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Abstract: In air traffic control (ATC), speech communication with radio transmission is the primary
way to exchange information between the controller and aircrew. A wealth of contextual situa-
tional dynamics is embedded implicitly; thus, understanding the spoken instruction is particularly
significant to the ATC research. In this paper, a comprehensive review related to spoken instruc-
tion understanding (SIU) in the ATC domain is provided from the perspective of the challenges,
techniques, and applications. Firstly, a full pipeline is represented to achieve the SIU task, includ-
ing automatic speech recognition, language understanding, and voiceprint recognition. A total of
10 technique challenges are analyzed based on the ATC task specificities. In succession, the common
techniques for SIU tasks are categorized from common applications, and extensive works in the
ATC domain are also reviewed. Finally, a series of future research topics are also prospected based
on the corresponding challenges. The author sincerely hopes that this work is able to provide a
clear technical roadmap for the SIU tasks in the ATC domain and further make contributions to the
research community.

Keywords: air traffic control; speech communication; automatic speech recognition; spoken instruc-
tion understanding; voiceprint recognition

1. Introduction
1.1. Air Traffic Control Safety

As well known, air traffic control (ATC) is a complicated and time-varying system, in
which operational safety is always a hot research topic. All achievements of an ATC center
can be vetoed without any hesitation if any safety incident occurs. Air traffic safety is
affected by various aspects of air traffic operation, from mechanical maintenance, resource
management, to air traffic control. The safety of air traffic control is particularly important
since the aircraft is already in the air. There is no doubt that any effort deserves to be made
to improve ATC safety [1].

Air traffic is an extension of ground transportation, in which the aircraft flies in the
three-dimensional (3D) earth space. Since no signs and traffic signals can be designed
to provide required guidance for flights in the air, the pilot is almost “blind” once the
aircraft has taken off, with few approaches to obtain traffic situation around the aircraft.
Considering this issue, a position, called air traffic control, is established to ensure flight
safety in a local airspace area. Various infrastructures were developed to collect the global
air traffic situation (radar) and then transmit the information between air and ground
(communication). Based on the real-time traffic situations and a set of well-designed ATC
rules, the air traffic controller (ATCO) is able to direct the flight to their destination in a
safe and highly efficient manner.

Although enormous efforts have been made to build a qualified controller pilot
data link communication (CPDLC) [2], digital data transmission is still a dilemma of the
communication for air traffic control. In the current ATC procedure, speech communication
with radio transmission is still the primary way to exchange information between the
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ATCO and aircrew. Therefore, the spoken instruction is transmitted in an analog manner
and can be easily impacted by environmental factors, such as communication conditions,
equipment error, etc. The spoken instruction contains a wealth of contextual situational
dynamics that indicates the evolutions of the flight and traffic in the future [3,4], which is
highly significant to the air traffic operation.

However, speech communication is also a typical human-in-the-loop (HITL) proce-
dure in the ATC loop, since the current ATC system fails to process the speech signal
directly. Any speech error may cause communication misunderstanding between the
ATCO and aircrew [5,6]. As a first step of performing an ATC instruction, the communica-
tion misunderstanding likely results in incorrect aircraft motion states and further induces
a potential conflict (safety risk) during the air traffic operation. Based on the statistics
released by EUROCONTROL [7], up to 30% of all incidents related to speech communica-
tion errors (rising to 50% in airport environments) and 40% of all runway incursions also
involve communication problems. Consequently, understanding the spoken instruction is
particularly significant to detect the potential risk and further improve the ATC safety.

1.2. Spoken Instruction Understanding

The main purpose of understanding spoken instruction is to obtain the near-future
traffic dynamics in advance and further to detect the communication errors that may cause
potential safety risks. It not only enhances the information source of the current ATC
system but also is capable of providing reliable warnings before the pilot performs the
incorrect instruction (with more prewarning time).

As shown in Figure 1, the upper part presents the typical ATC communication proce-
dure, while the lower part illustrates the required spoken instruction understanding (SIU)
task in the ATC domain. In general, the SIU mainly consists of two steps: automatic speech
recognition (ASR) and language understanding (LU) [8,9], as described below:

(a) ASR: translates the ATCO’s instruction from speech signal into text representation
(human- or computer-readable). The ASR technique concerns the acoustic model,
language model, or other contextual information.

