleagues with his remarkably accurate, “too-good-to-believe” predictions of
experimental results. After indulging himself, he revealed that his “guesses” were really
derived from Monte Carlo statistical sampling techniques. Fermi, during his hiatus from
the ENIAC operation at Los Alamos National Laboratory, invented a simple but ingenious
analog device for studies in neutron transport collision, and he persuaded his friend and
collaborator Percy King to build such an instrument, later called the FERMIAC. Stanislaw
Ulam then introduced the Markov Chain Monte Carlo method for the ENIAC operation
at Los Alamos National Laboratory. John von Neumann understood its importance and
programmed the ENIAC computer to perform Monte Carlo simulations [3,4]. Scientists
working on the Manhattan Project had to model what would happen in a chain reaction
in highly enriched uranium. Projections had to be accurate and could not deviate from
actual results. Monte Carlo simulations were the answer [5,6]. Unlike a normal forecasting
model, Monte Carlo simulation predicts a set of outcomes based on an estimated range
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of values versus a set of fixed input values [7,8]. Scientists used the first “computers”,
which were calculators, and early IBM punched-card machines in which people entered
numbers by hand in each simulation. However, the problem had so many dimensions
that systematically plugging in and trying numbers in all these dimensions took far too
long. Modern computer architecture provides a solution for this problem with the linear
increase of computing performance as computing cores in the silicon microchip increase.

Monte Carlo simulation [1] is a mathematical model or a multiple probability sim-
ulation that is used to compute the possible outcomes of an uncertain event. From a set
of fixed input values, (e.g., a five-year data set for Boeing 737-Max), it predicts a set of
outcomes based on an estimated range of values. It leverages a probability distribution,
such as a uniform or normal distribution, to build a model of possible results for any
variable that has inherent uncertainty. It, then, recalculates the results continually, each
time using a different set of random numbers between the minimum and maximum values.
In a typical Monte Carlo experiment, this procedure can reoccur thousands of times to
produce a large number of likely outcomes. Monte Carlo simulations are also utilized
for long-term predictions due to their accuracy. As the number of inputs increases, the
number of forecasts also grows, allowing one to project outcomes farther out in time with
more accuracy. When a Monte Carlo simulation is complete, it yields a range of possible
outcomes with the probability of each result occurring. One simple example of a Monte
Carlo simulation is to consider calculating the probability of rolling two standard dice.
There are 36 combinations of dice rolls. Based on this, one can manually compute the
probability of a particular outcome. Using a Monte Carlo simulation, one can simulate
rolling the dice 10,000 times (or more) to achieve more accurate predictions [1].

This paper looks at some applications in flight that have been used over time and
how mathematics is used to examine airplane design and crash frequency [9]. Using ran-
domly selected numbers, the Monte Carlo statistical method is able to make very accurate
predictions. With the Monte Carlo statistical method, by using significantly larger num-
bers of trials, the likelihood of the solutions can be determined extremely accurately [10].
Currently, it is widely used and plays a key part in various fields of science. Monte Carlo
methods have vast uses in trials with limited observations that cannot be replicated many
times [11]. This paper adds new findings to the knowledge base on causes of crashes by
airplane design. First, mathematical methods are used in this paper to investigate what the
most likely casualty number and range are in the five years after the first flight based on
5000 simulations. Second, an investigation is performed to see if certain casualty numbers
are outliers of certain airplane designs based on the number of casualties reported using
Monte Carlo analysis.

2. Methodology

The Monte Carlo method is a mathematical technique also known as statistical sam-
pling [2]. Monte Carlo simulation can be developed to model the probability of different
outcomes that present uncertainty and then play them out on a computer thousands of
times. Monte Carlo simulation is a mathematical numerical method that uses random
draws to perform calculations and solve complex problems.

One of the most common used generators is the following:

Xn+1 = (aXn + b) mod m (1)

to generate numbers, where a, b and m (integer modulus m > 1) are large integers, and Xn+1
is the next in X as a series of pseudo-random numbers. The maximum number the formula
can produce is one less than the modulus, m − 1. To avoid certain non-random properties
of a single linear congruential generator, several such random number generators with
slightly different values of the multiplier coefficient, a, can be used in parallel, with a
“master” random number generator that selects data sources from among the several
different generators [12].



Aerospace 2021, 8, 161 3 of 9

In reality, however, no random draw is truly random, as it depends on the root. Each
time the root is different, a distinct random process occurs, similar to a Polaris cleaner in
a pool. When the Polaris cleaner is tied to a different wall of the pool, resulting random
movements differ.

Monte Carlo simulations can be utilized to replicate, say, 1000 trials of a limited
occurrence. For example, the mean and dispersion of the damage done by less than a
handful of atomic bomb explosions can be simulated by Monte Carlo trials. These can be
used to project the actual radius of the damage in real-life explosions.

