
aerospace

Article

Strength Analysis of Alternative Airframe Layouts of Regional
Aircraft on the Basis of Automated Parametrical Models

Dmitry V. Vedernikov *,†, Alexander N. Shanygin † , Yury S. Mirgorodsky † and Mikhail D. Levchenkov †

����������
�������

Citation: Vedernikov, D.V.; Shanygin,

A.N.; Mirgorodsky, Y.S.; Levchenkov,

M.D. Strength Analysis of Alternative

Airframe Layouts of Regional Aircraft

on the Basis of Automated

Parametrical Models. Aerospace 2021,

8, 80. https://doi.org/10.3390/

aerospace8030080

Academic Editor: Spiros Pantelakis

Received: 30 November 2020

Accepted: 11 March 2021

Published: 17 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Strength Department, Central Aerohydrodynamic Institute, 1 Zhukovsky Street, 140180 Zhukovsky, Russia;
alexander.shanygin@tsagi.ru (A.N.S.); mirgorodskii@phystech.edu (Y.S.M.);
Levchenkov.md@phystech.edu (M.D.L.)
* Correspondence: vedernikov@phystech.edu; Tel.: +7-926-255-52-13
† These authors contributed equally to this work.

Abstract: This publication presents the results of complex parametrical strength investigations of
typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm
(FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of
FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex
strength analysis of airframes by using simultaneously different principles of decomposition. The
base version includes four-level decomposition of airframe and decomposition of strength tasks. The
new one realizes additional decomposition of alternative variants of load cases during the process
of determination of critical load cases. Such an algorithm is very suitable for strength analysis and
designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of
validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed
high performance of the algorithm in decreasing time and labor input of strength analysis of airframes
at the preliminary stages of designing. During parametrical design investigation, some interesting
results for strut-braced wings having high aspect ratios were obtained.

Keywords: aircraft structure; strut-braced wing; parametric modeling; decomposition principles;
strength analysis; finite element method (FEM); doublet lattice method; four-level approach

1. Introduction

Conditions of operations of regional aircrafts have a number of differences as com-
pared to the middle-range and long-haul ones. The main difference is a short time of a
cruise flight, meaning the absence of strong aerodynamic demands to external geometry
parameters, which focused to maximize the lift-to-drag ratio. Thus, unlike the middle-
range and long-haul airliners, for regional aircrafts, it is necessary to consider external
geometry parameters simultaneously with the other active airframes parameters within the
common design process. For this reason, designing regional airframes is quite a hard task,
due to the increased number of active design parameters [1,2]. This task is similar to the
initial stages of designing airframes of aircraft with non-conventional aerodynamic concept
that also require simultaneous consideration of external geometry parameters together
with other design parameters [3,4]. It is obvious that these tasks are impossible to solve in
frame of the two-step conventional approach, when, at the first step, the values of external
geometry parameters of a concept are defined, following aerodynamics demands, whereas,
at the second stage, fixed values of geometry parameters are used for the definition of
values of the other active airframe parameters. Thus, for successful solution of design
tasks of regional aircraft airframes, a significant decrease of calculation time is needed
in order to perform the preliminary design procedure. The conventional (step-by-step)
design procedures within multidisciplinary design and optimization (MDO) approach are
described in References [5,6].
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There are several standard methods of decreasing calculation time and labor input,
including automation, standardization of input and output information, high-performance
calculation equipment, etc. However, one of the important matter for decreasing labor
intensity is an application of decomposition of both airframe strength models and strength
tasks. Development of methods and algorithms based on decomposition principles was the
goal of a number of researches. In References [7,8], some examples of decomposition of a
wing structure are shown. In References [9,10], decomposition of strength tasks, including
decomposition of a procedure of a strength analysis, was carried out, using several different
physical models, including both FEM models and simple analytical beam models.

These two abovementioned principles were realized in frame of the base version
of FLA that was developed and validated in Central Aero-Hydrodynamic institute, to
analyze strength of airframes and carry out preliminary design of perspective civil aircrafts
with non-conventional structure concepts, including numerous different variants of lay-
outs. The algorithm was successfully validated in frame of some European and domestic
projects [11,12].

