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Abstract: The effect of manufacturing quality on rocket impact point dispersion is analyzed. The
approach presented here applies to any type of rocket. Here, manufacturing quality is demon-
strated for the unguided rocket, and by simulating four typical manufacturing errors: erroneously
manufactured warhead, misalignment between the warhead and engine chamber, asymmetrically
installed propellant, and error in nozzle manufacturing. A new methodology is proposed, which
combines a 3D CAD model of the asymmetrical projectile (due to manufacturing errors) and the
improved Six-degrees-of-freedom (6DOF) model of its flight into a comprehensive Monte-Carlo
simulation. In that way, the rocket trajectory dispersion is correlated directly to the imperfection of
the manufacturing process. Three quality levels are simulated (low, standard, and high quality), and
each of the analyzed manufacturing errors depends on the chosen quality. The results show how
important it is to impose the highest quality on nozzle manufacturing, and if this condition is not
met, reveal if strict tolerances applied to other steps of the manufacturing process can compensate
for the consequential drop of precision.

Keywords: rocket asymmetry; 6DOF model; Monte Carlo simulation; 3D CAD modelling; quality
assurance; quality levels

1. Introduction

Finding the right optimum between a criterion of precision and a criterion of pro-
duction cost is of the utmost importance when designing a manufacturing process. The
traditional approach to defining tolerances, based on empirical methods, does not give
an adequate answer. For this reason, we propose a method that combines the 3D CAD
(Computer-Aided Design) model of a realistic rocket (produced with some manufacturing
errors) with the adjusted Six-degrees-of-freedom (6DOF) flight model. Two models are
combined into one simulation that gives analytically justified manufacturing tolerances.
The statistical analysis of the resulting rocket dispersion is a step further towards a deeper
understanding of the imperfect projectile behavior, comparing to previous analyses [1,2].
The authors analyze a dispersion of rocket trajectories due to selected disturbances, among
others due to the variations in inertia characteristics (and also launching pitch angle, pro-
pellant burning time, air density, etc.). In [1], a 122 mm rocket is analyzed, which was also
chosen here as a case study. However, the cited papers introduce assumptions that narrow
the applicability of their findings. In addition, limits of disturbances are set arbitrarily (for
example, the longitudinal and lateral moments of inertia change by ±2%, rocket total mass
and propellant mass change by ±1%, etc.).

Manufacturing errors were analyzed previously [3,4], leading to the conclusion that a
certain level of uncertainty is inevitable when it comes to mechanical systems [5]. While [3]
also analyzes the effect of dynamic asymmetry within arbitrarily chosen limits, a different
approach is given in [4], where the serious consequences of dynamic imbalance are shown.
However, a dynamic imbalance is not generated by the non-deterministic production
imperfections, but intentionally by storing artillery shells on their side at hot conditions
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to induce mass asymmetry. The primary goal of both analyses is to determine the initial
motion at and shortly after the barrel muzzle.

Insisting on particularly tight tolerances needlessly increases manufacturing costs [6]
since all manufacturing errors indeed cause dispersion [7] but to various extent. Compared
to the cited papers, the main novelty in the method presented here is the clear link between
manufacturing errors and the resulting dispersion of rocket trajectories and impact points.
Which error contributes the most to final dispersion can be shown only after the compre-
hensive simulation and analysis, as is the one proposed here. An extensive overview of
simulation methods, and also the presentment of the CAD value for the manufacturing
quality enhancement, is given in [8].

Critical stages of production, those in which errors lead to the greatest projectile
imprecision, are crucial to be detected as early as possible. If detected before the actual
manufacturing process begins, possibilities for changes are higher, and the cost of changes
is lower compared to later phases of production [9].

Main conceptual differences between earlier works and the presented method should
be emphasized. First, the proposed method goes back to the true origin of the inertia
characteristics change, and the origin of impact points dispersion: it is the imperfect
production that generates the inertia and geometrical characteristics change. Therefore, we
set the starting point for our analysis there. Second, a large number of assumptions are
omitted that are included in cited works (for example, the assumption that the projectile
remains axis-symmetrical during the flight). This is explained later in Section 4. And
finally, there is a new 6DOF flight model that is designed to facilitate tracking of an
asymmetric projectile. Thanks to these novelties, the new 6DOF model remains suitable for
fast computing, even when the above-mentioned simplifications and assumptions have
been omitted, while they are required when working with the classical 6DOF model. The
new 6DOF model, together with the new coordinate system and a new state vector, is also
presented in Section 4. In this paper, four typical manufacturing errors are simulated for
the case-study rocket. Changes in input data (i.e., the intensity of simulated manufacturing
errors) result in variations of the rocket inertia characteristics, which are then introduced
into the adjusted 6DOF model and ultimately lead to the dispersion of impact points.
Analyzed misalignments are here solely due to manufacturing process imperfection, and
not because of the rocket elasticity since it is assumed to be rigid [10].