(b) LU: also known as text instruction understanding, with the goal to extract ATC-
related elements from the text instruction since the ATC system cannot process the
text directly, i.e., from text to an ATC-related structured data. The ATC elements are
further applied to improve the operational safety of air traffic. In general, the LU
task can be divided into three parts: role recognition, intent detection, and slot filling
(ATC-related element extraction, such as aircraft identity, altitude, etc.).
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In addition, since the ATC communication is a multi-speaker and multi-turn conver-
sation system, to support the correlation among different instructions in the same sector,
voiceprint recognition (VPR) is also needed to distinguish the identity of different speakers
for the LU task. The VPR technique can also be applied for security purposes. For instance,
if an ATCO instruction for a certain flight A is incorrectly responded to by the aircrew of
flight B (usually the similar aircraft identity), the potential risks may be raised due to the
mismatched traffic dynamics. In this way, the VPR technique is expected to be applied
to detect this emergency situation from the perspective of the vocal feature of different
speakers and further prevent the potential flight conflict (improve operational safety).

All the time, new techniques failed to be applied to the ATC domain promptly due to
the various limitations (safety, complex environment, etc.). Although enormous academic
studies for speech instruction have been reported in the ATC domain [10–14], currently,
there is no valid processing devoted to speech instruction in a real industrial ATC sys-
tem. The only contribution of speech communication is regarded as the evidence of
the post-event analysis, which cannot present its important role in improving air traffic
safety. Fortunately, thanks to a large amount of available industrial data storage and
widespread applications of information technology, it is possible to obtain extra real-time
traffic information from speech communication and further make contributions to the air
traffic operation.

In this work, a comprehensive review is made about the spoken instruction under-
standing in the ATC domain, including the challenge of task specificities, techniques
(especially machine learning-based ones), and prospect applications. In addition, future
works that deserved to be focused on are also discussed in this work. The ultimate goal
of this research is to provide a clear roadmap of concerned techniques for understand-
ing the spoken instruction during the ATC procedure so that other researchers can make
continuous contributions to improve air traffic safety.

1.3. Research Design

As illustrated in Figure 1, the SIU task in the ATC domain concerns the ASR, LU, and
VPR procedures. Obviously, all the mentioned techniques have been widely studied in
common application areas. In the early stage, common techniques have been evaluated to
achieve the SIU task [1]; however, the results demonstrated that common techniques failed
to complete the SIU task with acceptable accuracy due to task specificities. Thus, the key of
the SIU task in the ATC domain is how to apply and improve the common techniques to
properly address the task specificities.

In general, a “purpose–problem–solution–application” paradigm is applied to achieve
the research design of this work, as shown below:

(1) Purpose: presents the significance of the SIU task to clarify why we study it (Section 1.1).
(2) Problem: presents the SIU system architecture (Section 1.2) and the difficulties we

need to address to achieve the ASR task (Section 2).
(3) Solution: indicates the technical roadmap to achieve the SIU task (Section 3) and how

can we improve it (Section 5).
(4) Application: introduces the potential application and benefits of applying the SIU

task to real industrial systems (Section 4).

To this end, a systematic analysis is highly required to clarify the task specificities of
the SIU task for this application, i.e., the ATC domain. In this work, the following ideas are
considered to fully analyze the task specificities:

a. Firstly, as mentioned before, thanks to a large amount of available industrial data
storage and the development of deep learning techniques, the performance of con-
cerned techniques of the SIU task are greatly improved in recent years. Therefore,
this research mainly focuses on improving the deep learning-based approaches to
achieve the SIU task.

b. As is well known, the deep learning-based model is a kind of data-driven approach,
which achieves the desired tasks (specifically, the pattern recognition tasks) by fitting
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the complicated distribution between the input and the output data. That is to say,
the training data is essential to the deep learning model, whose performance highly
depends on the quality of the training samples.

c. Following the last description, the analysis of the task specificities of the SIU task in
the ATC domain will focus on the input and output of the SIU techniques, i.e., ASR,
LU, and VPR. In general, the input and output of the SIU model consist of the ATC
speech, vocabulary, and ATC-related elements, as can be found in Figure 1.

d. In succession, based on the production mechanism of the ATC speech and ATC rules,
a systematic analysis for the task specificities is achieved from various perspectives.

As shown in Figure 2, the research design of this work is organized as a top–down
architecture to present the aforementioned ideas. In addition, a concept abstract from
task specificities to technique targets is also needed to guide the technical improvement,
including the data collection, framework, network architecture, etc. An intuitive and
efficient way is to apply and improve similar studies to the ATC domain, in which dedicated
improvements are also required to enhance the task performance. In this work, existing
works for common applications of the SIU tasks are firstly reviewed. Meanwhile, papers
for addressing the task issues (related to the task specificities in the ATC domain) are also
provided to clarify the SIU research. Finally, the ATC-related applications deserve to be
paid more attention since they are the ultimate goal for studying the SIU task, i.e., obtaining
real-time information to support the ATC safety improvement.
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1.4. Document Structure

Based on the aforementioned descriptions, the rest of this paper is organized as
follows. The technique challenges raised by the ATC task specificities are firstly analyzed
and summarized in Section 2. The techniques for common applications are reviewed in
Section 3, where the works for the spoken instruction understanding in the ATC domain
are also reviewed and discussed. The applications of concerning techniques are prospected
in Section 4, including the real-time ATC application and post-analysis. The future works
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that have the potential to improve the SIU task performance are provided in Section 5.
Finally, this paper is concluded in Section 6.