The main features of the base-version FLA are the following:

1. Global parameterization of airframe structure on the base of common special four-
level database.

2. Four-level nested FE models according to detailing of the structure.
3. Full automation of initial data definition and analysis of calculations results.
4. Parallel solving strength tasks on both nested FE models and auxiliary analytical

strength models.
5. Standard format of input and output data.

Full automation of the algorithm allows users to control the accuracy of a calculation,
changing FE mesh size, and thus to find minimal possible nested FE model’s size. Figure 1
illustrates four-level structure decomposition and relationship between FE models and
analytical ones.

Figure 1. Scheme of calculation procedure in frame of the base four-level algorithm (FLA).

As long as, during investigation of alternative variants of non-conventional airframes,
the external geometry parameters of considered aerodynamic concepts did not have serious
variation, the base FLA showed high performance [13,14].

In the present work, one more decomposition principle was developed, to decrease
time and labor input for procedure of analysis of aerodynamic loads. In accordance
with this principle of decomposition, a new aerodynamic module for the fast choosing



Aerospace 2021, 8, 80 3 of 16

of critical load cases was created and validated in the frame of the new version of FLA.
This module divides aerodynamic load cases into several groups in frame of the iterative
process of determination of critical load cases. These groups of load cases are investigated
on aerodynamic models having different mesh size. The new version of FLA keeps all
advantages of the base one.

Thus, the new version of the FLA realizes the three abovementioned principles of
decomposition: four-level structure decomposition, decomposition of strength tasks, and
decomposition of alternative load cases during the process of determination of critical load
cases. It gives the possibility to decrease no less than 20 times the labor input (as compared
to the base version of FLA) of complex strength analysis, keeping required accuracy. The
new version is very suitable for strength analysis and airframe designing when researchers
have to consider numerous numbers of alternative aerodynamic concepts, such as a big
number of alternative variants of airframes within each of an aerodynamic concept.

The structure of the new version of FLA consists of the following program modules:
special four-level database modules, modules responsible for automatic building of para-
metrical FEM and auxiliary strength models, conventional FEM loads modules, modules
for forming of parametrical aerodynamic load models, and modules responsible for rela-
tionship between four-level database and external numerical solvers. These modules were
created and validated in TsAGI. In addition to the abovementioned modules, MSC Nastran
program modules (SOL 101, SOL 144) were used as solvers for determination of stiffness
and aerodynamic matrixes. Figure 2 shows the scheme of process of strength analysis in
the FLA.

Figure 2. Scheme of process of strength analysis in the FLA.

2. Airframe Strength Analysis within FLA

The proposed FLA gives wide capabilities for reducing the time and labor input for
complex strength-analysis procedures. That is very important for the preliminary design
process of an aircraft airframe layout, as the check of strength constraints of numerous
aircraft structure concepts is the most time-consuming part of the optimization procedure
of designing.

Figure 3 shows the four-level airframe-strength models’ decomposition in strength
analysis, when four types of FE models are used simultaneously (FEM 1, FEM 2, FEM 3,
and FEM 4) in a strength analysis. Each of these models is responsible for solution of the
corresponding strength tasks. Within FEM 1, the strength tasks related to the entire aircraft
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structure are considered, such as estimation of global stiffness parameters, load cases
definition, aeroelasticity, etc. Within FEM 2 the tasks of global buckling and post-buckling
behavior of main sections are solved. Moreover, detail mass estimations of fuel, equipment,
payload is performed using strength models of this level. Within FEM 3, the tasks of global
stress–strain state estimation and local (panel) buckling are carried out. In addition to
strength analysis, the weight of structure can be estimated on the base of the FEM 3 model.
Finally, FEM 4 is used for solving local strength tasks, e.g., for local stress concentration
analysis in critical zones.

Figure 3. Block scheme of the four-level airframe strength models decomposition in strength analysis.

The FEM models of all levels have a strong connection with each other on the basis of
the principle of nested models, when the models of the upper level include all nodes of the
lower level models.

Thus, FEM 2 contains the main topology parameters of FEM 1 models, including the
arrangement of sections into aircraft airframe. The number of FEM 2 models equals the
number of sections, defined within FEM 1. Correspondingly, each of FEM 3 models include
topology parameters of FEM 2 models, including arrangements of spars, ribs, panels into
each section, etc.

