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Abstract: The assembly quality of an aero-engine directly determines its stability in high-speed
operation. The coaxiality and unbalance out of tolerance caused by improper assembly may give
rise to complicated vibration faults. To meet the requirements of the dual objective and reduce the
test cost, it is necessary to predict the optimal assembly angles of the rotors at each stage during
pre-assembly. In this study, we proposed an assembly optimization method for a multistage rotor of
an aero-engine. Firstly, we developed a coordinate transmission model to calculate the coordinates of
any point in the rotors at each stage during the assembly processes of a multistage rotor. Moreover,
we proposed two different pieces of assembly optimization data for the coaxiality and unbalance, and
established a dual objective evaluation function of that. Furthermore, we used the genetic algorithm
to solve the optimal assembly angles of the rotors at each stage. Finally, the Monte Carlo simulation
technique was used to investigate the effects of the geometric measured errors of each rotor on
the proposed genetic algorithm. The simulation results show that the process of the dual objective
optimization had good convergence, and the obtained optimal assembly angles of each rotor were not
affected by the geometric measured errors. In addition, the dual objective optimization can ensure
that both the coaxiality and unbalance can approach their respective optimal values to the most extent,
and the experimental results also verified this conclusion. Therefore, the assembly optimization
method proposed in this study can be used to guide the assembly processes of the multistage rotor of
an aero-engine to achieve synchronous optimization for the coaxality and unbalance.

Keywords: aero-engine assembly; assembly optimization; coordinate transmission; error propaga-
tion; assembly datum; genetic algorithm; Monte Carlo method; rotor unbalance

1. Introduction

Assembly is the ultimate technical link during the manufacturing process of an aero-
engine. Especially for the multistage stacking rotors typically represented by the high-
pressure compressor of an aero-engine, their assembly quality may have a direct effect on
the stability of an aero-engine in high-speed operation [1–3]. Excessive misalignment and
unbalance of a multistage rotor caused by improper assembly may give rise to complicated
vibration and noise during rotating [4–6]. Therefore, the coaxiality and unbalance are two
important indexes to evaluate the assembly quality of an aero-engine.

Limited to the conventional assembly technology for an aero-engine, testing and dis-
mounting need to be repeatedly conducted in most cases, making sure that the two indexes
of the coaxiality and unbalance can be satisfied simultaneously [7,8]. Without a doubt, such
a cumbersome process requires a long time and also a high cost. Therefore, reasonable as-
sembly optimization methods or error control approaches should be developed to improve
the one-time assembly acceptance rate and assembly efficiency of an aero-engine.
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Many assembly error analyses and optimization methods for the multistage rotors
of an aero-engine have been proposed in the current studies. The main focus in the initial
studies was mainly on the control of the accumulative geometric errors formed in the
assembly processes. Matrix transmission was first applied to the error analysis in mul-
tistage assemblies by Whitney et al. [9]. Furthermore, Mantripragada and Whitney [10]
proposed a state transition model to control the accumulative geometric errors in me-
chanical assemblies. On the basis of the above model, Chase et al. [11] also considered
small kinematic adjustments in the tolerance analysis of the two-dimensional (2D) and
three-dimensional (3D) mechanical assemblies. Hussain et al. [12] put forward the concept
of “straight-build assembly” for the first time, and developed an accumulative eccentricity
error control model for a 2D axisymmetric multistage rotor. Moreover, the root mean
square of the eccentricity errors of the 2D rotors at every stage was used to represent the
assembly accumulative error by Hussain et al. [13]. Furthermore, Hussain et al. [14] com-
pared the accumulative eccentricity errors calculated by five different assembly strategies.
Their numeral results verified the advantage of the “straight-build assembly” again. Yang
et al. [15] proposed another assembly optimization strategy of “parallelism-build assembly”
based on the above 2D assembly error control model. Compared with the “straight-build
assembly”, the “parallelism-build assembly” had better effect on the optimization of the
accumulative angle error. The 2D assembly error control model used in Ref. [12] was
further modified into a 3D model by Yang et al. [16]. Then, in combination with tolerance
analysis, it is assumed that the critical dimensions of the rotors at different stages are
in normal distribution within a specified tolerance zone; the accumulative eccentricity
error of a multistage rotor was predicted by a Monte Carlo method. Yang et al. [17] also
probed into how quantitative distribution of circumferential assembly orientations affects
accumulative eccentricity error of an assembly. In addition, Yang et al. [18] proposed a
probability density function for accumulative eccentricity error of the last-stage rotor. Their
calculated results were proved to be highly consistent with that by using the Monte Carlo
method. Jin et al. [19] established an assembly error analysis model concerned with partial
parallel chains for an aero-engine. In order to minimize the accumulative eccentricity
error and verticality error for a multistage rotor, Sun et al. [20] developed an assembly
optimization model by using a neural network.

In essence, all the optimization methods and models described in the studies above
fall into a field of the tolerance analysis. These methods are more suitable for the tolerance
allocation in the design phase of the parts of an aero-engine. However, the optimal assembly
angles of the rotors at each stage could not be directly obtained by these methods. Wang
et al. [21] proposed an optimization model for the coaxiality error of a multistage rotor.
Taking the coaxiality error as the optimization objective, the optimal assembly angles of
each rotor were obtained. Furthermore, the sensitivity of the coaxiality error to the optimal
assembly angles of a multistage rotor was analyzed by Sun et al. [22].

In addition, the control of the geometric errors of a multistage rotor alone may not
be able to completely suppress the vibration, and the control of unbalance is more critical.
Liu et al. [23] proposed an assembly optimization method to minimize the unbalance of a
multistage rotor. However, the center-of-mass coordinates of each rotor were not obtained
by actual measurement in this study. In order to overcome this defect, Sun et al. [24] used a
vertical dynamic balancing machine to measure the mass attributes of rotors at different
stages; on this basis, an assembly approach was proposed for the purpose of optimizing
both the coaxiality and unbalance of a multistage rotor. Piskin et al. [25] proposed an
unbalance optimization method for turbine blades by using the ant colony algorithm.