2. Materials and Methods

A parametric 3D CAD model of an imperfect projectile is introduced. An example
of the CAD model for such a projectile is presented in Figure 1. The 3D model is divided
into two main components: the propellant that burns and therefore has changing iner-
tia characteristics; and the platform that includes all other parts (fuse, warhead, engine
chamber, nozzle, fins, etc.) with constant geometrical and inertia characteristics. Relevant
inertia characteristics for the platform: mass mL, inertia tensor IL and center of gravity (CG)
position ρL = [xL yL zL]

T are obtained from a CAD program and depend on the simulated
manufacturing errors for the particular rocket.

2.1. Manufacturing Errors Simulation

For the imperfect rocket, geometrical and inertia characteristics differ from that of an
ideal projectile. Four typical manufacturing errors are simulated: erroneously manufac-
tured warhead, misalignment between the warhead and engine chamber (“warhead-to-
chamber error”), asymmetrically installed propellant, and the thrust force misalignment
caused by the error in nozzle manufacturing (Figure 1).

To facilitate tracking of the imperfect rocket flight, a new coordinate system called
geometrical coordinate system (G-CS) is introduced. The G-CS is linked to the engine
chamber axes of symmetry. The xG axis coincides with the longitudinal axis of symmetry,
and transversal axes yG and zG are fixed to rocket fins. The origin is placed at the center of
gravity. The attitude of the G-CS is determined relative to the vehicle-carried coordinate
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system (O-CS, i.e., north-east-down c.s.) by Euler angles: φG, θG, and ψG [11]. The
transformation matrix from O-CS to G-CS is LGO = Lx (φG) Ly (θG) Lz (ψG). Manufacturing
errors are expressed in regard to G-CS.
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Figure 1. Parametric 3D CAD model of the rocket; manufacturing errors marked.

2.2. Warhead-to-Engine Chamber Misalignment

The warhead-to-engine chamber misalignment is described by two angles, as pre-
sented in Figure 2. The angle δHC lies in the plane of disturbance xG − xH, while the angle
ϕHC defines the rotation of that plane relative to the reference plane xG − yG. Both angles
δHC and ϕHC occur as stochastic parameters in the rocket 3D CAD model.
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Figure 2. Angles δHC and ϕHC, which describe the warhead misalignment.

Angles are defined as follows:

• δHC—the angle of misalignment in the plane of disturbance, dispersed according
to the normal distribution (parameters of dispersion defined by the manufacturing
quality level);

• ϕHC—the radial angle, defining the radial position of angle δHC, 0o ≤ ϕHC ≤ 360o

dispersed according to the uniform distribution.

Centers of gravity of the platform, propellant and the entire rocket are marked as CL,
CP, and CR.
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2.3. Warhead and Propellant Errors

The warhead error refers to the misalignment of the inner and outer warhead surface’s
axes of symmetry. Consequently, the explosive is not aligned with the warhead outer
geometry (Figure 3a) [12]. The propellant installment error causes the propellant and
chamber axes of symmetry not to coincide (Figure 3b).
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In analogy with the warhead-to-chamber error, these two errors are also defined by
the corresponding pair of angles: δH and ϕH for the warhead error, and by δP and ϕP for the
propellant error. Both δH and δP angles are dispersed according to the normal distribution,
but not necessarily with the same standard deviations, as will be explained later in the
case study analysis. The radial angles ϕH and ϕP are dispersed according to the uniform
distribution, in a full circle 0–360◦.

If there is a δHC angle, both the warhead and the explosive charge rotate around the
warhead-chamber joint. Additionally, if there is a δH angle, the explosive charge rotates
inside the warhead around the same point. As a result, there is a rotation of both parts
relative to the rocket CG (CR in Figure 2) and their CGs are no longer on the xG axis. This
was introduced into the 6DOF model via the modified inertia tensor (obtained from the 3D
CAD model) and altered moment of aerodynamic force.

2.4. Thrust Force Misalignment

It is already known that, for unguided rockets, the thrust force misalignment results in
high impact point dispersion and therefore must be kept within very strict boundaries [13].
Misalignment of the thrust force may occur due to the asymmetrical combustion, but also
if the nozzle is not perfectly aligned with the xG axis of symmetry. Here the combustion
is assumed to be perfect, so the thrust force misalignment occurs only due to the nozzle
manufacturing error.