One can use the cumulative distribution function (CDF) to calculate the probability
that the variable takes a value less than or equal to x [13]. The plot of the normal cumulative
distribution function is S-shaped starting from zero on the y-axis [13]. Because the vertical
axis is a probability, it must fall between zero and one. This is particularly suited to Excel
command RAND( ), which generates random numbers between 0 and 1 (it is worth noting
here that each time a key is pressed, a whole different set of Monte Carlo trials is generated).
The probability increases from zero to one as we go from left to right on the horizontal axis.
The CDF can be calculated using the VLOOKUP command in Excel to assign a real-life
occurrence based on each randomly generated number.

The mean from the simulations assigned casualty numbers of 5000 iterations (N) can
be found by using the basic mean calculation formula:

Xmean = ∑ Xi/N where X is the number of casualties and i = 1, . . . , N (2)

A measure of dispersion around the mean can be found by utilizing the following
formula (one can also calculate the weighted average using the COUNTIF command in Excel).
Thus, any value above or below the dispersion interval would warrant closer scrutiny:

Dispersion measure = ∑
√
(Xi − Xmean)

2/(N − 1) (3)

It is possible to estimate if, say, one particular occurrence is an anomaly by calculating
a range around the mean in the following manner:

Ub = upper bound = mean + dispersion (4)

Lb = lower bound = mean − dispersion (5)

If a particular occurrence falls outside of the upper or lower bound, it may be treated
as an anomaly. The cause must then be looked at carefully to understand if this occurrence
must be interpreted differently than the rest of the sample.

3. Data

Table 1 reports data from the Aviation Safety Net Database [14]. Casualty numbers
for each airplane design for the five years after the first flight are reported. The numbers
are cumulative. For example, the third-year number is the sum of the past years, the
fourth-year number reported is the sum of the past four years, and so on.

Table 1. Cumulative probability with Boeing 737-Max in the sample.

Design Probability * Casualties

Boeing 737-200 0 45
Airbus A320-200 0.06 92

DC9-32 0.19 262
Boeing 737-max 0.54 346

* 0.06, 0.13, 0.35, 0.46 expressed cumulatively.

It is possible to infer from Table 1 that all four designs of passenger airplanes reported
casualties in their first five years. Boeing 737-Max had the maximum number of casualties,
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while Boeing 737-200 had the least number of casualties reported in their first five years.
Boeing 737-Max makers can claim that the casualty numbers are normal.

However, it is possible to apply mathematical tools such as Monte Carlo analysis to
investigate whether they are normal or constitute a significant outlier for regulators agencies
such as the Federal Aviation Association to halt the flying of Boeing, Chicago, IL, USA,
737-Max airplanes for safety reasons until further tests are performed on airplane safety.

Significant studies quantify the risk of extreme aviation accidents [15] and provide a
survey of aviation risk and safety modeling [16].

4. Monte Carlo Analysis

Table 1 reports the cumulative distribution function based on the casualty numbers,
and as the way the CDF is reported, it starts with zero, and probabilities are added. At
the end of the five-year interval, there were a total of 745 casualties. Out of 745, about 6%
belong to Airbus A320-200, 13% belong to Airbus A30-200, 35% belong to DC9-32 and 46%
belong to Boeing 737-Max, totaling 1.0, as it is supposed to.

Casualty numbers are a very limited sample, and the experiments cannot be controlled.
There are only a few observations over the years. However, one can resort to simulations using
the Monte Carlo approach to generate, say, 5000 numbers from a standard normal distribution
to arrive at a number that is more representative of the population mean and dispersion.
To illustrate the mathematical approach, only 50 simulations will be reported; however, the
Supplementary Materials report all of the 5000 simulations and the corresponding numbers in
Table 2. The Corresponding Casualty Value column in Table 2 lists the values from the Monte
Carlo method: 5000 randomly selected casualty numbers from the five-year Boeing 737-Max
data set. The mean from the simulations assigned casualty numbers of 5000 iterations (N) can
be found by using the basic mean calculation formula:

Xmean = ∑ Xi/N where X is the number of casualties, and i = 1, . . . , N

Table 2. Monte Carlo simulations *.

Simulation Random Number Corresponding Casualty Value

1 0.029511 45
2 0.877784 346
3 0.049684 45
4 0.375842 262
5 0.97594 346
6 0.909059 346
7 0.206874 262
8 0.326738 262
9 0.2458 262
10 0.976921 346
11 0.49824 262
12 0.708151 346
13 0.752177 346
14 0.055357 45
15 0.587237 346
16 0.44498 262
17 0.485908 262
18 0.481106 262
19 0.045698 45
20 0.108847 92
21 0.700739 346
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Table 2. Cont.