According to the current research status of the assembly optimization methods for
an aero-engine described above, the development of the assembly error propagation
model, the selection of the optimization datum during assembly and the construction of
the objective function were the three main works in the existing assembly optimization
methods. The detailed shortcomings existing in the above three aspects in current studies
were summarized as follows:
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1. The distributed and calibrated angles of the mounting screw holes of each rotor were
not considered in the existing assembly error propagation models;

2. It is unreasonable to equate the assembly datum for optimizing the unbalance with
that for optimizing the coaxiality;

3. Heuristic algorithm should be applied to searching for the optimal mounting angles
of the rotors at each stage in the process of the synchronous optimization of the
coaxiality and unbalance.

In order to solve the above problems, an assembly method for a multistage rotor
of an aero-engine is proposed to synchronously optimize the coaxality and unbalance in
this paper. In Section 2.1, we developed a coordinate transmission model to predict the
coordinates of any points in the rotors at each stage after assembly. In Section 2.2, we
proposed two different assembly optimization data for the coaxiality and unbalance, and
established a dual objective evaluation function of that. In Section 3, the synchronous
optimization for the coaxiality and unbalance was achieved by using a genetic algorithm,
and the effectiveness of the proposed assembly optimization method was verified by the
simulations and experiments. In addition, the Monte Carlo simulations based on normally
distributed random variables are performed to assess the performance of the proposed
optimization method.

2. Methods
2.1. Coordinate Transmission Model

The rotors at each stage of a multistage rotor of an aero-engine are assembled step-
by-step through their own “assembly rabbet”, and connected by a certain number of
screws. The “assembly rabbet” can be interpreted as the stop structure of the opening,
also known as the radial and axial front edge as shown in Figure 1. The concentricity
and parallelism errors of the top and bottom mounting surfaces of each rotor formed in
the manufacturing process are continuously propagated through these “tolerance guide
elements”. Furthermore, the actual spatial locations of the rotors at each stage are deviated
from their ideal nominal locations after assembly. The centroid and the center-of-mass
of the rotors at each stage also deviate from the ideal assembly axis, thus forming the
accumulative errors of the coaxiality and unbalance of the whole assembly. A coordinate
transmission model used for predicting the coordinates of the centroid and center-of-mass
of the rotors at each stage after assembly is derived in this section.

Figure 1. The section view of the drum-and-disk structure of a three-stage high pressure compressor
(HPC) of an aero-engine.

Considering the existence of the geometrical deviation of the mounting surfaces of
each rotor, the assembly processes of a two-stage simulated rotor are first analyzed. In
addition, the distributed and calibrated angles of the mounting screw holes were taken
into account. As shown in Figure 2, the centroid of the bottom mounting surfaces of each
rotor is selected as the origin of the coordinate system during geometric measurement. In
addition, the bottom mounting surface of Rotor-1 is used as the xy-plane of the coordinate
system for assembly. c1 and p1 refer to the concentricity and parallelism errors of Rotor-1,
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respectively. θ1 refers to the eccentric angle of the centroid of the top mounting surface
of Rotor-1. H1 and L1 refer to the highest and lowest points of the mounting surface of
Rotor-1, respectively, which are fitted when measuring the parallelism error. δ1 refers to
the calibrated angle between the highest point and the calibrated screw hole of Rotor-1.
The red and blue dots in Figure 2 are the calibrated screw holes of Rotor-1 and Rotor-2,
respectively, and all the hollow dots on the top and bottom mounting surfaces refer to
the uniform distributed screw holes. h1 is the measured distance between the top and
bottom mounting surface of Rotor-1, and r1 is the measured radius of the top mounting
surface of Rotor-1. The subscripts of the above parameters represent the stage of each rotor,
and all the parameters of the rotors at different stages can be expressed by changing these
subscripts. Furthermore, the assembly processes of the two-stage rotor can be presented
as follows:

Figure 2. The assembly processes of a two-stage simulated rotor.

1. Alignment of the mounting screw holes of the adjacent rotors

A pair of mounting screw holes of each rotor is set as the calibrated screw holes used
for aligning during assembly. Rotor-1 is stationary by default, and aligning the calibrated
screw holes of Rotor-1 and Rotor-2 by rotating the Rotor-2 around the z-axis. The number
of the mounting screw holes of the adjacent rotors can be different, but at least make the
distributed angles of one pair of mounting screw holes in the top and bottom mounting
surfaces of a rotor the same.

2. Selection of the assembly angles of the rotors at each stage

After alignment, the assembly angle of Rotor-2 can be selected on the discrete angles
with the mounting screw holes existing. That is, rotating Rotor-2 around the z-axis with a
quantitative distributed angle to select an optimal assembly angle. It can be represented by
the matrix Tz2 as shown in Equation (1),

Tz2 =


cos
[

360k2
q2

+ (δ2 − δ1)
]
− sin

[
360k2

q2
+ (δ2 − δ1)

]
0

sin
[

360k2
q2

+ (δ2 − δ1)
]

cos
[

360k2
q2

+ (δ2 − δ1)
]

0
0 0 1

, (1)

where q2 refers to the number of the uniform distributed screw holes on the mounting
surface of the rotor at second stage, and k2 is the number of the distributed angles of the
mounting screw holes of Rotor-2 rotating around the z-axis relative to Rotor-1.

3. Rotating to make the corresponding mounting surfaces parallel

The x-axis is formed by a projection, on the xy-plane, of a line connecting H1 and L1.
The y-axis is perpendicular to the x-axis. Rotating Rotor-2 with an angle of (p1/2r1) around
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the y-axis, so that the bottom mounting surface of Rotor-2 is parallel to the top mounting
surface of Rotor-1. This rotation matrix can be expressed as in Equation (2).

