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Abstract: The guidance and control problem of spacecraft approaching an asteroid using constant
continuous thrust is studied in this work. The range of interest is from hundreds of kilometers to
several kilometers, in which relative measurements of much higher accuracy than based on Earth
can be used to facilitate further hovering or landing operations. Time-fixed glideslope guidance
algorithm is improved by introducing a substitute of an existing control parameter and combined
with elliptical relative orbital dynamics to rendezvous the spacecraft with a prescribed location in
the proximity of a given asteroid. A vast range of values for the control parameters are explored
and suitable combinations are found. To fully validate the robustness and accuracy of the proposed
control algorithm, Monte Carlo simulations are done with the navigational error and implementation
error considered.

Keywords: asteroid approaching; glideslope guidance; rendezvous operation

1. Introduction

With an increasing interest in asteroid exploration, research on the design and control
of trajectories towards the close vicinity of asteroids has gained much attention [1–3]. One
of the major issues is how to guide the spacecraft from hundreds of kilometers to the
vicinity of a given asteroid. This phase relies not on Earth-based telemetry, but on relative
measurements and autonomous control by the spacecraft itself. It paves the way for even
closer observational phases or landing [4]. Since the key problems and conditions are
identical to the near-Earth rendezvous problem [5], where constraints are imposed on
both the final relative position and velocity, the control issue of the transfer to the vicinity
of an asteroid can be regarded as a rendezvous problem in the heliocentric two-body
dynamics background, where the Tschauner–Hempel (TH) equations [5] provide good,
approximated solutions to the first order for elliptical orbits. It should be noted that the
relative range under consideration is from hundreds of kilometers to several kilometers,
which belongs to the classical near-range rendezvous process. The aim for this stage is
not to land the spacecraft on the asteroid, but to make observations or get preparation at a
required distance. The sphere of influence of the asteroid in this work is estimated to be
less than 90 m, as will be mentioned later. Therefore, the asteroid’s gravity is ignored in
this study.

Glideslope guidance is a multi-impulse trajectory transfer algorithm and has been
applied to near Earth rendezvous studies. Li et al. [6] applied the glideslope method to
asteroid approaching. Hablani et al. [7] proposed algorithms based on traditional glideslope
guidance with astronauts in the loop, for spacecraft to approach, to fly around, and to
depart from a target vehicle in a near-earth circular orbit. The closed-form solution of the
CW equations was utilized, and this was based on impulsive assumption. The flight time
therein is free to vary. The major drawback of previous methods is the total time of flight
cannot be known before its implementation. Lian et al. [8] improved the method to make
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the time of flight as one of the control parameters and extended its application to libration
point rendezvous problem. However, one of the key parameters, ρ∗, which denotes the
final distance-to-go, relies largely on specific rendezvous scenario, and may have different
best values for different problems. In this work, we relate ρ∗ to the initial distance and
replace it with a newly defined parameter.

The rest of the work is organized as follows. Section 2 describes the relative dynamic
model and state space form of the classical TH equation is given. Section 3 improves the
time-fixed glideslope guidance algorithm and combines it with the TH equation. Practical
issues concerned with constant thrust are discussed. Based on the large number of numer-
ical simulations, the efficiency and robustness of the proposed method are analyzed in
Section 4. Section 5 concludes this study.

2. Relative Equations of Motion

Denoting the heliocentric position vector of the spacecraft by r1, and that of the
asteroid by r2, the relative position vector (denoted by ρ) of the spacecraft is computed by

ρ = r1 − r2. (1)

Using the two-body dynamical equations, one has

d2ρ

dt2 =
d2r1

dt2 −
d2r2

dt2 = −µr1

r3
1

+
µr2

r3
2

+ aT . (2)

In this work, the development of the guidance algorithm is based on the orbital frame
whose origin is at the center of mass of the asteroid, x-axis aligns with the heliocentric
position vector, y-axis lies in the orbital plane and points towards the motion direction, and
z-axis aligns with the orbital moment of momentum.