Simulation Random Number Corresponding Casualty Value

22 0.951193 346
23 0.279288 262
24 0.072672 92
25 0.377888 262
26 0.156489 92
27 0.521516 262
28 0.239952 262
29 0.856471 346
30 0.611255 346
31 0.089922 92
32 0.067326 92
33 0.923868 346
34 0.143525 92
35 0.444293 262
36 0.319392 262
37 0.743319 346
38 0.636609 346
39 0.65753 346
40 0.205481 262
41 0.447495 262
42 0.095009 92
43 0.794265 346
44 0.481688 262
45 0.946968 346
46 0.39313 262
47 0.444996 262
48 0.654459 346
49 0.191648 262
50 0.833734 346

* = rand( ) = vlookup(lookup_value,table_array,col_index_num,[range_lookup]).

Table 3 reports the cumulative probabilities excluding Boeing 737-Max based on the
casualty numbers from the data of the Aviation Safety Net Database for all other aircraft [14].
At the end of the five-year interval after the first flight, there were a total of 399 casualties
for all designs. Out of 399, about 12% belong to Boeing 737-200, 23% belong to Airbus
A30-200, and 65% belong to DC9-32, totaling, again, 1.0, as it is supposed to.

Table 3. Cumulative probability without Boeing 737-Max in the sample.

Design Probability * Casualties

Boeing 737-200 0 45
Airbus A320-200 0.12 92

DC9-32 0.35 262
* 0.12, 0.23, 0.65, expressed cumulatively.

Table 4 reports Monte Carlo simulation results excluding Boeing 737-Max only for the
first 50 simulations. The results of the 5000 simulations are provided in the Supplementary
Materials of this paper. Excel commands to use to generate both simulations are the random
number generator = rand( ) and to assign the value on the cumulative probability table the
Excel command to use is:

=vlookup(lookup_value,table_array,col_index_num,[range_lookup]).
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Table 4. Monte Carlo simulations with Boeing 737-Max excluded *.

Simulation Random Number Corresponding Casualty Value

1 0.938014 262
2 0.877194 262
3 0.506338 262
4 0.164717 92
5 0.369072 262
6 0.698868 262
7 0.661901 262
8 0.807135 262
9 0.757239 262
10 0.06584 45
11 0.429569 262
12 0.237415 92
13 0.898775 262
14 0.927234 262
15 0.374385 262
16 0.692643 262
17 0.223326 92
18 0.50979 262
19 0.306565 92
20 0.843186 262
21 0.62789 262
22 0.033259 45
23 0.512249 262
24 0.452089 262
25 0.432025 262
26 0.811374 262
27 0.923514 262
28 0.113079 45
29 0.473194 262
30 0.434762 262
31 0.9362 262
32 0.195844 92
33 0.632611 262
34 0.375676 262
35 0.434593 262
36 0.755377 262
37 0.569038 262
38 0.462824 262
39 0.053393 45
40 0.312179 92
41 0.158278 92
42 0.195863 92
43 0.860629 262
44 0.979724 262
45 0.210679 92
46 0.380913 262
47 0.084189 45
48 0.065844 45
49 0.032934 45
50 0.652622 262

* = rand( ) = vlookup(lookup_value,table_array,col_index_num,[range_lookup]).
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Table 5 reports Monte Carlo analysis of 5000 simulations with Boeing 737-Max in-
cluded in the top part of Table 5 and excluded in the bottom part of Table 5 from the
sample. The top part of Table 5 produces a mean value of 263 casualties and dispersion
around a mean of 101 casualties. The upper and lower bounds are attained by adding
and subtracting the dispersion measure from the mean, respectively. The upper bound of
casualties is 364, while the lower bound of casualties is 163 (provided at the end of the
5000 simulations).

Table 5. Mean and dispersion of the 5000 Monte Carlo simulations.

With Boeing 737-Max in the Sample

Mean 263
Median 262
MAD 076

Dispersion 101
Upper bound 364
Lower bound 163

Without Boeing 737-Max in the Sample

Mean 197
Median 262
MAD 083

Dispersion 089
Upper bound 287
Lower bound 107

The bottom part of Table 5 reports sample results when Boeing 737-Max is excluded
to avoid bias, as would otherwise be expected. Only three comparator aircraft were used
because of the data provided by the Aviation Safety Database [14], which uses the same set of
comparator aircraft. However, some aircraft that were reported had zero casualties in the first
five years and higher casualties in the following five years. These were excluded to prevent
bias against Boeing 737-Max. This was done to increase the reliability and robustness of the
study. Simulations produce a mean value of 197 casualties and dispersion around a mean
of 89 casualties. The upper and lower bounds are attained by adding and subtracting the
dispersion measure from the mean. The upper bound of casualties is 287, while the lower
bound of casualties is 107. The Standard Deviation and the Mean Absolute Deviation MAD
are robust tools to flag outliers in the data set. The top part of Table 5 reports MAD with a
value of 76, and the bottom part reports MAD with a value of 83. The median is the same for
both samples because 262 is the most frequently occurring value.