Ty1 =


cos
(

arctan
(

p1
2r1

))
0 sin

(
arctan

(
p1
2r1

))
0 1 0

− sin
(

arctan
(

p1
2r1

))
0 cos

(
arctan

(
p1
2r1

))
. (2)

4. Translating to make the centroid of the corresponding mounting surfaces coincide

Stacking Rotor-2 on Rotor-1 to make the centroid of the bottom mounting surface of
Rotor-2 coincide with that of the top mounting surface of Rotor-1. The coordinate vector of
any point in Rotor-2 after assembly can be obtained by the following equation:

A2
′ = A2Tz2Ty1 + A1, (3)

where A2
′ refers to the coordinate vector of any point in Rotor-2 after assembly, A2 to that

before assembly. A1 is the coordinate vector of the centroid of the top mounting surface of
Rotor-1, which can be expressed as in Equation (4):

I1 =
[

c1 cos θ1 c1 sin θ1 h1
]
. (4)

Furthermore, the assembly processes of an n-stage rotor can be divided into those of
(n−1) two-stage rotors. Firstly, the coordinate transmission of the rotors in the last two
stages during assembly is calculated, and these two assembled rotors are regarded as a
whole and assembled with the rotor at antepenultimate stage, and so on, the coordinate
transmission model of the assembly processes of an n-stage rotor can be expressed as in
Equation (5):

An
′ = An

[
∏

n:−1:2
(TznTyn−1)

]
+ An−1

′(n ∈ N∗, n > 1). (5)

2.2. Optimization Datum for the Coaxiality and Unbalance
2.2.1. Table-Axis for Optimizing the Coaxiality

As shown in Figure 3, the table-axis is a fixed normal axis passing through the origin
of the measuring coordinate system and perpendicular to the measuring datum plane,
which does not change with the change of the assembled states of a multistage rotor.
It has been proved to be the most effective optimization datum for the coaxiality of a
multistage rotor during assembly in current studies [12–18]. Due to the transmission and
accumulation of the geometric errors of each single-stage rotor in the assembly process,
the initial concentricity errors of each rotor change after assembly. By comparing the
concentricity errors of each rotor after assembly, the maximum value is taken to represent
the coaxiality of a multistage rotor, and minimizing this maximum value, then the single-
objective optimization function for the coaxiality of a multistage rotor can be expressed as
in Equation (6):

Cn = min
[
max

(
c1
′, c2
′, ..., cn

′)](n ∈ N∗, n > 1), (6)

where cn
′ refers to the concentricity error of the rotor at nth stage after assembly, which can

be calculated by Equation (7):

cn
′ =

√(
In ′(x)

)2
+
(

In ′(y)

)2
, (7)

where In
′
(x) and In

′
(y) refer to the values of the x and y-coordinate of the centroid of the

top mounting surface of the rotor at nth stage after assembly, respectively. They can be be
obtained by substituting In(x) and In(y) into Equation (5).
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Figure 3. The table-axis and the axis of rotation in the different assembled state of a two-stage rotor
after assembly.

2.2.2. Axis of Rotation for Optimizing the Unbalance

The assembly datum for optimizing the unbalance of a multistage rotor in the existing
assembly methods [23,24] are all used as that for optimizing the coaxiality, namely, table-
axis. In addition, the calculation of the unbalance or the offset of the center-of-mass of the
rotor is based on table-axis, which goes against to the definition of the unbalance. In fact,
the unbalance refers to the product of the unbalanced mass and its action radius, or the
product of the mass and the offset of the center-of-mass of the rotor. The calculation of
the action radius and the offset of the center-of-mass should be based on the actual axis of
rotation of the rotor, not the geometric measurement datum.

Before the final assembly of the multistage rotors of an aero-engine, the measurement
and elimination of the unbalance should be carried out on the dynamic balancing machine.
Figure 4 shows a simplified structure of the supporting form in the dynamic balancing
test. The front and rear journals of the rotor are placed on the supports at both ends of the
dynamic balancing machine and supported by double rollers, which plays an automatic
centering role, that is, the rotor rotates around the connecting line between the centers of
the front and rear journals. The unbalance mass and its action radius measured by the
dynamic balancing machine are also calculated relative to this axis of rotation. Therefore,
the assembly optimization of unbalance must be based on this axis.

Figure 4. A simplified structure of the supporting form in the dynamic balancing test.

In general, the rotor at first stage and the rotor at last stage are usually the parts with
journal, and the center of the journal of the rotor at first stage will also be used as the
coordinate origin in the measurement and assembly. As shown in Figure 3, the axis of
rotation of the two-stage rotor is the connecting line between the origin of the bottom
datum surface and the center of the top mounting surface, which is consistent with the axis
of rotation in the actual dynamic balancing test. Therefore, this axis is used as the assembly
datum for optimizing the unbalance of a multistage rotor in this study, and the action radii
of the unbalanced masses of the rotors at each stage are calculated relative to it. In Figure 3,
m1 and m2 refer to the unbalanced mass of Rotor-1 and Rotor-2, respectively. e1

′ and e2
′



Aerospace 2021, 8, 94 7 of 20

refer to the action radii of m1 and m2, respectively. A linear parametric equation can be
used to express this axis of rotation shown in Equation (8):

x = In
′
(x)λn

y = In
′
(y)λn

z = In
′
(z)λn

, (8)

where λn is the parameter of the linear equation of the axis of rotation in the assembled
state of the rotor at nth stage, and (In

′
(x), In

′
(y), In

′
(z)) refers to the coordinate of the centroid

of the top mounting surface of the rotor at nth stage after assembly. Furthermore, a plane
equation with this axis of rotation as the normal axis and passing through the unbalanced
mass point of the rotor at nth stage can be expressed as in Equation (9):

I′n(x)

(
x− Z′n(x)

)
+ I′n(y)

(
y− Z′n(y)

)
+ I′n(z)

(
z− Z′n(z)