The approximated relative equations of motion are given by [9]
..
x− 2ω

.
y−ω2x− ξy− 2µx

r3
2

= aTx
..
y + 2ω

.
x−ω2y + ξx + µy

r3
2
= aTy

..
z + µz

r3
2
= aTz

(3)

where ρ = [x, y, z]T is the relative position vector, aT = [aTx, aTy, aTz]
T is the control acceler-

ation vector, while ω and ξ are the angular velocity and angular acceleration, respectively.
Consider the following change of variable,

d
dt

= ω
d

d f
,

d2

dt2 = ω2 d2

d f 2 + ξ
d

d f
(4)

and substitute them into Equation (3), then we have the so-called T-H equation [5]. For
simplicity, denote

P = 1 + e cos f (5)

X =
[
x, y, z, x′, y′, z′

]T (6)

D = [d1, d2, d3, d4, d5, d6]
T (7)

The solution to Equation (3) [5] can be expressed as

X = AD (8)
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where

A =



e sin f a12 − cos f 0 0 0
P 2eHP sin f P+1

P
1
P 0 0

0 0 0 0 sin f
P

cos f
P

e cos f a42 sin f 0 0 0
−e sin f a52 a53

e sin f
P2 0 0

0 0 0 0 e+cos f
P2

− sin f
P2


(9)

and 
a12 = 2 sin f e2H − e cos f

P2

a42 = 2 cos f e2H + 2 sin f e2H′ + e sin f (1−e cos f )
P3

a52 = 2eH′P− 2 sin f e2H

a53 = cos f P+1
P + e sin2 f

P2

(10)

H = −(1− e2)
− 5

2

[
3eE

2
− (1 + e2) sin E +

e
2

sin E cos E + dH

]
(11)

H′ =
cos f

(1 + e cos f )3 (12)

where e, f , E are the eccentricity, the true anomaly, and the eccentric anomaly of the target,
respectively, d1 ∼ d6 are integral constants determined by initial conditions, and dH is
computed from H( f0) = 0. Therefore,

D = A−1( f0)X0 (13)

Substituting Equation (13) into Equation (8), one has

X = ΦX0 (14)

3. Glideslope Guidance Based on TH Equation

The time-fixed glideslope guidance algorithm was initiatively proposed in [8]. For
the completeness of this work, the major steps are reviewed in the following, where
improvements are made in the computation of the control parameters.

3.1. Guidance Law Parameter Computation

Assume the spacecraft has an initial position, r0, and velocity, v0, when t0 = 0. T
is the given time of flight, and the desired/required position and velocity are r∗f and v∗f ,
respectively, when t f = T. The problem is defined as{

r(T) = r∗f
v(T) = v∗f

(15)

Note that r∗f could be a stationing point in the proximity of the asteroid, and v∗f is not
necessarily zero.

Define a reference vector that originated from r0 to r∗f , denote by ρ. The required
position of the spacecraft at time t is computed by

r = r∗f − ρ(t)ρ̂ (16)

where ρ̂ = ρ/‖ρ‖, ρ(t) is called the distance-to-go, and should satisfy the following conditions{
ρ0 = ρ(0) = ‖r∗f − r0‖
ρ f = ρ(T) = 0

(17)
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Design the following linear relationship connecting ρ and
.
ρ,

.
ρ = kρ + b (18)

Out of safety concern, it is required that{ .
ρ0 =

.
ρ(0) < 0

.
ρ f =

.
ρ(T) < 0 (19)

and
.
ρ0 <

.
ρ f (20)

Combining Equations (18)–(20)the following equations can be solved:

ρ = (ρ0 + b/k) exp(kt)− b/k (21)

T = ln(
.
ρ f /

.
ρ0)/k (22)

where {
k = (

.
ρ0 −

.
ρ f )/ρ0 < 0

b =
.
ρ f < 0

(23)

Denoting the total number of segments of the trajectory by N, there will be N + 1
thrust firing. Denote the final distance-to-go by ρ∗ (i.e., the last segment), and define

γ = ρ∗/ρ0 (24)

η =
.
ρ f /

.
ρ0 (25)

According to [8], if

γ ∈ (0,
1
N
) (26)

then { .
ρ0 = ρ0 ln(η)/[T(1− η)]
.
ρ f = η

.
ρ0

(27)

where
η(N−1)/N = γ + η(1− γ) (28)

From Equation (26), it is required that

ρ∗ <
ρ0

N
(29)

In this work, we introduce a ration factor ε < 1, then

ρ∗ = ε
ρ0

N
(30)

To sum up, there are four independent design parameters, T, N, ρ0, and ε, that fully
determine the time-fixed glideslope guidance algorithm.