The nozzle is a rotationally symmetrical body. A new auxiliary coordinate system
is introduced, called the nozzle coordinate system (N-CS); it is aligned with the nozzle
longitudinal axis of symmetry xN. The plane xG − xN is called the nozzle disturbance plane.
The origin of N-CS is located at the nozzle center with a radial position ρG

N = [lN 0 0]T . In
analogy with the warhead-to-chamber error, the nozzle error is defined over two angles:

δN and ϕN, as in Figure 4. The vector of the thrust force
→
F T coincides with the xN axis and

is deflected from the xG by the angle δN.
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Components of the thrust force in the G-CS are:

FG
T =

 FG
Tx

FG
Ty

FG
Tz

 = LGN

 FT
0
0

 =

 FTcosδN
−FTsinδNcosϕN
FTsinδNsinϕN

 (1)

and its moment in the geometrical coordinate system is

MG
T =

 0
FG

Tz·lN
FG

Ty·lN

 =

 0
FTsinδNsinϕN ·lN
−FTsinδNcosϕN ·lN

 (2)

where FT is the thrust force intensity, variable during the propellant combustion.
In the earlier industry-related experience, the nozzle error has been unsuccessfully

corrected by imposing the highest level of manufacturing quality to other steps of pro-
duction. Even if the danger of erroneous nozzle manufacturing is known, it is not known
to what extent can its detrimental effect be compensated. As a method, the Monte Carlo
simulation is chosen since it allows examining not only the impact of individual manu-
facturing errors but also their correlation that might otherwise be missed. Furthermore,
it allows the analysis of the effect from a very wide spectrum of parameters (wind, mass,
launching angle, etc.) that are not covered during the initial analysis, since it is focused on
the production quality.

3. Monte-Carlo Simulation

The analysis of the effect that four manufacturing errors have on the impact points
dispersion is performed by the Monte Carlo simulation. The value of Monte Carlo simula-
tion for determining the manufacturing parameters is extensively described, for example
in [14] where it is presented as a beneficial tool for analysis of tolerances used in mechanical
assemblies. Its main advantage is flexibility and the ability to use various non-normal
input or output distributions. In that way, it can describe a wider spectrum of problems
and input variables compared to some other analytical methods, for example, the Failure
Modes and Effects Analysis (FMEA) method, although this one also results in preventively
identifying problems and gives their gradation based on severity, probability of occurrence,
and probability of detection [15]. The scheme of simulation that is used for this case study
(previously presented in [16]) is shown in Figure 5:
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3.1. Statistical Process Control, Quality, and Process Capability Indices

The basic concept of statistical process control relates to the comparison of obtained
data and calculated control within specification limits. Statistical process control is recog-
nized as a modern method for the analysis of process capabilities. The process capability
assessment measures efficiency and effectiveness of the process when there are no special
causes of variation, in other words in the state of statistical control. When the process is
under control, it will be less likely for parameters of the observed process to go beyond the
control limits.

If there is a need to determine whether the process is within the control limits, three
statistical instruments are suggested [17,18]: control charts, histograms, and mathematical
analysis of distribution. Before assessing the capability of the process, it is necessary to
choose a critical parameter or variable that will be controlled for. More about the control
charts parameters, processes that are either in control or out of control, type of quality
control policy (including the frequency and duration of sampling), and the cost of a quality
program can be found in [19]. Due to the inability to obtain a larger sample of data from
the actual manufacturing system, some key assumptions are introduced. Using literature
sources [20] and available data from manufacturers, assumptions of the quality levels
were made, and the quality of manufacturing is divided into three groups: low-quality,
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standard-quality, and a high-quality level, according to the amount of variability in the
manufacturing process.

The calculation is made on the basis of the potential process capability index Cp,
which estimates the ability of the process to produce the output (good parts) in the case
when the mean is centered between the specification limits. The general assumption is that
the manufacturing process is perfectly centered: to achieve more realistic conditions, the
probability of the mean shift will be included in the simulation model. Table 1 shows the
potential process capability and related manufacturing quality. DPMO is defect per million
opportunities and Z-value is the value of how many standard deviations fit inside the
specification limits. More about the quality analysis and the need to quantify the influential
parameters for their later assessment can be found in [21].

Table 1. Quality levels.

Cp Z-Value DPMO Quality Level

0.33–0.67 2–3 45500–2700 Low Quality
1.00–1.33 3–4 2700–63.4 Standard Quality
1.66–2.00 5–6 0.57–0.002 High Quality

Since the index assumes the normal or near-normal data, the link between Cp and
process variation σ can be made as follows: Cp = (USL− LSL)/6σ where USL is the
upper specification limit, and LSL is the lower specification limit. The USL and LSL values
are assumed according to the literature (for example [3]) and are unique for all types of
manufacturing errors.

Using chosen USL, LSL, and the quality level, the estimation of the process deviation
is calculated as:

σ = (USL− LSL)/6Cp (3)

More on the assessment of six-sigma quality indices can be found in [22].

3.2. Simulating Manufacturing Errors

Manufacturing errors are simulated in the rocket 3D CAD model. For each error, the
appropriate pair of angles (nondeterministic variables) is introduced: δ which defines the
angle of error or misalignment, and radial angles ϕ as explained in Section 2 and presented
in Figures 3–5.

Radial angles ϕ are dispersed according to the uniform probability distribution:

f (ϕ) =
1

2π
, 0 ≤ ϕ ≤ 2π (4)

while δ angles are dispersed according to the normal probability density function:

f
(

δ; µ, σ2
)
=

1
σ
√

2π
·e−

1
2 (

δ−µ
σ )

2

(5)

The parameter σ for each error and each quality level is determined as in Equation (3),
according to the appropriate USL and LSL. Values are given in Table 2.
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Table 2. Standard deviations for simulated errors, according to the chosen quality level.