)
= 0, (9)

where (Zn
′
(x), Zn

′
(y), Zn

′
(z)) refer to the coordinate of the unbalanced mass point of the rotor

at nth stage after assembly. It can be obtained by substituting the known coordinate vector
of the unbalanced mass point of the rotor at nth stage before assembly into Equation (5).
Furthermore, by substituting x, y, and z in Equation (8) into Equation (9), λn is acquired in
Equation (10):

λn =
In
′
(x)Zn

′
(x) + In

′
(y)Zn

′
(y) + In

′
(z)Zn

′
(z)

In ′(x)
2 + In ′(y)2 + In ′(z)2 . (10)

Moreover, by substituting λn into Equation (8), the coordinate of the intersection point
(Snx, Sny, Snz,) of the axis of rotation and the plane in Equation (9) can be obtained as in
Equation (11): 

Snx =
I′n(x)

2Z′n(x)+I′n(x) I′n(y)Z′n(y)+I′n(x) I′n(z)Z′n(z)
I′n(x)

2+I′n(y)
2+I′n(z)

2

Sny =
I′n(x) I′n(y)Z′n(x)+I′n(y)

2Z′n(y)+I′n(y) I′n(z)Z′n(z)
I′n(x)

2+I′n(y)
2+I′n(z)

2

Snz =
I′n(x) I′n(z)Z′n(x)+I′n(y) I′n(z)Z′n(y)+I′n(z)

2Z′n(z)
I′n(x)

2+I′n(y)
2+I′n(z)

2

(11)

Furthermore, the action radius of the unbalanced mass of the rotors at nth stage can
be calculated by Equation (12):

e′n =

√(
Snx − Z′n(x)

)2
+
(

Sny − Z′n(y)
)2

+
(

Snz − Z′n(z)
)2

. (12)

Here, the unbalance of the rotor at nth stage can be expressed as Equation (13):

un = mne′n. (13)

Furthermore, according to the principle of the balance of couples, the unbalance of the
rotors at each stage are decomposed into the pre-set balancing surfaces L and R through
Equation (14) below: 

uL =
n
∑

i=1

lR−li
lR−lL

ui

uR =
n
∑

i=1

li−lL
lR−lL

ui

, (14)

where uL and uR are the unbalance in the balancing surfaces L and R, respectively. lL and lR
are the vertical distances between the supporting point and the balancing surfaces L and R,
respectively. By comparing uL and uR, and minimizing the maximum value between them,
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then the single-objective optimization function for the unbalance of a multistage rotor can
be expressed as in Equation (15):

Un = min[max(uL, uR)](n ∈ N∗, n > 1). (15)

2.2.3. Dual Objective Evaluation Function for the Coaxiality and Unbalance

Specific to a multi-objective optimization problem, it is difficult to obtain the opti-
mal solutions simultaneously for all the objective functions. In other words, no optimal
solution can be obtained, enabling all the objective functions to reach their own optimal
values. However, if the objective functions can approach their own ideal values to the
greatest extent, a comparatively satisfactory non-inferior solution may be obtained. On this
basis, a multi-objective optimization problem can be transformed into an issue of solving
extremums of a unified evaluation function. In addition, a weight coefficient Wn can be
introduced, making each single-objective function dimensionless. Based on the above
theory, a dual objective evaluation function for the coaxiality and unbalance of a multistage
rotor after assembly is established as in Equation (16):{

V−minF(x) = [W1(Cn(x)− C∗n)]
2 + [W2(Un(x)−U∗n)]

2

s.t. x = (k1, k2, . . . . . . , kn), kn ∈ [0, 0.5qn(qn ∈ N∗, qn ≥ 1)]
, (16)

where qn refers to the number of the uniform distributed screw holes on the mounting
surfaces of the rotor at nth stage. The design variable x represents a vector formed by
the number (kn) of the intervals of the mounting screw holes of the rotor at the nth stage
rotating around the z-axis relative to the rotor at (n−1)th stage. In addition, kn is a discrete
variable that varies from 0 to 0.5qn, which means that the assembly angles of the rotors at
each stage varies from 0 to 180◦. Cn

∗ and Un
∗ refer to the minimum values of the coaxiality

and unbalance of a n-stage rotor, respectively. W1 and W2 refer to the weight coefficients of
the coaxiality and unbalance, and W1 = 1/Cn

∗ and W2 = 1/Un
∗. Such an evaluation function

can make the double objective of the coaxiality and unbalance dimensionless, which not
only considers that each objective is as close to their optimal value as possible, but also
reflects that both objectives are equally important to the entire dual objective optimization.

2.3. Genetic Algorithm

Genetic algorithm (GA) is a kind of heuristic algorithm, which is a method to search
the optimal solution by simulating the natural evolution process. This algorithm transforms
the process of solving the problem into a process similar to the crossover and mutation
of chromosome genes in biological evolution by means of mathematics and computer
simulation. When solving complex combinatorial optimization problems, compared with
some conventional optimization algorithms, they usually can get better optimization results
quickly [26]. In this section, the dual objective evaluation function for the coaxiality and
unbalance proposed in Section 2.2.3 is further developed to a fitness function of GA as in
Equation (17):{

f itness_G(x) = 1/F(x)
s.t. x = (k1, k2, . . . . . . , kn), kn ∈ [0, 0.5qn(qn ∈ N∗, qn ≥ 1)]

. (17)

When the fitness function reaches the maximum value, the dual objective evaluation
function for the coaxiality and unbalance can reach the minimum value. The optimization
process of the population with regard to the assembly angles of the rotors at each stage is
presented in Figure 5. First, kn is regarded as a gene, so that a n-stage rotor corresponds to
n genes. These n genes are combined into a chromosome. In the optional range of kn, an
initialization population with 1000 chromosomes is randomly generated. Then, the fitness
of all chromosomes is calculated, the best chromosome is retained, and then the fitness of
the other chromosomes is calculated after the mutation and crossover. The chromosome
with the worst fitness is eliminated, and the remaining chromosomes are mixed with the
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previously retained chromosomes with the optimal fitness to form a new population for
the next iteration until the termination conditions are satisfied and the optimal solution
is obtained.

