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Abstract: The paper describes the preliminary design of a phasing trajectory in a cislunar environ-
ment, where the third body perturbation is considered non-negligible. The working framework is the
one proposed by the ESA’s Heracles mission in which a passive target station is in a Near Rectilinear
Halo Orbit and an active vehicle must reach that orbit to start a rendezvous procedure. In this sce-
nario the authors examine three different ways to design such phasing maneuver under the circular
restricted three-body problem hypotheses: Lambert/differential correction, Hohmann/differential
correction and optimization. The three approaches are compared in terms of ∆V consumption,
accuracy and time of flight. The selected solution is also validated under the more accurate restricted
elliptic three-body problem hypothesis.

Keywords: space rendezvous; NRHO; phasing

1. Introduction

Current and future plans to return to the Moon are considering the presence of a
permanent space station in orbit around the L2 Lagrangian point of the Earth–Moon
system. Some of the advantages are the capability of accessing the Moon’s dark side,
and a continuous communication link with Earth. The permanent station will host vehicles
leaving the Moon to load material to be sent to Earth, and become a bridge for the astronauts
in their return to our satellite.

For an ascending vehicle, a key phase is the automated phasing maneuver, where
the spacecraft must raise towards the orbiting space station to accomplish the rendezvous.
In a cislunar environment the design of this maneuver is more complex because of the
non-negligible three-body dynamic environment.

Phasing trajectories are well known maneuvers that change the size of an original orbit
to meet a final target orbit at a different point in time. They can be calculated according to
a wide variety of specifications such as minimum ∆V, specific time interval for the transfer,
etc. The computation complexity of phasing is strictly related to the dynamic model used
in a fashion similar to trajectory design. Several approaches exist in the literature, which
depend on the dynamic model used to describe the vehicle’s motion.

Due to the absence of closed form solution, the numerical propagation of the dynamics
requires particular attention to the selection of the boundary conditions.

To this end, one possible method is based on the solution of the Lambert’s problem. It
relies primarily on Keplerian motion, and computes a suitable orbit given initial position,
final position and time of flight [1]. Lambert’s approach was proposed in the case of
three-body problem as well, for instance reference [2] uses Hill’s approximation to several
mission scenarios of transfers between Earth and Lagrange points, including target halo
orbits. However only numerical complex solutions are possible with a potential high fuel
expenditure. Nevertheless, the use of Lambert’s approach could be useful to determine a
first guess departing trajectory from the assumed lunar orbit, since the Moon’s gravity can
be considered dominant over the Earth’s gravity for altitudes up to 500 km [3].
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Another approach can be found in [4], where a continuous low thrust maneuver
computation is solved via optimal control, with a cost function dependent on the power
consumption and time of travel. Although not strictly applicable to our problem, it provides
an example of viable numerical optimization (using a shooting method and sequential
quadratic programming).

Of more interest for the present work is the literature based on the application of
manifolds theory [5] to phasing. The common denominator in these works being a target
halo or NRHO orbit, a ballistic or indirect transfer sequence following selected manifolds,
time of flight requirements, and fuel expenditure. Reference [6], for example, reviews the
CR3BP dynamics, and invariant manifolds computation. Then the connection between
manifolds is addressed, and the study is applied to far rendezvous and close rendezvous
using intermediate halo orbits. In [7], the authors present a somewhat similar summary
study, comparing, in terms of ∆V, a ballistic direct transfer from LLO to NRHO with a
transfer using an intermediate NRHO, which could be used also for status assessment.
Although there is no theoretical basis for the selection of the type and number of inter-
mediate orbits (which is left to the mission design phase), a reduction in ∆V is achieved,
especially if there are no stringent constraints on the TOF. An interesting preliminary anal-
ysis of phasing, which includes safety considerations, is presented in [8]. Here the authors
consider the problem of safe phasing, by testing the accuracy of CR3BP motion with an
Ephemeris model and parametrizing the results with respect to the degree of “out-of-plane”
component of the target halo orbit.

An additional application of manifolds theory to phasing can be found in [9]. In their
paper, the authors refine the computation of the target NRHO using a Bi-Circular model,
they analyze the results with a Montecarlo simulation, and they apply their method
to an Earth to Moon transfer. Reference [10] presents a comparative transfer sequence
to different NRHOs in terms of ∆V for trajectories computed using Lambert’s arc and
intermediate halo.

The present paper focuses on the phasing trajectory defined within ESA’s Heracles
mission, in particular it presents three different methods for the phasing maneuver and
compares them. The scenario is never been studied, and has become particularly important
in lieu of the future missions, as shown in [11]. The originality of the comparison will allow
successive detailed mission design phases. The paper is organized as follows: Section 2
describes the working scenario and relevant CR3BP equations of motion; Section 3 de-
scribes three phasing methods and resulting trajectories; a validation using more accurate
ER3BP dynamics is presented in Section 4; the discussion and conclusions are described in
Sections 5 and 6, respectively.

2. Mission Scenario and Dynamic Model

This section reviews the models used, the main assumptions, and defines the specifics
of the mission scenario considered for the design of a phasing trajectory.