3.2. Guidance Law Design and Continuous Thrust Implementation

Given the flight time, T, the guided trajectory will be divided into N segments or arcs,
for which the flight time is

∆t = T/N (31)
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Assume t0 = 0, and then the time for the ith (i = 1, · · · , N) control is ti−1 = (i− 1)∆t,
which aims to move the spacecraft from ρ(ti−1) to ρ(ti). The last control is completed at
ρ(T) = 0. According to Equations (16) and (21),

ri−1 = r∗f − [(ρ0 + b/k) exp(kti−1)− b/k]ρ̂ (32)

ri = ri−1 + ζ exp(kti−1)ρ̂ (33)

where
ζ = (ρ0 + b/k)[1− exp(k∆t)] (34)

From Equation (14), one has

ri = Φ11ri−1 + Φ12v+i−1 (35)

v−i = Φ21ri−1 + Φ22v+i−1 (36)

where v+i−1 denotes the required velocity at ti−1, v−i the arrival velocity at ti, and Φij
(i, j = 1, 2) are the subblocks of Φ(ti, ti−1).

From Equation (35),
v+i−1 = Φ−1

12 (ri −Φ11ri−1) (37)

Denoting the current velocity by v−i−1, a corrective delta-v is required

∆vi−1 = v+i−1 − v−i−1 (38)

Note that v−i−1 includes navigational error. The last delta-v is computed by

∆vN+1 = v∗f − v−N+1 (39)

In real applications, the implementation of the theoretical instantaneous delta-v needs
a period of time via a constant continuous thrust. Denote the firing time duration by ∆ti

c
(i = 1, · · · , N), which can be deducted based on the Tsiolkovsky equation and computed by

∆ti
c =

mic
Fm

[1− exp(−∆Vi/c)] (40)

where ∆Vi ≡ ‖∆vi‖, c is the exhaust velocity, and mi is the spacecraft mass before firing.
The fuel consumption is computed by

.
m = −F/c (41)

where F is the constant thrust magnitude.
The direction of the thrust is computed by

ni = ∆vi/∆Vi (42)

Since the installation of the thrusters or the determination of the spacecraft attitude
contains inevitable errors, both the magnitude and direction of the thrust may not be
implemented fully as required. The impact of such errors will be considered in the follow-
ing simulations.

4. Simulation
4.1. Baseline Trajectory

In the process of approaching the asteroid, the spacecraft can be assumed as a point
mass whose size and shape are negligible. The target asteroid is chosen to be 2000 SG344
based on an accessibility analysis whose details are out of the scope of this work and there-
fore will not be given. The asteroid has an estimated diameter of 40 m [10]. Unfortunately,
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the mass of the asteroid has no data available yet. However, if we assume the density of
2000 SG344 is the same as 433 Eros, one asteroid that has been closely visited by the NEAR
mission and has an approximate gravitational constant of 4.46× 105 m3/s2 and a reference
radius of 16 km [11]. Considering the mass is in cubic relationship to the radius, the sphere
of influence of the asteroid 2000 SG344 can be estimated to be only 74 m. Since our final
required location is kilometers away from the asteroid, its gravity thus can be ignored. The
initial heliocentric state of both the asteroid and spacecraft are given in Table 1, where the
last column means the relative state of the spacecraft with respect to the asteroid in the
heliocentric ecliptic inertial (HEI) frame.

Table 1. Initial states in the heliocentric ecliptic inertial (HEI) frame.

Component Asteroid Spacecraft
HEI HEI Relative

X (km) −1.171216 × 108 −75
Y (km) 7.394690 × 107 −57
Z (km) −1.890317 × 105 35

.
X (km/s) −1.805039 × 101 0
.

Y (km/s) −2.613108 × 101 0
.
Z (km/s) 4.277392 × 10−2 0

Associated to the HEI state, the initial and required relative states of the spacecraft in
the orbital frame, r = [x, y, z]T for relative position and v = [

.
x,

.
y,

.
z]T for relative velocity,

are given in Table 2, respectively.

Table 2. Initial and required states in the orbital frame.

Title 1 Initial State Required State

x (m) 3.293955 × 104 1000
y (m) 8.828651 × 104 0
z (m) 3.492103 × 104 0

.
x (m/s) 2.022579 × 10−2 0
.
y (m/s) −7.546210 × 10−3 0
.
z (m/s) 0 0

The values of the mass, the magnitude of the constant thrust, and the specific impulse
are given in Table 3.

Table 3. Spacecraft properties.