The used principle of decomposition makes it possible to translate the correct bound-
ary conditions from the lower level to the all the upper levels, as values of stresses and
strains, defined on the base nodes (on the FEM model of the lower level), are automatically
transferred to the models of upper levels. Thus, it gives possibility to solve tasks piecemeal
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with correct boundary conditions. It can decrease significantly time and labor input during
the calculation.

In the frame of FLA, it is easy to realize decomposition-of-strength tasks because
auxiliary strength models are built automatically, using the same parameters as FEMs. The
auxiliary models are usually used at the first steps of strength analysis of the airframes,
whereas the FEM models are used at a later stage. Auxiliary-strength models can be
included into FLA, as modules working in parallel. It is very suitable for the fast solving of
the tasks of aeroelasticity and determination of aerodynamic loads.

In this paper, parametrical auxiliary aerodynamic models are used, together with
parametrical auxiliary beam models, in order to separate quickly non-critical load cases
from the critical ones. The critical load cases are investigated by means of more detail FEM
strength and aerodynamic models. In this work, only metallic airframes were considered, so
no microlevel models were used in calculations. The local-level FEM models responsible for
fatigue were not considered, too. Two-dimensional triangle FEs with three nodes topology
and linear approximation function were used during calculations. Linear dependency
between stresses and strains was assumed during the calculations.

3. Parametrical Auxiliary Aerodynamic Model for FLA

In this work, a set of modifications of the basis variant of the FLA was carried out,
related to development and validation of the simplified auxiliary parametrical aerodynamic
model (SAPAM).

It should be mentioned that, in the frame of the basis FLA, aerodynamic loading data
were considered as an initial data that should be imported from external sources or could
be calculated in the frame of a detailed aerodynamic model—that is quite time-consuming
for calculations of numerous variants of a concept with various external geometry.

The modified FLA includes SAPAM based on the doublet lattice method (DLM) [15,16].
In frames of SAPAM, lifting surfaces of wing and empennage are modeled by plates, con-
sisting of thin panels, while axisymmetric bodies (e.g., fuselage and engines) are modeled
by crossing surfaces, that also consist of thin plates (Figure 4). Height and width of crossing
surfaces are related explicitly with height and width of axisymmetric body by means of
the parameter kcrossing. In this work, the standard value of kcrossing parameter equal to 0.85
is taken. The typical size of panels of SAPAM is a parameter. The value of the parameter
depends on the needed accuracy.

Figure 4. General view of simplified auxiliary parametrical aerodynamic model (SAPAM) of an aircraft.

The process of generation of SAPAM is as follows:

1. Building of surfaces of fuselage crossing,
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2. Building of lifting surfaces of wing and empennage,
3. Building of “bridges” for correct fluid motion,
4. Building of surfaces of cowlings and pylons,
5. Setting of control surfaces from range of lifting surfaces.

SAPAM was connected with the FEM model in an automated mode. Point finite
elements, which are model masses, were added into the four-level model for the balancing
of aerodynamic forces and moments via inertia forces and moments. Point elements model
masses were for the following:

1. Structure,
2. Fuel,
3. Payload,
4. Equipment and facility,
5. Power unit,
6. Landing gear.

In this work, SAPAM and structure-nested FEM models for regional aircraft structures
have been built in frame of MSC Nastran [17,18].

In Figure 5, the modeling of inertia loads, created by fuel in a lateral wing, is shown.
Forces for each point of a flight are applied to nodes of point elements, which are calculated
by taking into account overloads, angle velocities, and angle accelerations. These forces are
distributed to other nodes of the first level of the nested FE model via RBE3 finite elements.
Using this type of finite elements make it possible to distribute loads correctly because they
do not disturb the stress–strain state of the nested FE model.

Figure 5. Modeling of inertia loads of a lateral wing.

4. Validation of SAPAM within the FLA

The main scope of the validation was to check the reliability and calculation perfor-
mance of the modified FLA, namely the SAPAM module being one of the key parts of the
algorithm defining its performance and the connection check between the modules of the
modified FLA.