The proposed scenario is motivated by the original Heracles mission of the European
Space Agency [12]. The mission consists of an independent landing on the south pole of
the Moon, autonomous collection of lunar samples and returning the samples to the Lunar
Space Gateway. One of the key phases of this mission is the phasing procedure from a
Low Lunar Orbit to the L2-NRHO. In this phase, the Lunar Ascent Element or chaser will
execute ∆V changes to reach a specific location where the actual rendezvous will start.

2.1. Reference Frames

To better understand the equations developed in the paper, we consider the following
reference systems used in the representation of the dynamics:
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• Inertial Reference Frame: all inertial coordinate frames have their axes aligned with
the axis as defined for the Jet Propulsion Laboratory (JPL) DE2000 Ephemeris files.
The x-axis points in the direction of the vernal equinox at midday of the 1st of January
2000. The z-axis points in the direction normal to the mean equatorial plane, in the
direction of the North pole, while the y-axis supplements the set to be a right-hand
coordinate system. The center of the inertial frame can be located in the center of a
celestial body or in the barycenter of a system of celestial bodies.

• Synodic (Co-rotating) Reference Frame: very suitable coordinate frames for the
illustration and treatment of libration point orbits are co-rotating coordinate frames.
The x-axis points from the primary body to the secondary body, the z-axis is the axis
of the angular velocity of the bodies and is therefore normal to the orbital plane of the
two primaries and the y-axis supplements the coordinate system to be a right-hand
system, it can be centered on the secondary center or on the system’s barycenter.

• Local Vertical Local Horizon Reference Frame: The LVLH frame is defined with
respect to the primary body around which the target is orbiting. Denoting with rit the
target position with respect to the primary i, with

[
ṙit
]
Mi

the target velocity as seen

from the primary, and with hit = rit ×
[

ṙit
]
Mi

the target specific angular momentum
with respect to the primary, the LVLH frame unit vectors are defined and named
as follows,

– k̂ = −rit/‖rit‖ points to the primary and is called R-bar;
– ̂ = −hit/‖hit‖, is perpendicular to the target instantaneous orbital plane and is

called H-bar;
– ı̂ = ̂× k̂ completes the right-handed reference frame, and is called V-bar.

The above definition of the LVLH frame is consistent with the one given by Fehse in
its classical reference book for spacecraft rendezvous and docking [13]. With a little
abuse of notation, the name of the unit vectors are maintained, as standard practice in
the community.

2.2. Departure and Arrival Boundary Conditions

The boundary conditions for the problem refer to the chaser’s departing orbit, target’s
orbit, and location of the insertion point for the beginning of the rendezvous phase [14].

The initial orbit is a polar circular LLO, with an altitude of 100 km. Assuming per-
fect two-body dynamics, the chaser speed is V = 1.634 km/s and the orbital period is
T = 1.9613 h. The orbit is schematically shown in Figure 1, in the standard lunar inertial
reference. The specific orbital elements are not of interest for the rest of the work. In
the paper, the departing orbit is referred to the synodic frame, so there is a small error
in the accuracy because of the 5 degrees rotation of the y-axis of the synodic frame itself.
With this assumption, the results are coherent with what described in [11]. In addition, it is
shown in [11] that the range of inclinations of the departing orbit between 85 degrees and
102 degrees does not compromise the accuracy of the overall phasing trajectory.

The target orbit is a L2 southern Near Rectilinear Halo Orbit (NRHO) shown in
Figure 2. The plot on the left is the orbit’s propagation using CR3BP, the one on the right
shows the orbit propagated for one year using the Ephemeris model described in Table 1.
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Figure 1. Reference low lunar orbit.

Figure 2. NRHO target orbit in the synodic frame.

Table 1. Ephemeris Data for Target NRHO Propagation ESA JD2025.

Information Data

Comment LOP-G Southern NRHO 9:2 Resonance

Originator FreeFlyer (AI-SOLUTION)

Object Name LOP-G

Center Name Moon

Start Time 2020-01-09T00:21:00.000

Stop Time 2020-02-07T03:21:00.000

Period 6.56 days

Periselene 1500 km

Aposelene 70,000 km
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2.3. Equations of Motion

The equations of motion used to describe the phasing part of the LAE trajectory are
based on the CR3BP dynamics. The gravitational field is generated by two large masses,
with the primary being the Earth, and the secondary is the Moon, moving in a planar
circular motion about their common center of mass. The spacecraft are considered massless.
The CR3BP model is very convenient for preliminary trajectory design, and allows the
computation of invariant manifolds [5,6], which can be used to drift away (unstable) or
drift into (stable) specific points during phasing. Using the Synodic frame, the dynamic
model is given in state space vector form by Equation (1) or in standard components by
Equation (2):

ẋ = f (x(t)) (1)

ẍ− 2ẏ = −∂Ū
∂x

ÿ + 2ẋ = −∂Ū
∂y

(2)

z̈ = −∂Ū
∂z

where the effective or augmented potential function of the system Ū(x, y, z) is:

Ū(x, y, z) = −1
2
(x2 + y2) + U(x, y, z) (3)

It is possible to use a differential correction method [15] to find the desired periodic
NRHO orbit, and then to compute the invariant manifolds that take the spacecraft from its
initial LLO orbit to the target orbit. The technique, briefly reviewed in the Appendix A, is
used to compute the best periodic approximation of the target orbit under the CR3BP hy-
pothesis: starting from an initial guess, the initial state is constantly corrected inverting the
so-called Monodromy matrix, until the propagated trajectory is a periodic orbit. The initial
guess is then incrementally changed until the desired orbit is obtained.