USL (deg)
LSL (deg)

Low
Quality

Standard
Quality

High
Quality

Warhead inner and outer surface
misalignment

−0.500
0.500 H = 0.200◦ H = 0.142◦ H = 0.090◦

Warhead to engine chamber misalignment −0.330
0.330 HC = 0.132◦ HC = 0.094◦ HC = 0.060◦

Propellant positioned incorrectly −0.330
0.330 P = 0.132◦ P = 0.094◦ P = 0.060◦

Nozzle
misalignment

−0.1146
0.1146 N = 0.046◦ N = 0.033◦ N = 0.021◦

As can be seen from Table 2, the upper and lower specification limits (USL and LSL) for
warhead error are higher than USL and LSL for other error limits, as preliminary analysis
has proven that the effect of this error is the weakest. As opposed to that, USL and LSL
for the nozzle error are lower compared to the limits for other errors. The probability
distribution function (PDF) is defined using the values listed in Table 2. For example, for
the warhead-to-chamber error (and the low manufacturing quality) specification limits are
set as follows: USL = 0.33◦, LSL = −0.33◦.

The standard deviation for δHC dispersion is then: σHC = 0.66/6·0.8335 = 0.132, since
Cp = 0.8335 is chosen as the average for the low-quality manufacturing level. Finally, if
µ = 0 and σHC = 0.132, the PDF for δHC becomes:

f (δHC) =
1

0.132
√

2π
·e−

1
2 (

δHC
0.132 )

2

(6)

The same procedure is done for the other two quality levels, resulting in the same
form of PDFs but using the parameter σHC = 0.094 for the standard quality and σHC = 0.060
for the high quality level. PDFs for δHC are presented in Figure 6.
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The same calculation is performed (but with different specification limits, as presented
in Table 2) for δH, δP, and δN angles, giving the probability density function for each error
and each of three quality level.

4. Flight Model Adapted for Imperfect Projectile

In classical flight mechanics [11], equations of motion are written in a frame coordinate
system, the axes of which coincide with principal axes of inertia, or in its non-spinning
variant, the ballistic coordinate system (B-CS). However, neither of these coordinate systems
is suitable to describe the flight of the rocket with asymmetrical geometry or asymmetrical
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mass distribution. Therefore, the flight model is developed in the newly introduced
geometric coordinate system (G-CS) and will be called G6DOF for distinction.

4.1. Governing Equations

Differential equations for G6DOF model are obtained from:

• Extension of Newton’s laws of motion for a body with variable mass. Includes the

aerodynamic force FG
A, thrust force FG

T , gravity mgO and Coriolis force maG
c .

.
V

G
K is a

derivation of flight velocity, in G-CS:

m
(

.
V

G
K +

~
Ω

G

G·VG
K

)
= FG

A + FG
T + LGOmgO −maG

c (7)

• Derivation of angular momentum
.

H
G

. Includes moment of aerodynamic forces MG
A

and moment of thrust force MG
T , all written in G-CS:

.
H

G
+

~
Ω

G

G·HG = MG
A + MG

T (8)

• Matrix form of kinematic equation connecting attitude sG = [φG θG ψG]
T and angular

velocity of the rocket ΩG
G = [p q r]T :

.
s = R−1·

(
ΩG

G −ΩG
O

)
(9)

where R is given as

=

 1 0 −sinθG
0 cosφG sinφGcosθG
0 −sinφG cosφGcosθG

 (10)

• Coordinates in the geocentric coordinate system (E-CS, Earth-fixed spherical coordi-
nate system):

.
φE =

VO
Kx

R+h
.
λ =

VO
Ky

(R+h)cosφE
−ΩE

.
h = −VO

Kz

(11)

with R being the radius of Earth and ΩE being its angular velocity.

The state vector XG for a rocket with mass asymmetry is defined according to
Equations (7)–(11):

XG =
[
φE λ h uG

K vG
K wG

K HG
x HG

y HG
z φG θG ψG

]T
. (12)

A difference between the classical 6DOF and the new G6DOF flight model is visible,
because in XG, components of HG are introduced instead of ΩG

G. The aerodynamic velocity

VG = [u v w]T is also defined in the G-CS. Total angle of attack is σ = arctan
√

v2+w2

u ,
and angle between the airflow plane and vertical plane around xG is φ = arctan(v/w).
Derivations of σ and φ are:

.
σ =

(
u

.
v− .

uv
)
v +

(
u

.
w− .

uw
)
w

V2
√

v2 + w2
(13)

.
φ =

.
vw− .

wv
v2 + w2 (14)

Wind is given only in horizontal plane, with no vertical wind: VG
w = LGOVO

w =

LGO
[
uO

w vO
w 0
]T .
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Angular velocity of the rocket is determined from the angular momentum: ΩG
G =

inv
(
IG)·HG. The angular velocity of O-CS relative to the Earth is:

ΩG
O = ΩG

E + LGE

 0
0
.
λ

+ LGO

 0
−

.
φE
0

 = ΩG
E + LGO

LOE

 0
0
.
λ

+

 0
−

.
φE
0


 (15)

with the following transformation matrix from E-CS to O-CS: LOE = Ly
( 3π

2 + φE
)
· Lz(λ).