Within the validation of the modified FLA, parametrical investigations on a number of
alternative variants related to the base variant of hypothetic regional aircraft were carried
out. General characteristics of the base variant of the regional aircraft are listed in Table 1.
The considered alternative variants differ from the base one by the following active design
parameters: wing aspect ratio, wing relative thickness, wing twist, and no/yes wing strut.
The wing surface area was kept constant within the investigations.



Aerospace 2021, 8, 80 7 of 16

Table 1. General characteristics of base aircraft configuration.

Parameter Value

Maximum altitude, m 10,250

Maximum speed, km/h 500

Maximum Mach number 0.445

Maximum dynamic pressure, kgf/m2 1120

Altitude at start of cruising, m 7200

Cruise speed, km/h 400

Cruise Mach number 0.36

Maximum Take of Weight, kg 15,000

Maximum landing weight, kg 13,775

Payload, kg 2750

Fuel weight (with maximum payload), kg 2750

Minimum flight weight, kg 12,025

Maximum front gravity center, m 7.93

Maximum aft gravity center, m 8.155

Wingspan, m 26.1

Wing square, m2 58

Fuselage length, m 19.9

Wing Aspect ratio 11.7

The structure model of the base variant of the aircraft is shown in Figure 6. It corre-
sponds to the first level of detailing according to decomposition principles described in
Section 2.

Figure 6. General view of geometry model of investigated aircraft.

The scheme of detailing of the base configuration is illustrated in Figure 7, while
the scheme of detailing at the second level (sections) and the scheme of detailing at the
third level (details) are shown on Figure 6a,b correspondingly. The scheme of detailing,
corresponding to the fourth level (fragment), is illustrated on Figure 8.
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Figure 7. (a) Main sections of base configuration; (b) panels (details) of base configuration.

Figure 8. Parameters of the fourth level.

The first step of validation investigations was to check that the simplified model is
capable of correct calculation of aerodynamic parameters for variable external geometry.
In these investigations, the aspect ratio of the wing was varied at the constant wing area.
Each of alternative variants was considered by means of the same automated calculation
procedure. The procedure included forming the four-level FEM model, calculation of
aerodynamic and inertia loads, definition of strength parameters and reserve factors, and
structure optimization with preliminary weight estimation. Each variant of a structure
was optimized, taking into account numerous strength constraints, including stress/strain
reserves, buckling factors, and displacement constraints. Within the validation, typical
aluminum alloy used in current civil aircraft structures was considered as a structure
material (Table 2).

Table 2. Aluminum alloy property.

Property Value

Young modulus, Pa 7.2 × 1010

Poison ratio 0.3

Shear modulus, Pa 2.76 × 1010

Allowable tensile stress, Pa 3.6 × 108

Allowable compress stress, Pa 4 × 108

Allowable shear stress, Pa 2.05 × 108

Density, kg/m3 2750
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Four flight loading cases (Table 3) were considered. Such load cases are the most
critical for such a kind of wing structure [19]. These load cases were selected in order
to compare different variants of the wing’s external geometry in the same aerodynamic
conditions. Structure parameters obtained during optimization for the considered load
cases were used for definition of stiffness characteristics for the further strength analysis
procedures.

Table 3. Flight load cases.

Case ID Dynamic Pressure, kgf/mm2 Ny Mach

LC1 1100 2.5 0.45

LC2 324 2.5 0.212

LC3 1100 −1 0.45

LC4 324 −1 0.212

Variations of the wing aspect ratio were performed within the range from λmin = 8 to
λmax = 16 (Figure 9). For each variant, wing area was a constant, as well as parameters of
fuselage and empennage. Wing chords and wing thickness were decreased proportionally
with the increasing of the wingspan.

Figure 9. Numerical models of boundary configurations of the aircraft.

In addition, non-conventional structure layouts with strut were considered. The graph
(Figure 10) shows dependency of mass of optimized structure of airframe vs. wing aspect
ratio for two variants of structure layout with and without strut. The attachment point of
wing with strut was situated at 55% of a semi wingspan.