Once the best periodic approximation of the target orbit is computed, then we use the
Monodromy matrix’s eigenvalues to obtain the stable and unstable manifolds. The Mon-
odromy matrix is obtained integrating the state transition matrix over an orbital period T.
The state transition matrix Φ is the matrix that linearly relates the perturbation of the initial
state δx(t0) with the perturbation of the state after a time t, as shown by Equation (4).

δx(t) = Φ(t, t0)x(t0) (4)

where

Φ(t, t0) =
d f (x, t)

dx
The eigenvalues of the Monodromy matrix can be stable or unstable: the manifolds are

naturally converging (stable) or diverging (unstable) trajectories around the periodic orbit,
according to the eigenvector directions of the stable (unstable) eigenvalues. Although ap-
pealing in their genesis, they formally exist only under the CR3BP approximation.

2.4. Boundary Conditions

From the description at the beginning of the section, the boundary conditions are
those that the chaser’s trajectory should match at the ends of the phasing and they are
reported in Table 2. In particular, the end of phasing, and beginning of rendezvous were
provided as shown in the table. The reference orbits are shown in Figure 3. The selected Low
Lunar Orbit was used only as a starting point and no further analysis of it was performed.

To match the desired boundary conditions, a stable manifold of the target orbit was
selected around the aposelene that guarantees the convergence of the chaser towards the
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target avoiding collisions at least for a whole orbit. The line in cyan in Figure 3 represents
the resulting stable manifold that will take the chaser to the final desired conditions listed
in the table. This is a stable manifold of the target’s NRHO, which satisfies the collision-
free requirements.

Figure 4 shows that the passive safety, defined from the mission’s requirements
(10 km), is satisfied, and the selected manifold is collision-free. Passive safety was a mission
requirement, with specified values of Keep Out Zones, and approach ellipsoid around the
target. Due to the highly nonlinear behavior at the Periselene, CR3BP approximation is
obviously not well suited around that region.

Table 2. Boundary conditions for phasing.

Initial Orbit Insertion Point

LLO Polar near NRHO Aposelene

100 km altitude ~50 km below (R-Bar), ~86 km behind (V-Bar)

Figure 3. Reference orbits for phasing design.
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Figure 4. Relative distance chaser-target on the stable manifold.

3. Phasing Trajectory Computation

Three different methods to design the phasing maneuver are proposed in this section.
The main differences are the computation of initial conditions necessary to compute the
invariant manifolds. The first method is based on the Lambert’s problem initial guess
followed by a differential correction, the second method uses a Hohmann solution as
initial guess and then the differential correction, the third method, instead, is based on an
optimization approach that may lead to residual errors.

In this work we assume a two-impulse maneuver, so phasing can be computed in
two steps:

• Determine a first guess on the departure velocity from the lunar orbit.
• Apply a differential correction propagation to correct the initial velocity, based on the

boundary conditions at the final time, so that the spacecraft arrives at the final point
with an acceptable error, along an acceptable manifold.

The initial conditions used for the propagation of the target orbit are selected as follows:

x0 = 3.9574× 105 km
ẋ0 = 0 km/s

y0 = 0 km
ẏ0 = −0.1212 km/s

z0 = −7.1809× 104 km
ż0 = 0 km/s


The positions are then normalized to the Earth–Moon distance, and the velocities are

normalized to the orbit semimajor axis times the mean motion of the CR3BP model orbit,
for better numerical conditioning.

Figure 4 shows that the passive safety is satisfied, and the selected manifold is collision-
free. The boundaries requested in Table 2 are indeed satisfied. The trajectory in the figure
is computed with respect to the Local Vertical Local Horizon frame defined earlier.

3.1. Phasing Using Lambert’s Initial Conditions

A classical procedure for determining an initial transfer velocity is given by the
solution of the problem proposed by Lambert in the 18th century. It requires finding all
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possible trajectories (or the optimal trajectory) r(t) that connect an initial point r(t1) at
time t1, with a final point r(t2) at time t2, under a gravitational field, and with the time
of flight specified by the difference TOF = t2 − t1. For the two-body case, the solution is
known to provide two unique trajectories (long TOF and short TOF), which satisfy the
boundaries [16,17]. In the case of CR3BP or of a gravitational field generated by three or
more masses, the problem has many possible numerical solutions for any specified initial
data set (such as the terminal transfer positions, transfer time, and number of complete
orbits around the attracting center). This is the main reason for using Lambert’s problem in
the two-body setting.

The computation of a first guess on the initial velocity is crucial, and can be done
using the procedure in [1], with final position and final velocity written in terms of initial
position, initial velocity for a given time of flight. The required initial conditions in position
and velocity can be found using the f and g Lagrange coefficients formulation.