Figure 5. The optimization process of the genetic algorithm (GA).

3. Results
3.1. Simulation
3.1.1. Model and Parameters

As shown in Figure 6, a simplified four-stage high-pressure rotor system of an aero-
engine is used to investigate the effectiveness of the dual objective evaluation function for
the coaxiality and unbalance. The high-pressure rotor system consists of four components:
the front axle, the compressor, the turbine and the rear axle, which is assembled stage-by-
stage through the radial and axial front edges, and tightly connected by uniform distributed
hexagon socket head cap screws (M3 with a thread length of 12 mm).
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The setup of the geometric parameters (cn, θn, pn, rn, hn, δn, qn) of the rotors at each
stage is shown in Table 1. The distances (lL and lR) between the supporting point and the
pre-set balancing surfaces L and R, are 97.5 mm and 341.5 mm, respectively. The four M3
screws with thread length of 20 mm are artificially used to replace the four M3 screws with
thread length of 12 mm at the calibrated screw holes of rotors at each stage, in order to
produce four unbalanced masses of 0.8 g. In Table 2, the coordinates of the unbalanced
mass points in the local measuring coordinate system of the front axle (O1(x, y, z)), the
compressor (O2(x, y, z)), the turbine (O3(x, y, z)), and the rear axle (O4(x, y, z)) are measured
by the 3D drawing software SOLIDWORKS.

Table 1. The setup of the geometric parameters of the high-pressure rotor system.

Component c [mm] θ [◦] p [mm] r [mm] h [mm] δ [◦] q

Front axle 0.01 0 0.01 25 96.5 0 0
Compressor 0.01 0 0.01 51 138 0 12

Turbine 0.01 0 0.01 18 115 0 24
Rear axle 0.01 0 0.01 25 80 0 12

Table 2. The setup of the unbalanced masses and the corresponding coordinates in the high-pressure
rotor system.

Component Unbalanced Mass [g] x [mm] y [mm] z [mm]

Front axle 0.8 29 0 −92.7768
Compressor 0.8 32 0 −105.0985

Turbine 0.8 31 0 −86.9015
Rear axle 0.8 29 0 −3.7232

3.1.2. Genetic Optimization

The front axle, the compressor, the turbine, and the rear axle are defined as Rotor-1,
Rotor-2, Rotor-3, and Rotor-4, respectively. In terms of the front axle (Rotor-1), its assembly
angle is 0◦ by default. Each chromosome is designed to hold three genes, which is (k2, k3,
k4). The genetic optimization of kn is carried out for three times, respectively, based on the
single-objective function for the coaxiality, the single-objective function for the unbalance,
and the dual objective function for the coaxiality and unbalance.

The convergence progress of the single-objective optimization for the coaxiality is
shown in Figure 7, and the optimal fitness of the coaxiality reaches 0.0406 mm; meanwhile,
the corresponding unbalance reaches 43.8301 g·mm (Table 3). The convergence progress of
the single-objective optimization for the unbalance is shown in Figure 8, and the optimal
fitness of the unbalance reaches 12.3963 g·mm; meanwhile, the corresponding coaxiality
reaches 0.0654 mm (Table 3). The convergence progress of the dual objective optimization
for the coaxiality and unbalance is shown in Figure 9, the coaxiality and unbalance corre-
sponding to the optimal dimensionless fitness of F(x) reaches 0.0524 mm and 12.6506 g·mm,
respectively. From Figures 7–9, it can be seen that all the convergence processes for the
above three optimization objects have a good convergence within 200 iterations.

Table 3. The optimal assembly angles of the rotors at each stage and the corresponding coaxiality
and unbalance of the high-pressure rotor system.

Optimization Objective k1 k2 k3 k4 Cn [mm] Un [g·mm]

min (Cn) 0 6 (180◦) 6 (90◦) 2 (60◦) 0.0406 43.8301
min (Un) 0 5 (150◦) 11 (165◦) 6 (180◦) 0.0654 12.3963
min (F(x)) 0 0 (0◦) 9 (135◦) 6 (180◦) 0.0524 12.6506
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Figure 7. The convergence progress of the single-objective optimization for the coaxiality based GA.

Figure 8. The convergence progress of the single-objective optimization for the unbalance based GA.

Figure 9. The convergence progress of the dual objective optimization for the coaxiality and unbalance
based on GA.

As shown in Figure 10, the unbalance obtained by the optimization for the dual
objective is almost the same as that obtained by the optimization for the single-objective
of the unbalance. In addition, compared with the coaxiality obtained by the optimization
for the single-objective of the coaxiality, and that obtained by the optimization for dual
objective is increased by 19.9%. However, the coaxiality obtained by the optimization for
the dual objective is increased by 29.1% compared with that obtained by the optimization
for the single-objective of the coaxiality, but the unbalance is reduced by 71.1%. Clearly,
the simulation results show that the genetic optimization for the dual objective has the
potential to preferably realize synchronous optimization of the coaxiality and unbalance.
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Figure 10. The calculated coaxiality and unbalance of the high-pressure rotor system based on the
three different optimization objectives.

3.1.3. Monte Carlo Simulation

A real four-stage rotor for experimental verification is machined according to the
nominal dimensions of the high-pressure rotor system proposed in Section 3.1.1. The
tolerance design of the four-stage rotor follows the ISO standards on tolerancing (ISO
GPS 1101-2017). All the dimensional and geometric tolerances of the rotors at each stage
are controlled within 0.02 mm, and all the positional tolerances of the mounting screw
holes are controlled within 0.05 mm as far as possible. Figure 11 shows the measured
actual scene and schematic diagram of the front axle. The measuring principles of the
compressor, the turbine and the rear axle are the same as that of the front axle. Considering
that the actual measurement errors may lead to the instability of the genetic optimization
results, all geometric parameters of the rotor at each stage are measured ten times at the
same measurement conditions. The measurement results are shown in Tables A1–A4, and
the mean values and the standard deviation of all the parameters of the four-stage rotor
are calculated in Table 4. All the measured geometric parameters of the four-stage rotor
are assumed to have a normal distribution with their own mean values and standard
deviations. Each assembly optimization procedure is simulated 10,000 times by using a
standard Monte Carlo method.