Symbol Value Unit Meaning

m0 1030 kg Initial mass
F 300 N Magnitude of the thrust
c 2150 m/s Exhaust velocity

Using initial conditions given in Tables 1–3, the time-fixed glideslope guidance al-
gorithm is implemented for different combinations of the time of flight (TOF), segment
number (N), and the last-distance-to-go ratio (ε). TOF takes value from the range [4 h,
40 h] at a one-hour step, N = 2, 3, 4, 5, 6, 7, and ε = 1

6 , 2
6 , 3

6 , 4
6 , 5

6 (< 1). Note that for ε, we
only sample it at a 1

6 -step, although it is continuous within the range (0, 1). The time-fixed
glideslope guidance algorithm will generate accordingly grids of data for the terminal
position deviation (re), the terminal velocity deviation (ve), the total fuel consumption
(∆m), and the total delta-v (∆V), whose relationships are shown in Figures 1–3 for N = 3,
N = 5, and N = 7, respectively. The terminal position and velocity deviations, re and ve,
are performance indices related to the control accuracy, while ∆m and ∆V are those related
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to the control cost. The goal is to identify an effective combination of the three design
parameters that has optimal or near-optimal performances for a real mission.
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It can be seen from Figures 1–3 that the increase of the TOF can improve the terminal
position and velocity accuracies and lower the fuel consumption. Nevertheless, there are
limits for such improvement, which are related to factor ε. Generally speaking, when TOF
is short, different values of ε, except for ε = 4

6 , have distinctive impact on the four control
performance indices, as we can see that the curves on the left-hand side are more scattered
in response to different values of ε. As TOF grows larger, curves are gathering, which
means the impact of ε diminishes while that of TOF becomes dominant, i.e., the larger the
TOF, the better the control performances. However, in real practice, a very long duration of
time for the rendezvous is sometimes not welcome, especially in emergency cases, so one
should make balance with other design parameters. From Figures 1–3, it is very interesting
to see that when ε = 4

6 = 2
3 , the control performance indices, re and ve, are much smaller

than other values of ε for each N, and change little as the TOF varies (a line parallel with
the TOF axis). Note that ε = 2

3 ≈ 0.667 is very close to the golden ratio (0.618), which
we can see also plays an impressive role in our problem. Another fact can be seen is that
the terminal velocity deviations are all on the order of 10−6 m/s for different values of N
due to the last delta-v exerted. Therefore, to identify a good combination of the design
parameters, one can now first set ε = 4

6 = 2
3 .

Next, we move on to select the values of N and TOF based on ε = 2
3 . The data is

reorganized to show in Figure 4, where one can first notice that the cost indices (∆m and
∆V) seem independent with N because all curves overlap with each other, and as TOF
grows, ∆m and ∆V become smaller. Therefore, we take TOF = 40 h. Then we seek to select
the value of N from the upper two subplots. Since ve is smaller than 1.5 × 10−7 m/s for
all values of N, we mainly focus on the re subplot. It should be noted that we do not hope
the number of segments is too large because too many thrust firings bring about larger
probability of failure. Seen from Figure 4, the curves gather except for N = 2 which has
obvious larger position deviations for all TOF values. Starting from N = 4, the differences
among curves are negligible. Therefore, we choose N = 4.
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3 ).

To sum up, taking the design parameters as ε = 2
3 , N = 4, and TOF = 40 h, the

resultant terminal position deviation (re) is less than 0.01 m, terminal velocity deviation
(ve) is less than 2× 10−9 m/s, the fuel consumption (∆m) is less than 1 kg, and the total
delta-v (∆V) is less than 2 m/s. The approaching trajectory in the orbital frame and the
associated relative distance are given in Figures 5 and 6, respectively, where in Figure 5
the red crosses denote the locations where the constant thrust is on, and the green circle
displays the required location. Table 4 gives the exact value of each delta-v along the
routine, ∆Vi, as well as the thrusting time, ∆ti, and fuel consumption, ∆mi.

Table 4. Sequence of delta-v, thrust duration, and fuel consumption (ε = 2
3 , N = 4, TOF = 40 h).