Projectile’s angular velocity about axes of the airflow coordinate system (S-CS) can be deter-
mined as [pSqS]

T = LSG
(
ΩG

G −ΩG
O
)
, with LSG = Lx(φG − φS). Here φS is the attitude of the

airflow around the longitudinal axis.
The presented model can be used for mid-range rockets flying at high altitudes. A

change in gravity with altitude [13] could also be included into the system of equation.

4.2. Inertia Model

The inertia characteristics for propellant and platform can be obtained from the CAD
model. A large number of assumptions that are common in the previously cited papers
have been omitted, and the calculation is performed using the actual inertia characteristics.
For example, the assumption is dismissed that the projectile inertia characteristics remain
axis-symmetrical during the flight (in our method: Iy 6= Iz), which corresponds better to
the real case. In addition, products of inertia are no longer assumed to be equal to zero
(in our method: Ixy 6= Iyz 6= Izx 6= 0). Even when the limits of production errors are
chosen conservatively, a small change of inertia characteristics causes the rocket to deviate
significantly from the target. It is no longer assumed that the main axes of inertia coincide
with the outer geometry axes of symmetry, nor that the center of gravity (CR in Figure 2)
remains on the xG-axis.

The analyzed rocket has the propellant shaped as a hollow cylinder, and the combus-
tion occurring simultaneously over the external and internal surface. The propellant mass
decreases linearly: mP(t) = mP0(1− t/ta), where mP0 is the initial propellant mass and ta

is the total combustion time. Platform mass mL and its C.G. position
→
ρ L are known.

Because of dynamic imbalance, centers of gravity for the platform and the complete
rocket are not on the axis of symmetry (Figure 2). Moments of inertia for the propellant
change proportionally with its mass: IPx(t) = (mP(t)/mP0)IPx0. Inertia tensor of propellant
is given relative to its principal axes and center of gravity (denoted CP in Figure 2):

(
IP

P

)
CP

(t) =

 IPx(t) 0 0
0 IPy(t) 0
0 0 IPy(t)

 (16)

This inertia tensor must be recalculated relative to the entire rocket center of gravity
CR, and relative to G-CS axes. Parallel axes theorem applies, and the transformation matrix
LGP must be used:

IG
P = LGPIP

PLPG + (ρ̃CP − ρ̃CR)(ρ̃CP − ρ̃CR)mP (17)

In analogy, the platform’s inertia tensor also must be recalculated for the G-CS and
translated to the projectile’s center of gravity (giving IG

L ). If platform axes of symmetry are
not parallel to G-CS, then the appropriate transformation matrix should be used. Finally,
tensor of inertia for the entire rocket is: IG

R = IG
P + IG

L .
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4.3. Aerodynamics of an Asymmetrical Rocket

To complete the G6DOF model, components of aerodynamic force and aerodynamic
moment are required. If harmonics can be neglected, then aerodynamic coefficients are
independent of the roll angle φ (the angle between the airflow plane and the xG-zG plane):

FG
A =

 XA
YA
ZA

 =
ρV2S

2

 Cx0 + Cxσ2
(
α2 + β2)

Cyββ + Cyαα

Czαα + Czββ

 (18)

with air density ρ, aerodynamic velocity V, and projectile reference area S. Components of
aerodynamic moment for reference point RP in G-CS are:

MG
ARP

=

 LA
MA
NA

 =
ρV2Sd

2

 Cl0 + Clp p∗

Cmαα + Cnββ + Cm
.
α

.
α
∗
+ Cmqq∗

Cnββ + Cnαα + C
n

.
β

.
β
∗
+ Cnrr∗

 (19)

If external surface of the rocket is rotationally symmetrical, the following relations
among aerodynamic gradients exist: Cyβ = Czα, Cnβ = −Cmα, C

n
.
β
= −Cm

.
α, Cnr = Cmq.

In Equation (14), p∗, q∗, r∗ are non-dimensional components of the rocket angular velocity.
In the absence of data for the Magnus effect, and considering that these coefficients are
not relevant for this analysis, the following is assumed: Cyα = 0, Czβ = 0, Cmβ = 0,
and Cnα = 0. For an ideal rocket, components of aerodynamic force along G-CS in
Equation (18) are:

FG
A =

ρV2S
2

 Cx0 + Cxσ2
(
α2 + β2)

Czαβ
Czαα

 (20)

and for the reference point RP (defined with the position vector ρRP), the aerodynamic
moment in Equation (19) is given as

MG
ARP

=
ρV2Sd

2

 Cl0 + Clp p∗

Cmαα + Cm
.
α

.
α
∗
+ Cmqq∗

−Cmαβ + Cm
.
α

.
β
∗
+ Cmqr∗

 (21)

The aerodynamic moment in projectile’s center of gravity (defined with position vector
ρR) is defined as MG

A = MG
ARP

+ (ρ̃RP − ρ̃R)FG
A.