In the graphs, weight of the wing with strut is shown relatively to the weight of
the wing without strut. In the frame of validation of the modified FLA, relative wing
airfoil thicknesses for the base configuration of regional aircraft were varied (Figure 11).
Variations of a wing airfoil thickness were carried out within the range from 70% to 140%,
as related to a wing thickness of the base configuration.
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Figure 10. Dependencies of weight of frame of regional aircraft from wing aspect ratio.

Figure 11. Variation of root and tip foils of the aircraft.

Dependencies of the bending moment applied to the wing for the most critical load
case LC2 are illustrated on the graph in Figure 12a. As shown on the graph, influence of a
wing stiffness on a wing loading is not essential. The weight of the airframe decreases with
the increasing of wing thickness (Figure 12b).

In a similar manner, wing twist was varied (Figure 13). Angle of attack of a tip foil of
the wing was varied in a range from α = −5◦ to α = 5◦. Angle of attack of a root foil of
the wing was constant during this procedure, and foils between the root and the tips were
formed by a linear interpolation. Dependencies of bending moment applied to the wing
for the most critical load case LC2 are illustrated on the graph (Figure 13a). Increasing of
the angle of attack of the tip wing foil causes increasing of bending moments applied to the
wing. The mass of the airframe increases with the increasing of the angle of attack of the
tip wing foil (Figure 13b).
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Figure 12. Bending moments (a) and mass of structure of frame of the regional aircraft (b).

Figure 13. Bending moments (a) and masses of the regional aircraft (b).

Within the validation of the modified FLA, high performance of the SAPAM module
was demonstrated.

5. Validation of the Modified FLA as a Part of Design Procedure

For validation of capabilities of the modified FLA, with a focus on the speed of
calculations, numerous strength analyses of alternative variants of wing structures of the
hypothetic regional aircraft were carried out.

In this investigation, three variants of wing aspect ratio were considered. In addi-
tion to the base variant with λ1 = 11.7 (which corresponds to the base variant of the
aircraft illustrated in Section 4), two more alternative variants with higher aspect ratio
(λ2 = 15, λ3 = 20) were considered.

For these variants, parametric dependencies of weight of structure of wing from
position of joint aggregate on wingspan (Zst) were obtained. The scheme of parametrization
of the model of the regional aircraft with strut for one variant of wing aspect ratio is
illustrated on Figure 14.
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Figure 14. Scheme of parametrization of model of regional aircraft with strut.

As shown on Figure 14, wing strut is a rod with a thin wall (metal or metal-composite).
In this work, local and global buckling of the strut were estimated [20,21].

Analysis of load cases, which are critical for wing structure, were carried out by
using the modified methodology of load analysis. Discretization of feasible range of flight
regimes was carried out in space Height–Mach–Mass (Figure 15). Load estimation was
carried out in each point, for symmetric maneuvers (max and min overcharge) and gust
influence. The parameters of the structure layout that were obtained were used as start
parameters during the analysis of loads for each variant of wing aspect ratio. Discretization
extent is also a parameter of fourth-level model (parametrized by weight, Mach, and Height
step).

Figure 15. Discretization of feasible range of flight regimes of the regional aircraft.

Thus, about 500 points from the feasible range of flight regimes were investigated
(three load cases for each point). Searching for design load cases (DLCs) from a set of load
cases (LC) was carried out by the strain energy criteria. The strain energy was calculated
by using auxiliary beam model of a wing. In this paper, the number of DLCs is equal to
amount of control sections of the beam model (N max). LC should be considered as a DLC,
when it has a maximum value of strain energy at least in one beam control section (N—
index of control section) (Figure 16). Envelopes of distributions of ultimate bending and
torsion moments and shearing forces for most critical load case (gust loads) are illustrated
in Figure 17, for each variant of wing aspect ratio of the regional aircraft. Relative weights
of the wing, as compared to the base variant of the wing without strut, for three variants of
wing aspect ratio, are shown in Table 4. Dependencies of relative weight of the wing with
strut on parameter (Zst) (for three variants of wing aspect ratio) are illustrated in Figure 18.
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Figure 16. The scheme of searching of the wing-design load cases on the base of simple analytic
beam model.

Figure 17. Ultimate bending and torsion moments and shearing forces for three variants of wing aspect ratio.