5. Discussion

New findings of the current study and statistical analysis results demonstrate that the
number of casualties reported by the Aviation Safety Net Database, as well as the number
of casualties predicted by the statistical analysis methods for the Boeing 737-Max aircraft,
is significantly different than the number of casualties caused by the other types of aircraft
(Boeing, Chicago, IL, USA, 737-200, Airbus, Leiden, The Netherlands, A320-200, McDonnell
Douglas, St. Louis, MO, USA, DC9-32) included in the current study. These new findings
warrant further investigation into the paradox of the unusually high number of casualties
for the type of aircraft Boeing 737-Max. Limitations of the current study include the limited
Aviation Safety Net Database five-year data available after the first flight of Boeing 737-Max.

This is the reason the Monte Carlo method was selected to add 5000 data points for
the statistical analysis. Robust statistical analysis measures, including median, standard
deviation, and mean absolute deviation, are included to verify the Monte Carlo analysis
results and to detect the outliers in the data set. There is a need to explain better the intended
impact of this work for the readers to understand the novel application of the Monte Carlo
statistical method to aviation. It is noteworthy to explain the potential advantages to be
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gained from this method in future studies if more data are available and how the confidence
in the approach would increase when applied to more data.

To clarify and clearly explain, the same simple example of the atomic bomb explosions
can be used herein. For example, instead of detonating 5000 atomic bombs to study the
resulting nuclear explosions and their impact, the scientists used the Monte Carlo method
for 5000 instances to re-create the exact same conditions of the nuclear explosions.

In the same modus operandi, instead of 5000 test flights to study the resulting crashes
and potential casualties, the scientists can use the Monte Carlo method for 5000 instances
to re-create the exact same conditions of the test flights and of the crashes.

Furthermore, the intent, due to the five-year available data, is to analyze the probability
of accidents in new designs, over their first five years, to reveal information about the
likelihood of new designs crashing. This suggests that the data used for the study should
be only from accidents where the cause was design related, ideally. For example, if an
aircraft crashed due to weather or pilot error, rather than due to aspects of its design, this
should not be included, ideally.

Unfortunately, this is not the case with the cumulative data available from the Aviation
Safety Net Database. We know, after the grounding of Boeing 737-Max, there are design
issues with Boeing 737-Max; however, this is not the case for all the other aircraft data from
the Aviation Safety Net Database.

In other words, the casualties reported from the database are cumulative due to all
causes and not strictly design related only.

Hence, as the ideal data set is not available, we must use the available data from the
Aviation Safety Net Database, which reports cumulative casualties due to all causes and
not design related only.

It is necessary for the data used in this study to be explained in the context of these
issues so that the interpretation of the results can be meaningful.

The scientific value of a statistical process to future aircraft safety is irreplaceable
compared to the usual detailed assessment of each case in respect to its specific circum-
stances. The statistical evaluation of casualties in airliner accidents can provide an objective
framework by which to confirm perceptions of a particular aircraft being an outlier and
to relate this to the specific circumstances of the crashes such as, for example, to indicate
whether management had taken appropriate decisions after a first accident.

In other words, the Monte Carlo statistical method is exceedingly valuable for future
aircraft safety, to minimize casualties and study flight conditions, especially during the
aircraft development and test flight phases.

6. Conclusions

In conclusion, Boeing 737-Max had 346 casualties in the five-year interval. It is impor-
tant to exclude Boeing 737-Max data in the second phase of the statistical analysis to arrive
at unbiased results. As can be seen, 346 casualties are above the upper bound of 287 casual-
ties when Boeing 737-Max is excluded from the sample. Therefore, the casualty numbers for
Boeing 737-Max are significantly different than the rest of the sample of passenger airplanes
considered in this study and can be seen as a mathematical anomaly, constituting evidence
that the casualties of Boeing 737-Max were exceptionally high, warranting closer scrutiny.

One weakness of the study is only less than a handful of airplane designs are investi-
gated due to limitations of the data. The strength of the study is the simulation technique
that replicates a normal distribution by way of repeated sampling. Monte Carlo trials,
therefore, allow us to arrive at relatively robust results despite the data limitation on
airplane crashes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/aerospace8060161/s1, Monte Carlo 5000 simulations, Mean and dispersion of the 5000 Monte
Carlo simulations.

https://www.mdpi.com/article/10.3390/aerospace8060161/s1
https://www.mdpi.com/article/10.3390/aerospace8060161/s1
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