No. ∆Vi (m/s) ∆ti (s) ∆mi (kg)

1 0.968279 3.323676 0.463769
2 0.137137 0.470609 0.065666
3 0.177404 0.608749 0.084941
4 0.327499 1.123656 0.156789
5 0.327425 1.123231 0.156730

Sum 1.937743 6.649921 0.927895

As can be seen from Figure 5, the relative trajectory seems to follow a straight line. This
is mainly because in a decade of hours, the orientation of the orbital reference frame changes
merely about 0.47 deg (due to a very small orbital angular velocity

.
f ≈ 1.3E− 5 deg/s),

which makes the orbital frame could be viewed as an “inertial” frame, where the spacecraft
experiences an almost force-free environment because the 100-km-distance is too small to
make a large difference between the Sun’s gravitational accelerations on the spacecraft and
the asteroid, respectively. Also noting that in Table 1 the initial inertial velocity is zero (the
associated relative velocity is close to zero as shown in Table 2), the glideslope guidance
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algorithm therefore generates a path almost coinciding with a straight line determined by
the Newton’s first law.
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Figure 6. Distance between the spacecraft and the asteroid (ε = 2
3 , N = 4, TOF = 40 h).

If the initial relative velocity (inertial or non-inertial) takes a non-zero value, Vr = [50.0,
−60.0, 80.0]T m/s, for instance, the trajectory in the orbital frame will first have turning
segments to diminish the relative velocity, then approach the target location along the line
of sight, as shown in Figure 7. The first thrusting arc (marked by red crosses) takes a much
longer time than other arcs to remove the relative non-zero velocity. Note that the trajectory
ever since the completion of the second thrusting starts to align with the line of sight.
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3 , N = 4, TOF = 40 h) with non-zero initial

inertial relative velocity (Vr = [50.0,−60.0, 80.0]T m/s).

If we enlarge the time of flight to the order of decades of days, 100 days, for instance,
the trajectory will be no longer straight lines. For the purpose of comparison, we still use
the zero-initial inertial relative velocity. The result is given in Figure 8, where one can
see the trajectory does not follow the line of sight, because the flight time is long enough
(25 days for each arc) to make large enough changes of the difference between the orbital
frame and the inertial frame. Approximations to the conditions in Newton’s first law no
longer hold and curvature arcs appear in the orbital frame.
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4.2. Monte Carlo Simulation

In real practice, various errors exist that will have inevitable impact on the guidance
performance. As a matter of fact, guidance problem is proposed to deal with errors. In
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this work, navigational error and implementation error are taken into account, which are
assumed to follow a zero-mean normal distribution. Monte Carlo simulations will be done
to obtain statistical results.

Navigational error, including position error and velocity error, comes from limitations
of both hardware and software which result in difference between the measurement and
the real value. In space rendezvous applications, navigational error is related to the relative
distance, i.e., the closer the distance, the higher the accuracy. Implementation error comes
from the misalignment of the engine or attitude control error and will be reflected in both
the magnitude and direction of the thrust. Since the glideslope algorithm is in essence an
impulsive guidance method, the implementation error will be simulated based on delta-v.
Assume the above errors follow zero-mean normal distributions with different standard
deviations, which are given in Table 5, where σrj corresponds to the position error, σvj the
velocity error, σ∆vj the implementation error, and j = x, y, z. As shown in Table 5, there are
four combinations of different values of the standard deviations, in order to analyze the
individual impact of the errors.

Table 5. Standard deviations of different combinations.

Standard Deviation σrj (m) σvj (m/s) σ∆vj

Set I 0.1 0.001 0.5%
Set II 1.0 0.001 0.5%
Set III 1.0 0.01 0.5%
Set IV 1.0 0.001 2%

Based on the baseline trajectory control parameters (ε = 2
3 , N = 4, TOF = 40 h), a

total number of 300 Monte Carlo simulations are done with respect to each error set given
in Table 5, and obtained results are given in Tables 6–9. In order to check the individual
impact of each error, three conditions are taken into account, (1) only the navigational error,
(2) only the implementation error, (3) both errors. The maximum, mean, minimum, and
standard deviation of each 300-run is given in Tables 6–9. It should be noted that in real
practice, it is the maximum value, not the mean value, of each performance index that
should be paid most attention to. For the comparison convenience, results of the baseline
trajectory are also given in Tables 6–9.

Table 6. Statistics of the performance indices (error set I, ε = 2
3 , N = 4, TOF = 40 h).