The warhead-to-chamber misalignment creates the additional aerodynamic normal
force NH in the plane of disturbance, and the moment MH, as shown in Figure 7.
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Figure 7. Additional aerodynamic force and moment due to the warhead misalignment.

The intensity of additional normal force is NH =
(
ρV2S/2

)
CNδδHC. The distance

from the rocket apex to the point of application of the force NH is xHn, and thus its moment
in the projectile center of gravity is MH = NH(xR − xHn) where xR is the distance from the
apex of the rocket to its center of gravity. The aerodynamic gradient CNδ and the position
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of the force application xHn are determined according to [23]. Since both NH and MH are
tied to the warhead geometry, they should be transformed into the G-CS:

∆FG
A = Lz(δHC)·Lx(ϕHC)·

 0
NH
0

 (22)

∆MG
A = Lz(δHC)·Lx(ϕHC)·

 0
0

MH

 (23)

Besides additional normal force NH, the warhead-to-chamber manufacturing error
causes the additional induced drag. The aerodynamic derivative is Cxδ and it is dependent
on the total angle of attack σ, as well as on the angle of misalignment δHC, as presented in
Figure 8.
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The solution is to replace the effect of these two angles with the resultant angle:

σHn =

√
(α + ∆α)2 + (β + ∆β)2 (24)

where ∆α and ∆β are components of δHC angle: ∆α = δHC·sinϕHC, ∆β = δHC·cosϕHC. The
aerodynamic coefficient of the total drag, incorporating the influence of the misalignment
angle δHC, would be usually defined as in Equation (18) but now with the application of
σHn: Cx(Ma) = Cx0(Ma) + Cxσ2(Ma)σHn

2.

5. Results and Discussion

To demonstrate the model, an unguided rocket similar to the 9M22U 122 mm projectile
for the BM-21 GRAD multiple rocket launcher is analyzed as a case study (Figure 1). The
rocket has the following characteristics:

• length: LM = 2.87 m;
• initial total mass: mM0 = 66.6 kg;
• initial mass of propellant: mP0 = 20.5 kg;
• mass of explosive and mass of the entire warhead: mE = 6.4 kg, mH = 18.4 kg;
• initial moments of inertia: Ix0 = 0.1499 kgm2, Iy0 = Iz0 = 41.58 kgm2.

Given data are valid for an ideal rocket, while the non-ideal rocket (i.e., being er-
roneously manufactured) will have altered inertia characteristics. For such a rocket, the
assumption Iy0 = Iz0 is no longer valid.

The inertia and motor characteristics are taken from technical data sheets, while
aerodynamic gradients are determined by the method described in [24] and confirmed
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in [1]. The coefficient Cx0(Ma) from Equation (20) is determined according to the etalon
CD58(Ma) and adjusted so that the ideal rocket has the same maximum range as stated in
the Firing Tables (in the NATO standard atmosphere). For the coefficient of induced drag,
it is assumed Cxσ = Czα.

The target is at 13,700 m (which presents 2/3 of the maximum range). The rocket
flight is simulated by the 6DOF model as defined by Equations (8)–(11), while geometric
and inertia characteristics for each (non-ideal) rocket are obtained from the 3D CAD model.
Figure 9 shows some parameters of the motion for an ideal projectile.
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Figure 9. For an ideal projectile: trajectory (a), flight velocity (b), and angular velocity (c).

The flight time is 34 s, and the trajectory apex is at 1367 m. The maximum velocity
is 702 m/s, and the final velocity is 307 m/s. These data comply well with data gathered
from the Firing Tables and the available technical documentation.

Because of simulated manufacturing errors, impact points are dispersed around the
target. Simulations are used here as an approximation for expensive polygon tests, which
is a common practice today due to financial limitations [25].

Trajectories have been simulated for 1000 rockets (for each quality level) manufac-
tured with non-deterministic warhead-to-chamber errors, and non-deterministic nozzle
misalignment errors. Parameters for errors dispersion are explained in previous sections,
with 99.7% probability:

• error angles δH, δHC, δP and δN dispersed according to the normal distribution, with
standard deviations depending on the production quality as given in Table 2;

• 0o ≤ ϕi ≤ 360o for all radial angles, dispersed according to the uniform distribution.

Figure 10 shows results of Monte Carlo simulations for three different quality levels.
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Figure 10. Rocket impact points dispersion for various quality levels.