Figure 11. The measurement of the geometric parameters of the front axle. (a) measured scene;
(b) schematic diagram.
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Table 4. The measured geometric parameters of the high-pressure rotor system.

Parameter Maximum Value Minimum Value Mean Value Standard Deviation

c1 [mm] 0.0106 0.0095 0.0100 3.9441 × 10−4

c2 [mm] 0.0194 0.0183 0.0189 4.1753 × 10−4

c3 [mm] 0.0216 0.0203 0.0210 3.9455 × 10−4

c4 [mm] 0.0205 0.0195 0.0201 3.3149 × 10−4

θ1 [◦] 22.9 20.7 21.5 0.6482
θ2 [◦] 115.3 112.5 114.0 0.8222
θ3 [◦] 159.0 157.7 158.4 0.3725
θ4 [◦] 74.3 71.4 72.9 0.8396

p1 [mm] 0.0179 0.0165 0.01697 5.2079 × 10−4

p2 [mm] 0.0193 0.0187 0.01898 2.3476 × 10−4

p3 [mm] 0.0214 0.0205 0.02086 2.6750 × 10−4

p4 [mm] 0.0117 0.0105 0.01096 3.3066 × 10−4

r1 [mm] 25.0114 25.0093 25.0105 6.0516 × 10−4

r2 [mm] 51.0911 51.0894 51.0901 6.0590 × 10−4

r3 [mm] 18.0112 18.0093 18.0101 5.4772 × 10−4

r4 [mm] 25.0012 24.9992 25.0000 5.4528 × 10−4

h1 [mm] 96.5513 96.5488 96.5499 7.0875 × 10−4

h2 [mm] 138.0419 138.0392 138.0402 9.6061 × 10−4

h3 [mm] 114.9312 114.9288 114.9300 6.1464 × 10−4

h4 [mm] 80.0120 80.0092 80.0101 8.5739 × 10−4

δ1 [◦] 78.8 77.7 78.3 0.3232
δ2 [◦] 191.6 190.6 191.1 0.3360
δ3 [◦] 35.9 35.0 35.5 0.2718
δ4 [◦] 114.0 113.2 113.5 0.2413

Furthermore, the three simulations in Section 3.1.2 are repeated by using the Monte
Carlo method. As shown in Figure 12, the optimal assembly angles of the compressor,
the turbine and the rear axle are 60◦, 135◦ and 90◦ in the 10,000 times dual objective
optimizations, respectively. In addition, the corresponding numbers (kn) of the distributed
angles of the mounting screw holes of each rotor rotating relative to the next rotor are 1,
12 and 0, respectively. It can be seen that the geometric measured errors of the rotors at
each stage has no effect on the optimal solutions in the 10,000 times simulations. Moreover,
the optimal assembly angles of the other two single-objective optimizations are shown
in Figures 13 and 14, respectively, and the coaxiality and unbalance corresponding to the
optimal solutions are presented in Table 5.

Figure 12. The optimal solution of the dual objective optimization in the 10,000 times simulations.
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Figure 13. The optimal solution of the single-objective optimization for the coaxiality in the 10,000
times simulations.

Figure 14. The optimal solution of the single-objective optimization for the unbalance in the 10,000
times simulations.

Table 5. The optimal assembly angles of the rotors at each stage and the corresponding coaxiality
and unbalance of the high-pressure rotor system.

Optimization Objective k1 k2 k3 k4 Cn [mm] Un [g·mm]

min (Cn) 0 1 (30◦) 12 (180◦) 0 (0◦) 0.0241 42.4348
min (Un) 0 0 (0◦) 0 (0◦) 3 (90◦) 0.1134 14.4986
min (F(x)) 0 2 (60◦) 9 (135◦) 3 (90◦) 0.0347 17.4702

3.2. Experiment

The optimal assembly angles of each rotor of the high-pressure rotor system in the
Monte Carlo simulation of the single-objective optimization for the coaxiality, and that
for the unbalance, and the dual objective optimization were obtained in Section 3.1.3.
Furthermore, the real machined four-stage rotor was assembled stage-by-stage according to
the three groups of the optimal assembly angles in Table 5, respectively. From Figure 15, the
coaxiality and unbalance of the assembled high-pressure rotor system were measured by a
3D coordinate measuring instrument manufactured by Carl Zeiss AG (Jena, Germany) and
a dynamic balancing machine manufactured by Shanghai Shenzhong Co., Ltd. (Shanghai,
China), respectively. In addition, all the unbalance measurements were carried out at the
same rotational speed (1000 rpm). The coaxiality and unbalance of the four-stage rotor
under the three different assembled states were measured six times (Table A5), respectively,
and the mean value and the standard uncertainty of that are presented in Table 6.
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Figure 15. The measurement of the coaxiality and unbalance of the assembled high-pressure rotor
system. (a) The coaxiality is measured by a 3D coordinate measuring instrument; (b) The unbalance
is measured by a dynamic balancing machine.

Table 6. The measurement results of the coaxiality and unbalance of the assembled high-pressure rotor system.