Table 4. Weight characteristics of wing, with and without strut, compared to base variant without
strut.

Variant Wing Aspect Ratio m/m0 without Strut, % m/m0 c with Strut, %

Base 11.7 100 87.7
1 15 134 93.3
2 20 183 116.5
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Figure 18. Dependencies of relative weight wing with strut from parameter Zst.

The graph (Figure 18) shows that rational value of parameter Zst is equal to 50–65%
of semi wingspan. Two variants of wing are rational by weight—base variant with strut
(87.7% from base variant without strut) and modified variant (λ1 = 15) with strut (93.3%
from base variant without strut).

6. Time Efficiency of the FLA of Strength Analysis

The simulations were carried out on the workstation controlled by a central processor
Intel I7 7700 K. An analysis of labor intensiveness of strength analysis of regional aircraft
structure for the base variant configuration is shown in Table 4, for the conventional
approach and the FLA.

A report for the computational capability for one iteration of strength analysis for one
configuration of regional aircraft for different discretization (different size of finite element)
of FEM model is illustrated in Table 5.

Table 5. Analysis of labor intensiveness of strength analysis of regional aircraft airframe structure.

Operations The Base FLA The Modified FLA Labor Saving (Time)

Initial data definition, work hours 80 4 ≥20

Model validation, work hours 16 2 ≥8

Analysis, work hours 112 4 ≥28

Post-processing, work hours 32 2 ≥16

Total, work hours 240 12 ≥20

In the frame of parametric investigations, the meshes of FEM models were chosen
by the condition of the same allowable maximal error of calculation strain energy. Table 6
shows relations between strain energy and FE mesh size for the base variant of the regional
aircraft. The error equals ~5% was chosen as the limit for all variants during parametrical
investigations.

It should be noted that the parametric investigations in this work were carried out in
parallel mode (each geometry configuration simulated in a separate stream).

One of the main advantages of the FLA for its implementation into the preliminary
stage of aircraft design is that the labor-saving can be provided not only by means of
calculation-time reduction, but also by selection of sparser mesh for initial iterations in the
search for rational parameters, and more coarse mesh for getting a more accurate solution
on later iterations within the chosen range of variants of aircraft concepts.
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Table 6. Computational capabilities of strength analysis of a regional aircraft.

Finite Element Size, m ≤0.5 ≤0.4 ≤0.3 ≤0.2 ≤0.1

Error, strain energy of FEM model, % 11.6 7.6 5.3 3.9 2.1

Amount of nodes 9000 16,000 28,000 40,000 112,000

Memory, Gb 0.75 1.1 2.2 4 9.6

Time of FEM model generation, s 0.07 0.1 0.6 1.1 4.3

Nastran simulation time, s 16 23 48 114 480

Reading the results of simulations, s 0.3 0.61 2.2 4.3 9.63

Buckling analysis, s 5 5 5 5 5

Calculation of weight and strength
reserves, s 0.13 0.5 1.2 6.3 12.4

Total time of iteration, s 21.5 29.21 57 130.7 511.33

7. Conclusions

The FLA of complex strength analysis of airframe based on the three decomposition
principles, namely structural decomposition, strength task decomposition, and decompo-
sition of alternative variant of load cases, was validated successfully on a wing structure
of the hypothetic regional aircraft. The validation was focused on the developed mod-
ule for fast automated calculation of aerodynamic parameters of load cases. During the
calculations, high efficiency of the algorithm, both in searching rational balance between
accuracy and calculation time and in choosing critical load cases for alternative concepts,
was confirmed.

Parametric investigations carried out in this work have proven that the usage of the
algorithm can provide no less than a 20-times decrease of calculation time, required for
strength analysis of wings of regional aircrafts, as compared to conventional methods of
strength analysis.

Within the validation of the modified FLA, the parametrical dependencies of weight
of wing on geometrical parameters of strut-braced high-aspect-ratio wing of a hypothetic
regional aircraft were obtained. The rational range of points for connection of strut and
wing, corresponding to minimal weight characteristics of wing was found. The posi-
tive validation results can become a background for further development of the FLA for
preliminary design procedure.
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