The Lagrange coefficients, which are functions of true anomaly, and time, and their
time derivatives are computed as in [17,18], although more recent algorithms could also be
used, such as those in [10,19–21].

Once a set of initial conditions is obtained, we fix a time of flight, and the trajectory
is propagated using differential correction on the linearized dynamics to reach the final
state. This procedure provides the system’s transition matrix. The error on final position
and the inverse of the transition matrix are then used to correct the initial velocity value,
and this procedure continues until the position at the final time is below the constraints
specified above.

An example is shown in Figure 5. In the figure, the blue line corresponds to the
trajectory evolution based on Lambert’s theorem in the two-body problem. The black line
is the result of the differential correction propagation using the CR3BP model. The final
position corresponds to an eccentric anomaly of 180 degrees. The time of flight is obtained
from Lambert’s theorem application from [17], or from [1], and results in a value of 15.72 h.

Figure 5. Example of direct phasing using Lambert’s theorem.
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The plots on the left in Figure 6 shows the evolution of the trajectory propagated for
different (longer) times of flight. 9 different time intervals were used from 15.72 to 78.6 h
(0.655–3.275 days). Transfer trajectories propagated to the aposelene region as final point,
with different TOF are shown in the same figure on the right plots. The out-of-plane nature
of the transfer orbits is evident from the simulations.

Figure 6. Phasing trajectories: same end point, different TOF.

Figure 7 shows a summary of the tests carried out for the direct transfer using Lam-
bert’s first guess and the propagation via differential correction. The figure presents the
results as function of different TOF and different final positions in the vicinity of the tar-
get orbit, combining what is described in the previous figures. The transfer trajectories
were computed according to Table 3, where T is the target orbit period. The table shows
propagation time versus the achieved final true anomaly.

Table 3. Time of Flight and Final Point Location.

Propagation Time True Anomaly

1.4T 152 deg.

1.35T 159 deg.

1.3T 163 deg.

1.25T 167 deg.

1.2T 170 deg.

1.15T 172 deg.

1.1T 175 deg.

1.05T 177 deg.

1.0T 180 deg.
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Figure 7. Phasing trajectories: summary results.

The computation of the ∆V for the transfers shown above is performed assuming the
following vector relationship:

∆V = V(t0)−VLLO + Vmani f old −V(t0 + TOF) (5)

The fuel expenditure depends on many factors. In this paper, we relate the ∆V to
the stable manifold propagation time, and the time of flight, in order to obtain a general
picture of the phasing requirements. The results are summarized in Figure 8.

Figure 8. Direct phasing summary.
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In the figure, the x-axis represents the propagation time (in hours) of the stable
manifold from LLO to the final position location; the nine points show selected locations
of the manifold starting from the aposelene. The y-axis represents the selected duration
(in hours) of the phasing maneuver, and the z-axis shows the associated ∆V consumption
computed according to Equation (5). A total of 81 runs were performed, in order to create
the grid in the figure. The total propagation time was selected to be about 62 h.

Figure 9. Phasing duration and ∆V.

Consider, for instance, the two-dimensional projections of Figure 8 shown in Figure 9.
The point in the figure indicates the amount of ∆V used for a direct phasing of 78.6 h,
with a manifold propagated at time 180.8 h. From the same figure we can also determine
the minimum ∆V, which is about 660.6 m/s. Combining the results in Figures 7 and 8, we
obtain the phasing trajectory, which produces the least expenditure in ∆V. This is shown
in Figure 10.
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Figure 10. Direct phasing with Lambert: transfer orbit and fuel expenditure.

3.2. Phasing Using Hohmann Initial Conditions

In this case, the phasing maneuver is generated using initial position and velocity de-
termined by a standard Hohmann transfer, then manifolds are generated as in the previous
case. Using the times of flight obtained before, three trajectories were generated, and evalu-
ated in terms of ∆V. The times of flight are multiples of the orbit period (T = 6.25 days).
The results are shown in Figure 11.

Figure 11. Phasing trajectories using a Hohmann as first guess.

A summary of the results is shown in Table 4. The fuel consumption is higher than the
one found before, and other times of flight always produced higher energy consumption.
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Table 4. Direct Phasing Summary using Hohmann.

TOF ∆V [m/s]

0.5 NRHO T 671

0.55 NRHO T 688

0.7 NRHO T 766

The results shown in this section can be qualitatively compared with those in refer-
ence [3] (Figure 5 (∆V = 657 m/s)), and [14] Table 3.3 (∆V = 654.3). The ∆V needed for
direct transfer is similar. Potential improvement can be obtained via optimization with
multiple firing, and a more precise computation of the ∆V itself.

3.3. Numerical Optimization

This section describes the design of a phasing sequence via numerical optimization.
A phasing trajectory is designed under the CR3BP dynamic model, based on critical
parameters such as position error, ∆V, TOF, and number of impulses.

The main objective of this procedure is to evaluate the relative influence between
final state error and fuel consumption. Therefore, a soft constraint optimization on the
state was selected, which provides useful trade-off at the preliminary stage. This approach
allowed information on the variation of fuel consumption as weights are changed in the
cost function.