Error Statistics re (m) ve (m/s) ∆m (kg) ∆V (m/s)

Null / 8.227 × 10−3 1.225 × 10−9 0.928 1.938

Navigational
error only

Max. 125.515 3.486 × 10−3 0.931 1.947
Mean 58.314 1.620 × 10−3 0.928 1.940
Min. 7.556 2.134 × 10−4 0.925 1.933

Std. dev 23.588 6.555 × 10−4 9.899 × 10−4 2.208 × 10−3

Implementation
error only

Max. 157.173 6.054 × 10−3 0.937 1.962
Mean 55.413 1.840 × 10−3 0.928 1.940
Min. 7.347 2.076 × 10−4 0.918 1.920

Std. dev 25.720 8.964 × 10−4 2.830 × 10−3 5.991 × 10−3

All errors

Max. 182.711 6.453 × 10−3 0.938 1.961
Mean 80.750 2.673 × 10−3 0.928 1.941
Min. 14.241 2.137 × 10−4 0.917 1.917

Std. dev 34.164 1.113 × 10−3 4.079 × 10−3 8.654 × 10−3
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Table 7. Statistics of the performance indices (error set II, ε = 2
3 , N = 4, TOF = 40 h).

Error Statistics re (m) ve (m/s) ∆m (kg) ∆V (m/s)

Null / 8.227 × 10−3 1.225 × 10−9 0.928 1.938

Navigational
error only

Max. 125.750 3.486 × 10−3 0.931 1.947
Mean 58.436 1.620 × 10−3 0.928 1.940
Min. 64.802 2.134 × 10−4 0.925 1.933

Std. dev. 23.504 6.555 × 10−4 9.895 × 10−4 2.208 × 10−3

Implementation
error only

Max. 157.173 6.054 × 10−3 0.937 1.962
Mean 55.413 1.840 × 10−3 0.928 1.940
Min. 7.347 2.076 × 10−4 0.918 1.920

Std. dev. 25.720 8.964 × 10−4 2.830 × 10−3 5.991 × 10−3

All errors

Max. 183.213 6.453 × 10−3 0.938 1.961
Mean 80.859 2.673 × 10−3 0.928 1.941
Min. 14.640 2.137 × 10−4 0.917 1.917

Std. dev 34.168 1.113 × 10−3 4.079 × 10−3 8.653 × 10−3

Table 8. Statistics of the performance indices (error set III, ε = 2
3 , N = 4, TOF = 40 h).

Error Statistics re (m) ve (m/s) ∆m (kg) ∆V (m/s)

Null / 8.227 × 10−3 1.225 × 10−9 0.928 1.938

Navigational
error only

Max. 1255.119 3.486 × 10−2 0.962 2.033
Mean 583.143 1.620 × 10−2 0.932 1.963
Min. 75.502 2.134 × 10−3 0.902 1.890

Std. dev 235.887 6.555 × 10−3 9.934 × 10−3 2.221 × 10−2

Implementation
error only

Max. 157.173 6.054 × 10−3 0.937 1.962
Mean 55.413 1.840 × 10−3 0.928 1.940
Min. 7.347 2.076 × 10−4 0.918 1.920

Std. dev 25.720 8.964 × 10−4 2.830 × 10−3 5.991 × 10−3

All errors

Max. 1248.000 3.534 × 10−2 0.967 2.043
Mean 323.101 8.993 × 10−3 0.930 1.951
Min. 6.480 2.134 × 10−4 0.903 1.892

Std. dev 313.755 8.721 × 10−3 8.055 × 10−3 2.070 × 10−2

Table 9. Statistics of the performance indices (error set IV, ε = 2
3 , N = 4, TOF = 40 h).

Error Statistics re (m) ve (m/s) ∆m (kg) ∆V (m/s)

Null / 8.227 × 10−3 1.225 × 10−9 0.928 1.938

Navigational
error only

Max. 125.750 3.486 × 10−3 0.931 1.947
Mean 58.436 1.620 × 10−3 0.928 1.940
Min. 64.802 2.134 × 10−4 0.925 1.933

Std. dev 23.504 6.555 × 10−4 9.895 × 10−4 2.208 × 10−3

Implementation
error only

Max. 619.136 2.465 × 10−2 0.968 2.039
Mean 210.045 8.241 × 10−3 0.928 1.947
Min. 29.831 8.004 × 10−4 0.892 1.870

Std. dev 109.806 4.165 × 10−3 1.534 × 10−2 3.235 × 10−2

All errors

Max. 594.261 2.511 × 10−2 0.967 2.037
Mean 221.406 8.460 × 10−3 0.928 1.947
Min. 25.213 1.536 × 10−4 0.893 1.871