It is interesting to compare parameters of motion around the CoG for an ideal rocket,
with a rocket produced with considerable errors (Case No. 1, a whole rocket made in low
quality, production errors: δN = 0.151◦, δH = 0.056◦, δHC = 0.173◦, δP = 0.091◦). As presented
in Figure 11, the angle of attack α and the angle of sideslip β for the non-ideal rocket
(Figure 11b) are larger in comparison to the results for the ideal rocket (Figure 11a). The
stability of the non-ideal rocket is not endangered, not even if produced with considerable
production errors as the one analyzed here. In Figure 11c, the angle of attack for both
projectiles is directly compared for the first five seconds, since later the angle of attack
diminishes, and differences are difficult to be graphically presented.
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The drift and range results are independent of each other, which is proved by cal-
culation of variance, covariance, and correlation coefficient consequently. The sample
correlation coefficients are negligibly small, ranging from 0.01 to 0.06. Furthermore, using
the test of significance, with a significance level of 5%, there is insufficient evidence to
conclude that there is a correlation of the given data. As for normality of the response data
(range and drift), the test was performed before the prediction interval calculation. The
following is concluded:

• Descriptive location parameters (mean, mode and median) coincide.
• The absolute values of skewness and kurtosis for the analyzed variables are in the

range of 0–0.1 and 0–0.5, respectively.
• In addition, the assumption of normality was tested using the normal—probability

plots and Shapiro Wilk test.

Since the above-mentioned facts point out that the variables are normally distributed,
the prediction interval is appropriate for describing the single-point estimation.

As Figure 10 and Table 3 show, there is a significant reduction of impact point dis-
persion area when higher quality levels are applied. The area of impact points dispersion
corresponds well with the Firing Tables for GRAD rocket, used here as a corrective element
since it obtains data from previously conducted extensive experiments and test firings.
Results in Table 3 show 95% prediction intervals for impact points by the range and drift,
and the impact point dispersion area for each of three simulated quality levels. Calculation
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of 95% prediction intervals, as well as areas of the impact point dispersion, shows that
there is a significant reduction of 51% and 79% when standard or high quality level are
applied, compared to that with the low quality of manufacturing.

Table 3. Prediction intervals of the single impact point, various quality levels.

Direction 95% PI Low 95% PI High

Low Quality (LQ)
(Case No. 1)

Range, m 13,458.0 13,944.7
Drift, m −141.6 140.8
Area, m2 107,948.3

Standard Quality (SQ)
(Case No. 2)

Range, m 13,521.7 13,868.6
Drift, m −96.9 98.6
Area, m2 53,264.9

High Quality (HQ)
(Case No. 3)

Range, m 13,590.3 13,806.8
Drift, m −67.8 65.4
Area, m2 22,649.2

Knowing that the nozzle error, (i.e., the consequential thrust force misalignment)
is causing a significant impact point dispersion, the analysis was expanded with three
more cases, again using a Monte Carlo simulation with 1000 iterations for each case.
Three new simulations examine the overall projectile dispersion when the nozzle error is
manufactured at the low level, as in the already presented Case No. 1, but now with other
rocket components manufactured at the standard level (Case No. 4), at the high level (Case
No. 5) and even perfectly (Case No. 6). Table 4 gives dispersion characteristics for all six
cases (No. 1–No. 6), given by range and drift.

Finally, three more cases (numbered 7–9) are analyzed to inspect what happens if the
nozzle error is removed as a contributing factor (δN = 0). An appropriate Monte Carlo
simulation is prepared with 1000 iterations for each of three cases. Results show that in
such a case, the dispersion area multifold decreases, regardless of whether other rocket
parts are manufactured at a standard (Case No. 8) or even low quality (Case No. 7). If all
parts are manufactured at high quality and δN = 0 (Case No. 9), a dispersion area matches
the one of a guided rocket [26].

As expected, a dispersion of impact points decreases for better manufacturing qual-
ity. However, cases 4–6 indicate that the erroneously manufactured nozzle prevents a
significant decrease of dispersion area, even if all other steps of production are raised
to the highest quality level. Raising other steps of production from low to the standard
quality level results in only 7% smaller dispersion area, and even raising it to the highest
quality level gives a decrease of only 11%. In other words, if the nozzle is manufactured
erroneously, all efforts and additional costs connected to the higher quality level are useless.
This is valid even if a maximum nozzle error is only 2 mrad.

In Figure 12, two charts are presented, showing how critical nozzle manufacturing is.
Both charts give the impact point dispersion if the entire rocket, except for the nozzle, is
manufactured at the standard quality level. On the first chart, the nozzle is manufactured
with low quality, and on the second, the nozzle error = 0. A difference between the two
charts is a direct effect of nozzle imperfection, and it clearly causes the largest portion of
the overall rocket dispersion.
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Table 4. The comparison of standard deviations for nine analyzed cases.