Optimization
Objective

Mean Value of Cn
[mm]

Standard Uncertainty
of Cn [mm]

Mean Value of Un
[g·mm]

Standard Uncertainty
of Un [g·mm]

min (Cn) 0.0281 2.4449 × 10−4 48.8714 0.0598
min (Un) 0.1216 2.7008 × 10−4 18.6885 0.0739
min (F(x)) 0.0408 2.2901 × 10−4 23.8256 0.0622

As shown in Table 6, the coaxiality achieved by the dual objective optimization
increases by 45.2% if compared with that generated by the single-objective optimization
for the coaxiality; however, the unbalance reduces by 61.8% accordingly. The coaxiality
and unbalance thus achieved by the dual objective optimization reduces and increases by
66.4% and 27.5%, respectively, in comparison with those produced by the single-objective
optimization for the unbalance. Moreover, by comparing the results in Tables 5 and 6,
there are small differences between the measured values and the theoretical values of the
coaxiality and unbalance, which may be caused by the wear and tear of the front edge of
the rotors in the repeated assembly.

However, there is a common phenomenon in the experiment and simulation, that is,
the coaxiality obtained by the dual objective optimization is higher than that obtained by
the single-objective optimization for the coaxiality, but the unbalance is reduced greatly.
In the same way, compared with the single-objective optimization for the unbalance, and
that of the dual objective optimization is increased, but the coaxiality is reduced greatly.
Therefore, it is revealed that the proposed double-objective optimization by using the
genetic algorithm is capable of realizing the synchronous optimization of the coaxiality
and unbalance of a real four-stage rotor.

4. Discussion

In this section, we summarized three main works in this study and discuss the inno-
vation of that compared with the existing studies. In addition, ideas about the future work
were proposed.

For the first problem raised in the Introduction, we put forward the alignment process
of the mounting screw holes of the adjacent rotors during the initial assembly, which is very
important to the selection of the initial assembly angles of the rotors at each stage. Then,
the distributed and calibrated angles of the mounting screw holes of the rotors at each stage
are introduced into the coordinate transmission model. In this way, the optional assembly
angles of rotors at each stage are the discrete variables formed by the multiples of the
distributed angles of the mounting screw holes, which is completely consistent with that
in the actual assembly. However, the assembly angles of each rotor were the continuous
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variables in the existing studies. It did not explain how to determine the initial assembly
angles of each rotor after alignment, and did not give the exact relationship between the
geometric parameters and the calibrated screw holes.

For the second problem raised in the Introduction, we proposed an assembly datum
to be used for optimizing the unbalance, which is different from that for optimizing the
coaxiality. The unbalance in two-plane measured by a dynamic balancing machine must
be perpendicular to the axis of rotation of the measured rotor. Such an axis of rotation is
just a line connecting the centroid of the journals of the front and rear axles. Therefore,
this axis should be used as the assembly datum for optimizing the unbalance to ensure
that the experimental conditions are consistent with the simulation conditions. However,
the optimization datum for the unbalance was equated with that for the coaxiality in the
current studies.

For the third problem raised in the Introduction, we proposed a dual objective opti-
mization model by using a genetic algorithm to achieve the synchronous minimization of
the coaxiality and unbalance of a multistage rotor. The simulation results show that the
optimization processes of the single-objective and the dual objective optimization all had a
good convergence. Furthermore, the influence of the measurement errors on the stability
of the genetic optimization was also investigated by using a Monte Carlo method.

Our future work plan is to combine the coordinate transmission model proposed
in this paper with the rotor dynamics equation, and use the finite element method to
investigate the influence of the changes of the displacements of nodes and the unbalance
on vibration of a multistage rotor of an aero-engine in the flexible state of the high-speed
operation. Furthermore, we will take the vibration of the key node in the high pressure
rotor system as the optimization objective and calculate the optimal assembly angles of
rotors at different stages.

5. Conclusions

In this study, we proposed an assembly method based on the dual objective syn-
chronous optimization for the coaxality and unbalance, which is applicable to the turbofan
aero-engine with multistage rotors. The main contributions of this study can be summa-
rized as follows:

1. A coordinate transmission model was developed to calculate the coordinates of any
points in the rotors at each stage during the assembly processes of a multistage rotor.
It can be used to predict the coaxality and unbalance of a multistage rotor.

2. A time-varying axis of rotation was calculated to be the assembly optimization datum
for the unbalance of a multistage rotor. It is more in line with the actual conditions of
the dynamic balancing test.

3. The synchronous optimization for the coaxality and unbalance of a multistage rotor
was realized by using a genetic algorithm, and the optimal result is not affected by
the geometric measured errors of the rotors at each stage.
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Abbreviations

Abbreviations Meaning
GA Genetic algorithm
2D Two-dimensional
3D Three-dimensional

Symbols

Symbols Meaning
cn Concentricity error of the rotor at nth stage
pn Parallelism error of the rotor at nth stage
θn Eccentric angle of the rotor at nth stage
Hn Highest point of the rotor at nth stage
Ln Lowest point of the rotor at nth stage
δn Calibrated angle of the calibrated screw hole of the rotor at nth stage
hn Distance between the top and bottom mounting surface of the rotor at nth stage
rn Measured radius of the top mounting surface of the rotor at nth stage

qn
Number of the uniform distributed screw holes on the mounting surface of the
rotor at nth stage

kn
Number of the distributed angles of the mounting screw holes of the rotor at nth
stage rotating around the z-axis relative to the rotor at (n−1)th stage

An
′ Coordinate vector of any point in the rotor at nth stage after assembly

An Coordinate vector of any point in the rotor at nth stage before assembly
cn
′ the concentricity error of the rotor at nth stage after assembly

Cn Single-objective optimization function for the coaxiality of a n-stage rotor

In
′
(x)

Value of the x-coordinate of the centroid of the top mounting surface of the rotor
at nth stage after assembly

In
′
(y)

Value of the y-coordinate of the centroid of the top mounting surface of the rotor
at nth stage after assembly

In
′
(z)

Value of the z-coordinate of the centroid of the top mounting surface of the rotor
at nth stage after assembly

In(x)
Value of the x-coordinate of the centroid of the top mounting surface of the rotor
at nth stage before assembly

In(y)
Value of the y-coordinate of the centroid of the top mounting surface of the rotor
at nth stage before assembly