Std. dev 109.609 4.087 × 10−3 1.545 × 10−2 3.263 × 10−2

For error set I, one can see from Table 6 and Figure 9 that, the terminal position
deviation can reach 183 m if all errors are taken, while the maximum of the terminal
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velocity deviation is 0.006 m/s, and 1.961 m/s and 0.938 kg for ∆V and ∆m, respectively.
Small standard deviations (0.009 m/s and 0.004 kg) implies that the navigational error and
implementation error have little impact on ∆V and ∆m, but on terminal position instead.
Another fact is that the last corrective control is very effective to diminish the terminal
velocity deviation.
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Figure 9. Occurrence of the Monte Carlo simulation (Error setting I, ε = 2
3 , N = 4, TOF = 40 h).

For error set II, results are given in Table 7 and Figure 10. Compared with error set I,
the only change is the standard deviation of the position navigational error is enlarged
from 0.1 m to 1 m. One can see that the variations of the control performance indices when
compared with their counterparts in Table 6 are negligible, which implies that the terminal
position accuracy is not sensitive to the position navigational error.

For error set III, results are given in Table 8 and Figure 11. Compared with error set II,
the standard deviation of the velocity navigational error is increased from 0.001 m/s to
0.01 m/s. Results show that the terminal position deviation grows from a maximum of
183 m to 1248 m, the terminal velocity deviation from 6.453× 10−3 m/s to 3.534× 10−2 m/s,
while the fuel consumption and total delta-v show no obvious change, which indicates that
the velocity navigational error has a dominant impact on the terminal position deviation,
while the last correction remains effective to the terminal velocity deviation.

For error set IV, results are given in Table 9 and Figure 12. Compared with error set II,
the only difference is the implementation error increases from 0.5% to 2%. As a result, the
terminal position deviation grows from 183 m to 594 m, the terminal velocity deviation
increases from 6.453 × 10−3 m/s to 2.511 × 10−2 m/s, and the fuel consumption and total
delta-v remain almost the same. This indicates that the implementation error has a very
large impact on the terminal position deviation, while the other indices are little affected.
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To sum up, the terminal position deviation (re) is the only performance index sensible
to the navigational error and implementation error, while the terminal velocity deviation
(ve), the total fuel consumption (∆m), and the total delta-v (∆V) are much less affected by
the variations of the errors. In the case of 0.1 m (standard deviation) of position uncertainty,
0.001 m/s of velocity uncertainty, 0.5% of implementation uncertainty, re can be less than
185 m, ve less than 7 × 10−3 m/s, ∆m less than 1 kg, and ∆V less than 2 m/s. Velocity
navigation error is the most powerful factor that destructs the final position accuracy. A
standard deviation of 0.01 m/s of the velocity navigation uncertainty will result in almost
1300 m of final position deviation.

5. Conclusions

This work initiatively combines the elliptical orbital relative dynamics and time-fixed
glideslope guidance method to study the control problem of approaching the proximity of
an asteroid. A substitutional ratio factor is proposed to improve the design flexibility of
time-fixed glideslope guidance law. A large number of Monte Carlo simulations are done
with taking into account both the navigational error and the implementation error. Results
show that different combinations of the two types of error mainly affect the terminal
position accuracy, while the terminal velocity accuracy, the fuel consumption, and the
total delta-v vary in narrow ranges. For the spacecraft that maneuvers from 100 km to
1 km of relative distance, the total delta-v is approximately 2 m/s, and fuel consumption
is around 1 kg for a spacecraft of 1-ton mass and 300-N constant thrust. The velocity
navigational error and the implementation error play key roles in affecting the terminal
position accuracy. When the velocity navigational error increases from 1 mm/s to 1 cm/s,
the maximum terminal position deviation changes from 184 m to 1248 m. On the other
hand, when the implementation error increases from 0.5% to 2%, the maximum terminal
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position deviation grows from 184 m to 594 m. In all error settings, the terminal velocity
deviation is less than 0.035 m/s, indicating the last corrective delta-v is very effective.

In conclusion, the proposed method proves to be promising in the real application of
asteroid proximity approaching, because it only requires a small number of thrust burns
with low fuel cost, and the terminal state accuracy is good enough to initialize following a
hovering or landing phase of the spacecraft.
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