Std. Deviation
Range (m)

Std. Deviation
Drift (m)

95% PI Low
95% PI High

Range (m)

95% PI Low
95% PI High

Drift (m)

Dispersion Area
(m2)

Case No. 1: All LQ 13,458.0
13,944.7

−141.6
140.8 107,948.3

Case No. 2: All SQ 13,521.7
13,868.6

−96.9
98.6 53,264.9

Case No. 3: All HQ 13,590.3
13,806.8

−67.8
65.4 22,649.2

Case No. 4: Nozzle
LQ, Other Errors

SQ

13,459.9
13,936.3

−133.2
135.4 100,500.4

Case No. 5: Nozzle
LQ, Other Errors

HQ

13,460.9
13,920.8

−132.9
132.8 95,972.1

Case No. 6: Nozzle
LQ, No Other

Errors

13,469.5
13,926.8

−130.3
129.8 93,418.2

Case No. 7: No
Nozzle Error,

Other Errors LQ

13,611.5
13,787.7

−52.3
53.9 14,696.7

Case No. 8: No
Nozzle Error,

Other Errors SQ

13,637.5
13,759.7

−37.8
38.9 7361.4

Case No. 9: No
Nozzle Error,

Other Errors HQ

13,660.4
13,741.9

−23.9
22.8 2989.3

A preliminary DOE was conducted to determine the effects of different errors (factors).
The significance of the factors was obtained using the ANOVA method, and standardized
effects (presented via coefficient estimation) were calculated as presented in Tables 5 and 6:

Table 5. Effects for the nine analyzed cases, response variable: range.

Factor Coefficient
Estimate df Standard

Error
95% CI

Low
95% CI
High VIF

Intercept 14,897.06 1 3.32 14,888.52 14,905.61

A-Warhead Error δH −1.69 1 3.32 −10.23 6.86 1.00

B-Head-to-Chamber Error δHC 21.94 1 3.32 13.39 30.48 1.00

C-Propellant Error δP 21.31 1 3.32 12.77 29.86 1.00

D-Nozzle Error δN −144.94 1 3.32 −153.48 −136.39 1.00

F-Head-to-Chamber Error, Radial Angle ϕHC −13.81 1 3.32 −22.36 −5.27 1.00

G-Propellant Error, Radial Angle ϕHC −26.44 1 3.32 −34.98 −17.89 1.00

H-Nozzle Error, Radial Angle ϕN 170.69 1 3.32 162.14 179.23 1.00
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Table 6. Effects for the nine analyzed cases, response variable: drift.

Factor Coefficient
Estimate df Standard

Error
95% CI

Low
95% CI
High VIF

Intercept 43.09 1 0.39 42.09 44.10

A-Warhead Error δH −2.92 1 0.39 −3.92 −1.92 1.00

B-Head-to-Chamber Error δHC 13.23 1 0.39 12.23 14.23 1.00

C-Propellant Error δP −19.52 1 0.39 −20.52 −18.52 1.00

D-Nozzle Error δN 131.12 1 0.39 130.12 132.12 1.00

F-Head-to-Chamber Error, Radial Angle ϕHC 16.27 1 0.39 15.27 17.27 1.00

G-Propellant Error, Radial Angle ϕHC −15.81 1 0.39 −16.81 −14.80 1.00

H-Nozzle Error, Radial Angle ϕN 103.42 1 0.39 102.42 104.42 1.00

The results confirm the conclusion that nozzle error has the highest effect on range
and drift.
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6. Conclusions

A method for estimating the effect of manufacturing errors on rocket precision is
presented. The severity of manufacturing errors is examined by a Monte Carlo simulation,
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with 1000 iterations for each of the nine cases analyzed. These cases mutually differ
according to the quality level imposed on particular parts of the rocket.

The Monte Carlo simulation consists of the non-deterministic manufacturing errors
generator, a 3D CAD model of the rocket which provides changes of the inertia characteris-
tics, and an adjusted 6DOF model of rockets flight which gives the position of impact points,
dispersed due to simulated manufacturing errors. A new coordinate system (geometric CS)
is introduced, helping to develop an improved 6DOF flight model (G6DOF) that facilitates
tracking of imperfect or asymmetric rocket flight.

Monte Carlo simulations (denoted as Case No.1–9) analyze different combinations of
four simulated manufacturing errors and three manufacturing quality levels. Extensive
analysis singled out the nozzle error as particularly critical, which is in line with the
conclusions of previous papers. However, it is shown not only that this error is the
dominant cause of dispersion, but also that its impact is so strong, that even raising the
manufacturing quality of all other parts of the rocket to the highest quality level does not
compensate for the detrimental effect of the nozzle error.

That means that it is possible to achieve a reduction in the rocket cost by using a
standard or even low quality level for less critical stages of production. As for the nozzle
manufacturing, the strictest tolerances must be imposed, because by increasing the potential
process capability index Cp, the projectile dispersion area decreases by up to 79%.

Analytically selected manufacturing tolerances can therefore achieve a major improve-
ment in rocket accuracy, with a minimal increase in production costs. Alternative solutions
regularly fail to comply with at least one of the desired criteria: either they result in a too
expensive projectile or give impact points dispersion that is too large. Future research of
the price of quality could further improve the algorithm for setting analytically validated
manufacturing tolerances.
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