Consider the reference equations for the CR3BP model described by Equation (1) or
Equation (2). The approach used is the selection of an appropriate cost function, whose
minimization will produce a set of optimal (or sub-optimal) maneuvers. The optimization
uses a nonlinear programming technique taken from [22]. The general problem can be
formulated as that of minimizing a cost function J(x) with respect to the state vector x with
constraints given by:

c(x) ≤ 0

ceq(x) = 0

A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

The function uses a gradient-based method that is designed to work with problems
that are continuous, with at least continuous first derivatives. A sequential quadratic
programming algorithm is used with updates of an estimate of the Hessian matrix at each
iteration [23,24]. In our problem, we selected a quadratic cost function given by a weighted
sum of the position error and the ∆V. Its analytical expression is given by:

J = q1
∥∥e||2 + q2(∑

i

∥∥∆Vi||)2 (6)

The vector e is the error between final state and desired state,

e = xSyn
f in − xSyn

des (7)

and ∆Vi are the fuel consumption expenditures at each impulse. The weighting coefficients
q1 and q2 are selectable by the designer according to the relative importance of the cost
components. In the paper we report the tests obtained using the numerical values in
Table 5.
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Table 5. Weighting Values in the Cost Function.

Weight Value

q1 9× 104

q2 10

In the optimization, the number of impulses (thruster firings) is fixed, and simulations
were performed assuming the number of impulses equal to 2, 3, 4, and 5. Spacing of
the firings as well as fuel expenditure between odd/even firings were a result of the
optimization and its trade-off between position error and ∆V. The starting initial position
was the LLO, the arrival point was the aposelene of the target orbit and the selected
stable manifold was maintained the same as in the previous sections, in order to compare
the errors.

The simulation results are summarized in Table 6.

Table 6. Fuel Expenditure as Function of the Number of Impulses (Firings).

Number of Impulses Total ∆V

2 661 m/s

3 709 m/s

4 688 m/s

5 717 m/s

The graphical representation of the phasing trajectories in the case of 2 impulses and
4 impulses are shown in Figure 12.

The two-impulse case, although requires a smaller ∆V, has a very large position
vector error.

Figure 12. Multiple Impulse Phasing. Two- and four-impulse cases.
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Based on the above results, a four-impulse maneuver was selected, since it provided
a lower position error than a two-impulse case. To evaluate the influence of the selected
manifold, the stable arrival manifold was then changed by varying the value of the initial
perturbation in the propagation (80 km in norm) along the direction of the eigenvector
associated with the eigenvalue less than 1 of the Monodromy matrix, and used for the
propagation of the manifold itself. The results are shown in Table 7. Figure 13 shows the
trajectory corresponding to a four-impulse with the original initial perturbation (the same
as the plot on the right in Figure 12) and the one resulting from a 200 km perturbation.
A change in manifold selection does not appreciatively change the fuel consumption.

Table 7. ∆V as Function of Manifold Selection.

Perturbation (km) Total ∆V

80 (original) 688 m/s

90 687 m/s

100 687 m/s

150 687 m/s

200 686 m/s

Figure 13. Phasing Trajectories with different Manifolds.

To verify potential ∆V reduction as a function of time of flight, the phasing maneuver
was propagated for five times the target orbital period. The selected trajectory was the one
corresponding to the stable manifold generated with an initial perturbation of 100 km (see
third row in Table 7). The longer propagation yields an arrival point closer to the target
orbit. The simulation results are summarized in Table 8. Table 9 gives the results in terms
of perturbation amount.
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Table 8. ∆V as Function of Phasing Duration.

No. Impulses 100 km, 5T 100 km, 5.2T 100 km, 5.4T

3 676 m/s 671 m/s >700 m/s

4 671 m/s 754 m/s >700 m/s

5 677 m/s 1045 m/s >700 m/s

Table 9. ∆V as Function of Manifold Selection for 5 × T Propagation.

Perturbation (km) Total ∆V

80 (original) 673 m/s

90 672 m/s

100 671 m/s

150 674 m/s

200 682 m/s

In the previous tables, the bold values indicate the occurrence of the minimum ∆V.
The resulting best scenario corresponds to a five-period manifold propagation, with four
impulses and a total expenditure of ∆V = 671 m/s. The phasing maneuver is shown in
Figure 14. The total ∆V divided into the impulse occurrence is shown in Table 10. As in all
cases tested, the largest ∆V occurs at the departure from LLO.

Table 10. ∆V Consumption at each Impulse.

Time of Flight ∆V

T = 0 639 m/s

T = 1.19 day 32 m/s

T = 1.28 day 0.01 m/s

T = 2.2 day 0.05 m/s

Figure 14. Phasing Trajectory: 32.8 days (5 times the period) manifold propagation.
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If we also propagate the phasing trajectory over a five-period time, however, the dis-
tance to the manifold increases to values that do not satisfy the specifications imposed by
the boundary conditions defined at the beginning in Table 2.