In(z)
Value of the z-coordinate of the centroid of the top mounting surface of the rotor
at nth stage before assembly

Tzn
Matrix of rotation of the rotor at nth stage about z-axis relative to the rotor at
(n−1)th stage

Tyn
Matrix of rotation of the rotor at nth stage about y-axis relative to the rotor at
(n−1)th stage

mn Unbalanced mass of the rotor at nth stage
en
′ Action radius of mn

λn
Parameter of the linear equation of the axis of rotation in the assembled state of
the rotor at nth stage

Zn
′
(x)

Value of the x-Coordinate of the unbalanced mass point of the rotor at nth stage
after assembly

Zn
′
(y)

Value of the y-Coordinate of the unbalanced mass point of the rotor at nth stage
after assembly

Zn
′
(z)

Value of the z-Coordinate of the unbalanced mass point of the rotor at nth stage
after assembly
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Snx Value of the x-Coordinate of the intersection point
Sny Value of the y-Coordinate of the intersection point
Snz Value of the z-Coordinate of the intersection point
uL Unbalance in the balancing surfaces L
uR Unbalance in the balancing surfaces R

lL
Vertical distances between the supporting point and the balancing
surfaces L

lR
Vertical distances between the supporting point and the balancing
surfaces R

Wn Weight coefficient
Cn
∗ Minimum values of the coaxiality of a n-stage rotor

Un
∗ Minimum values of the unbalance of a n-stage rotor

Appendix A

Table A1. The measured geometric parameters of the front axle.

Measurement Sequence c1 [mm] θ1 [◦] p1 [mm] r1 [mm] h1 [mm] δ1 [◦]

1 0.0096 20.7 0.0166 25.0105 96.5491 78.1
2 0.0102 21.4 0.0168 25.0099 96.5498 78.1
3 0.0103 21.2 0.0179 25.0101 96.5500 78.4
4 0.0106 21.5 0.0165 25.0114 96.5488 78.2
5 0.0098 21.9 0.0168 25.0109 96.5503 77.7
6 0.0095 20.7 0.0165 25.0106 96.5503 78.8
7 0.0105 21.3 0.0169 25.0093 96.5496 78.6
8 0.0101 21.2 0.0166 25.0103 96.5504 78.1
9 0.0096 21.9 0.0178 25.0109 96.5513 78.6

10 0.0098 22.9 0.0173 25.0109 96.5497 78.4

Table A2. The measured geometric parameters of the compressor.

Measurement Sequence c2 [mm] θ2 [◦] p2 [mm] r2 [mm] h2 [mm] δ2 [◦]

1 0.0193 114.6 0.0188 51.0894 138.0393 190.9
2 0.0189 113.1 0.0187 51.0905 138.0397 190.6
3 0.0192 114.5 0.0193 51.0894 138.0414 190.9
4 0.0188 114.0 0.0192 51.0899 138.0392 191.1
5 0.0191 112.5 0.0191 51.0903 138.0400 191.2
6 0.0194 113.7 0.0191 51.0897 138.0395 190.8
7 0.0183 113.5 0.0190 51.0910 138.0407 191.4
8 0.0184 115.3 0.0187 51.0911 138.0419 191.5
9 0.0184 113.8 0.0192 51.0903 138.0392 190.8

10 0.0193 114.6 0.0187 51.0898 138.0406 191.6

Table A3. The measured geometric parameters of the turbine.

Measurement Sequence c3 [mm] θ3 [◦] p3 [mm] r3 [mm] h3 [mm] δ3 [◦]

1 0.0214 158.5 0.0205 18.0097 114.9298 35.6
2 0.0205 159.0 0.0208 18.0102 114.9303 35.6
3 0.0211 157.7 0.0207 18.0100 114.9288 35.1
4 0.0203 158.1 0.0208 18.0102 114.9312 35.2
5 0.0210 158.7 0.0208 18.0104 114.9296 35.5
6 0.0216 158.2 0.0212 18.0097 114.9300 35.5
7 0.0213 158.8 0.0207 18.0112 114.9296 35.0
8 0.0210 158.4 0.0207 18.0106 114.9298 35.9
9 0.0209 158.4 0.0210 18.0097 114.9302 35.6

10 0.0212 158.3 0.0214 18.0093 114.9297 35.5
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Table A4. The measured geometric parameters of the rear axle.

Measurement Sequence c4 [mm] θ4 [◦] p4 [mm] r4 [mm] h4 [mm] δ4 [◦]

1 0.0195 72.9 0.0105 24.9998 80.0120 113.6
2 0.0205 71.4 0.0112 25.0000 80.0098 113.2
3 0.0201 74.3 0.0111 25.0005 80.0095 114.0
4 0.0197 72.7 0.0110 24.9997 80.0096 113.7
5 0.0204 73.4 0.0109 24.9999 80.0099 113.4
6 0.0200 71.8 0.0117 24.9996 80.0106 113.8
7 0.0200 73.5 0.0109 25.0012 80.0103 113.5
8 0.0201 72.7 0.0109 25.0001 80.0092 113.4
9 0.0203 72.6 0.0107 24.9992 80.0107 113.3

10 0.0205 73.3 0.0107 24.9998 80.0092 113.5

Table A5. Six times measurement results of the coaxiality and unbalance of the high-pressure
rotor system.

Optimization Objective Measurement Sequence Cn [mm] Un [g·mm]

min (Cn)

1 0.0276 48.6874
2 0.0284 48.8419
3 0.0273 49.1017
4 0.0289 48.8939
5 0.0284 48.9469
6 0.0278 48.7567

min (Un)

1 0.1220 18.8190
2 0.1206 18.6926
3 0.1215 18.5424
4 0.1215 18.4549
5 0.1226 18.6685
6 0.1215 18.9537

min (F(x))

1 0.0416 23.8936
2 0.0404 23.9983
3 0.0413 23.6513
4 0.0407 23.6226
5 0.0404 23.8729
6 0.0402 23.9149
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