An example is shown in Figure 15 for a manifold computed with a 100 km initial
perturbation (projection on the x− y plane). The time evolution of manifold and phasing
trajectories are shown on the left. On the right, we have the relative position mismatch
during the orbital propagation. The increase in distance is evident already after 2 time
periods. Please note that similar results were obtained for the case of 80 km perturbation.

Figure 15. Phasing Trajectory Result, TOF = 32.8 Days.

To reduce the error between phasing and manifold, the optimization was performed
by changing weighting more the error component in the cost function (q1 = 9 × 106).
The simulation best results are shown in Figure 16 for an initial manifold perturbation of
80 km (the 100 km case is not reported here). The 80 km selection was a requirement for the
initial rendezvous and proximity operations. The final position error between the phasing
trajectory and the desired final position is lower than the one shown in Figure 15, at the
expense of a slight increase on the total ∆V.

In summary, the phasing trajectory that appears more promising is the one that
reaches the target stable manifold generated with an initial perturbation of 80 km, and a
propagation time of five time the target orbit period. The ∆V consumption, and the impulse
timing are shown in Table 11. Even if it is obtained with a four-impulse strategy, the main
∆V is used in the first two impulses, thus comparable with the previous approaches.
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Figure 16. Phasing Trajectory Result, 80 km Perturbation, higher Weight on Position Error.

Table 11. ∆V Consumption at each Impulse.

Time of Flight ∆V

T = 0 639 m/s

T = 0.91 day 39.4 m/s

T = 1.638 day 0.001 m/s

T = 0.67 day 0.001 m/s

Based on the above results, some comments can be made on the results shown in
Figure 16 and Table 11. First the 80 km perturbation target manifold satisfies the require-
ments after a time of four orbital periods, without additional maneuvers, which are neces-
sary for a 100 km initial perturbation. This result produces the lowest position error with
negligible increase in ∆V.

The propagation to five orbital periods yields a phasing maneuver duration of about
701 h before satisfying the insertion requirements. However, if we remove the CR3BP
restriction and perform the targeting with the real LOP-G orbit, the final position on the
manifold is much closer to the orbit, than the one period case.

The real target orbit considered in the paper was obtained using the public domain
“Free-Flyer” code with propagation dates 9 January 2020 to 7 February 2020. This results
in a more stable phasing compared to the one using the manifold obtained with a 100 km
initial perturbation.

Finally, direct targeting to the real orbit was not performed, since it would not provide
any guaranteed stable drift to the target, unlike the stable manifold.
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4. Validation Using the Elliptic Restricted Three-Body Problem

The results obtained so far use the CR3BP model, which is necessary to determine
manifolds for the phasing trajectory computation. To analyze modeling errors, the equa-
tions of motion were propagated using the ER3BP model, which is one step up in the
accuracy of the dynamics. The complete equation set can be found in the literature, here
they are taken from [25], and summarized for clarity’s sake in the Synodic frame, assuming
that its origin and the origin of the Inertial system coincide.

x̃′′ − 2ω̃s/i ỹ′ − ω̃′s/i ỹ− ω̃2
s/i x̃ = −(1− µ)

x̃− R̃1

r̃3
1
− µ

x̃ + R̃2

r̃3
2

(8)

ỹ′′ + 2ω̃s/i x̃′ + ω̃′s/i x̃− ω̃2
s/i ỹ = −(1− µ)

ỹ
r̃3

1
− µ

ỹ
r̃3

2
(9)

z̃′′ = −(1− µ)
z̃
r̃3

1
− µ

z̃
r̃3

2
(10)

with ˜(.) indicating the non-dimensional value. The normalized gravitational parameter
0 < µ < 0.5, for the case of M1 > M2 is given by:

µ =
µ2

µ1 + µ2
=

(
1 +

M1

M2

)−1
=⇒ µ2 = µ, µ1 = 1− µ

The objective of this computation was primarily a verification, at the simulation level,
of potential divergence of the phasing over the five-period time. The simulation shows that
the phasing appears possible under the elliptic motion, although the trajectory diverges
after 6 orbits for the 100 km perturbation manifold, and 7 orbits for the 80 km perturbation
manifold. A graphical representation for the 80 km manifold perturbation is shown in
Figure 17. On the left the propagation using CR3BP, and on the right using the ER3BP
where the divergence due to propagation is evident.

Figure 17. Phasing Trajectory, 80 km Perturbation, ER3BP Propagation.
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Another test was to perform an optimization using the cost function in Equation (6)
with weights q1 = 9× 106, and q2 = 10, using the ER3BP model rather than the CR3BP as
reported in Figure 14, and in the third row of Table 9.

The phasing maneuver was computed for a one half of the target orbital period and
for a time of flight of five times the period. The results are comparable in terms of position
error; the maneuver, however, requires a total ∆V = 703 m/s, as compared to ∆V = 671 m/s,
for the circular restricted model propagation. In addition, the optimization algorithm takes
a much longer time to converge. The phasing trajectory is plotted in Figure 18, where on
the left the phasing trajectory is shown for a half period TOF, and on the right for a TOF of
five orbits.

Figure 18. Phasing Trajectories with ER3BP Equations: 0.5T (left), 5T (right) Propagation.

Comments on ∆V Expenditure

All previous results have shown that the main contributor to the total ∆V is the
amount required for departing LLO. This is due to the high orbital speed of the chaser,
while orbiting at an altitude of 100 km from the surface of the Moon.

The situation improves if we consider LLO parking orbits at a higher altitude. For in-
stance, when a LLO is considered at an altitude of 200 km, the total ∆V reduces to 655 m/s.
This fact needs to be considered at the mission design phase, in order to optimize the total
budget for the mission. Figure 19 describes a sample phasing with a time of flight of one
half period , leaving LLO at 200 km of altitude. The target manifold is computed with a
100 km perturbation, and propagated for five times the orbital period.
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Figure 19. Phasing Trajectory for higher LLO Altitude.

5. Discussion

The study of phasing considered direct transfer from LLO to the target orbit using two-
impulse maneuvers with initial conditions computed from a two-body Lambert’s approach,
from a direct Hohmann transfer, and a gradient-based optimization with multiple impulses.
The resulting transfer trajectory, using a circular restricted three-body problem applied to
Earth, Moon, was developed with the injection into a stable manifold generated by the
target orbit, and selected in the direction of the eigenvector associated with the relevant
eigenvalue of the appropriate Monodromy matrix.

Three approaches were studied,which defined the initial condition for trajectory
propagation. A summary of the findings is reported below.

5.1. Lambert, Two-Impulse

• The boundary conditions needed to solve the problem are computed using Lambert’s
two-body problem method.

• The best simulation results are obtained with a stable manifold computed via propa-
gation from an 80 km perturbation and it is met at the aposelene. The final position
error is zero, since we are on the desired manifold.

• the time of flight of the phasing trajectory is 78.5 h (half period of the target orbit).
• The total expenditure is ∆V = 660 m/s.
• The phasing trajectory is shown in Figure 10, and it is a full out-of-plane path. This is

why this approach may result in an increased fuel expenditure. To be noted is the fact
that the orientation of the LLO orbit was not specified, thus the amount of out-of-plane
imposed by Lambert could change if different LLO orientations are chosen.

5.2. Hohmann, Two-Impulse

• The boundary conditions needed to solve the problem are computed using a planar
two-body Hohmann approach.

• The stable manifold is computed via propagation from an 80 km perturbation and it is
met at the aposelene. The final position error is zero, since we are on the desired mani-
fold.

• The time of flight is similar to the previous case (half period of the target orbit).
• The total expenditure is ∆V = 671 m/s.
• The phasing trajectory is shown in Figure 11.
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5.3. Multiple Impulse Optimization

• The optimization procedure does not use differential correction, and it produces
position errors at the final time, which depend on propagation equations, relative
weight between error and fuel expenditure, optimization soft stopping conditions on
the final state.

• The optimization used soft constraints on the simplified dynamics, in order to eval-
uate the relative influence between accuracy and fuel expenditure. Although hard
constraints could have produced different results, the choice appears justified by the
fact that further iterations are necessary in the mission design phase.

• A different number of impulses was evaluated, with the best results obtained for a
4-impulse sequence (see Table 5), although almost all ∆V was used with the first two
impulses, making it similar to the other two solutions.

• Different stable manifolds were evaluated in terms of ∆V expenditure (see Table 7).
The computed ∆V are 688 m/s and 687 m/s for a manifold propagation of one orbital
period (80 km and 100 km perturbations).

• The phasing trajectory time of flight is half orbital period and it is shown in Figure 13.
• Improvement in the final position error and ∆V can be obtained by longer manifold

propagation, and longer time of flight of phasing trajectory. In particular, a five-period
manifold propagation, and a phasing trajectory time of flight of 701 h yields a position
error within the requirements and a ∆V = 678.4 m/s, as shown in Figure 16.

5.4. ER3BP Propagation

This limited test was performed to validate the accuracy of the circular restricted
three-body model in the optimization.

• Phasing trajectory time of flight of half period, ∆V = 703 m/s, see Figure 18. The figure
also shows the loss of accuracy at the Periselene, as the propagation time increases.

• The validity of CR3BP is maintained only if the time of flight is much lower than the
propagation time as expected.

6. Conclusions

The paper presents an analysis of different phasing trajectories evaluated in terms
of ∆V expenditure, time of flight, and position errors achieved at the final time. Future
programs of permanent return to the Moon dictated the mission scenario used in the paper.
The circular restricted three-body model was found to be accurate for this study and for
the assumed rendezvous around the aposelene of the target orbit. The accuracy decreases
if other regions are selected for the rendezvous, and in the target orbit propagation time is
extended. The initial parking orbit size is the main contributor to the total ∆V consumption
and the results provide a preliminary starting point for further mission design analysis.
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Abbreviations

LAE Lunar Ascent Element
LOP-G Lunar Orbital Platform–Gateway
NRHO Near Rectilinear Halo Orbit
LLO Low Lunar Orbit
TOF Time of Flight
LVLH Local Vertical Local Horizon
ER3BP Elliptic Restricted Three-Body Problem
CR3BP Circular Restricted Three-Body Problem
CLTV Cis-Lunar Transfer Vehicle

Appendix A. Differential Correction

The differential correction procedure is a Newton-based numerical algorithm used
to improve the accuracy of trajectory estimation. Many applications can be found in the
literature, in the context of the circular restricted three-body problem, for orbit deter-
mination around collinear Lagrangian points and for invariant manifold determination,
for instance [26,27], among others.

The equations of motion in Equation (2) describing the CR3BP can be written in
compact form:

ẋ = f(x(t)) (A1)

where x = [x, y, z, ẋ, ẏ, ż]T is the state vector describing the motion of the vehicle. Let x(t)
be some trajectory going from x0 to x1 under motion dynamics described by Equation (1).
For any given initial condition x0, the resulting trajectory at time t is defined by a flow map
φ(t, t0) as:

φ(t, t0) = φ(t; x0) : x0 → x (A2)

The flow map describes the state of the vehicle from its initial location to its value at
the final time. Please note that the flow map satisfies the equations of motion (A1):

dφ(t; x0)

dt
= f(φ(t; x0), with φ(t0; x0) = x0

When the initial condition is slightly modified by a δx0 amount, the corresponding
trajectory is given by the corresponding flow map variation:

δx = φ(t; x0 + δx0)− φ(t; x0) (A3)

with respect to the reference orbit as indicated qualitatively by Figure A1 (taken from [15]).

Figure A1. Nominal Trajectory, and Neighbouring Trajectory.
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At this point, we can make “small” adjustments δx0 to the initial state x0 so that an
adjusted trajectory will end up at the desired final state xd, near the original one x1. Without
any correction, the new map is given by:

x(t1) = φ(t1, t0; x0) = xd − δx0 (A4)

The basic idea behind differential correction is then to make a small change at one end
to get a desired point at the other end. Using an iterative procedure similar to a two-point
boundary vale problem, the process leads to convergence, i.e.,

φ(t1, t0; x0 + ∆x0) = xd + ε (A5)

where ∆x0 is the cumulative correction set, which yields the desired final state xd within
some tolerance |ε|« 1. It is easy to see that a simple differential correction, or simple
shooting, is nothing but a Newton’s method of finding a root for the flow map φ.

To find the correct adjustment, we can compute the sensitivity matrix of the changes
in the final state x1 with respect to small changes in the initial state x0. The procedure is
simply an approximation to the first variation of the map φ with respect to the desired
target state xd, and given by Equation (A5).

φ(t1, t0; x0 + δx0) = φ(t1, t0; x0) +
∂φ(t1, t0; x0)

∂x
δx0 + H.O.T (A6)

The linear approximation to the sensitivity matrix yields the state transition matrix Φ
evolution, along the reference orbit thus:

δx1 = Φ(t1, t0)δx0 (A7)

and
φ(t1, t0; x0 + δx0) = xd + H.O.T (A8)

with the transition matrix satisfying Equation (A1), from standard system theory:

Φ̇(t, t0) =
∂f
∂x

Φ(t, t0) with Φ(t0, t0) = I6 (A9)

where ∂f
∂x = Df(x) is the Jacobian matrix of the flow map.

From Equation (A1), the Jacobian matrix in Equation (A9) can be written as:

Df(x) =
[

0 I3
−Ũ 2Ω

]
with Ω =

 0 1 0
−1 0 0
0 0 0

 (A10)

and Ũ being the matrix of second partial derivatives of the effective potential with respect
to x, y, and z:

Ũ =

Ūxx .. Ūxz
.. .. ..

Ūzx .. Ūzz


The differential correction for finding a periodic solution requires the definition of

both an initial state and a final state. Symmetries of halo orbits can be used to aid this step.
Recall that halo orbits are symmetric about the xz plane (y = 0), and they intersect this
plane perpendicularly (ẋ = ż = 0).
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Figure A2. Reference Frame Transformation.

With reference to Figure A2, we can use Richardson’s approximation solution [15] to
find the initial state first guess:

x0 = [x0, 0, z0, 0, ẏ0, 0]T

The equations of motion are then integrated until the trajectory crosses the xz plane.
To produce a periodic orbit, a perpendicular crossing is needed, and so the desired final
(target) state vector must have the form:

x f = [x f , 0, z f , 0, ẏ f , 0]T

The first crossing of the xz plane occurs at a time equal to one half of the period of the
orbit. It is likely, however, that actual values for ẋ f and ẋ f are not zero at the first crossing.
The three non-zero initial conditions can be manipulated to drive these final velocities to
zero. Recall that differential correction uses the state transition matrix to change initial
conditions:

δx f = Φ(t f , t0)δx0 (A11)

The change δx0 in the initial state can be computed using Equation (A11) and the
known change δx f = xd

f − x f after the first iteration. Since this implies inverting a 2 × 3
state transition matrix, a more convenient approach is to constrain one of the initial state
variables, for instance, δz0 to zero. This makes Φ(t f , t0) a 2 × 2 square matrix and allows
an easy computation of the other initial conditions δx0 and δẏ0. At this point, we can start
a second iteration with the new set of initial conditions x0 + δx0. The process continues
until we achieve ẋ f = ż f = 0 within some desired bounds [6,28].
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