2. Challenges

In this section, the task specificities of understanding spoken instruction in the ATC
domain are firstly summarized, and the technical challenges are also analyzed to infer the
required technique improvements in this section. The challenges concern all the techniques
in this work in detail in the following sub-sections.

2.1. Data Collection and Annotation

Currently, almost all state-of-the-art ASR/LU/VPR models are constructed by the
data-driven mechanism, and the quality of training samples greatly affects the model
performance [15]. On the one hand, due to the safety and intellectual property issues in
the ATC domain, it is hard to collect sufficient training samples to develop a qualified
speech recognition system. Even for the air traffic-related groups, the communication
speech cannot be shared with other research institutions or companies. On the other
hand, the transcriptions of the spoken instruction are domain-dependent, in which some
vocabularies only apply to the ATC domain, such as “squawk”. Furthermore, lots of
vocabulary words are newly generated based on the ATC rules, such as the waypoint
name “PIKAS”, “AGULU”, etc. That is to say, annotating the ASR training samples in the
ATC domain is an expert-dependent work in which staff must learn a lot of required ATC
knowledge to be competent for this job.

Thus, collecting and annotating training samples is costly and laborious work. Various
speech corpora have been built to study the ASR technique, as shown in Table 1 [16]. From
the table, we can see that it is easy to collect a qualified ASR corpus (up to thousands of
hours) to develop an ASR system for common applications in different languages. However,
due to the domain-specific characteristics, it is extremely difficult to collect and annotate
sufficient samples to develop a desired ASR system in the ATC domain, i.e., only tens of
hours. Therefore, from the perspective of machine learning techniques, developing ASR
models on small annotated speech samples is an evitable research topic in the ATC domain.

Table 1. A summary of the speech corpora [16].

No. Corpus Language Domain Size (Hour) Access

1 LibriSpeech [17] English novels 960 public
2 TED-LIUM3 [18] English TED talks 452 public
3 Switchboard [19] English Telephone 260 public
4 THCHS30 [20] Chinese newspapers 30 public
5 AISHELL-V1 [21] Chinese multidomain 500 public
6 AISHELL-V2 [22] Chinese multidomain 1000 application
7 ATCSpeech [23] Chinese/English real ATC 59 application
8 ATCOSIM [24] English simulated ATC 11 public
9 LDC94S14 [25] English airport 70 paid

10 Airbus [26] English pilot 40 unavailable

2.2. Volatile Background Noise and Inferior Intelligibility

The volatile background noise and inferior intelligibility are the most prominent
specificities of the speech signal for ATC communication, which are analyzed as follows:

a. Due to the resource limitation of the radio transmission, an ATCO usually commu-
nicates with several pilots in the same communication frequency. Therefore, the
equipment and radio transmission conditions change as the speaker changes [27],
which further results in volatile background noise in the same frequency, as shown
in Figure 3. It is clear that the feature intensities distribute in different frequency
ranges due to the different noise models (communication equipment or conditions).
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b. In general, the speech signal of ATC communication is recorded in a very low sample
rate (8000 Hz), which degenerates the intelligibility of the speech.

c. Since the spoken instruction is transmitted by radio communication, the robustness
of the communication is always a fatal obstacle to receive high-quality speech for
both ATCOs and pilots in the ATC domain.

d. In general, the speech rate of ATC speech is higher than that in daily life due to the
time constraints of the traffic situation. This fact severely damages the quality and
intelligibility of the ATC speech. For example, speaking “two two” in a fast speech
rate may probably cause an overlapped speech segment, and the ASR system can
only output one “two” (incorrect results).
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2.3. Unstable Speech Rate

As illustrated before, the rate of ATC speech is generally higher than that of in daily
life. However, the speech rate is also influenced by the following factors:

a. Traffic situation: the ATCO unconsciously speeds up his speech when facing a busy
sector or peaking hours.

b. Language: the ATCOs usually speak their native language at a higher speech rate
than that of other languages. For example, ATCOs in China speak Chinese at a higher
speech rate than English.

c. Emotion: The speech rate is also impacted by the ATCO’s emotion and presents an
irregular and unstable state.

From the perspective of signal processing, the unstable speech rate shows different
temporal resolution, i.e., the speech durations of the same vocabulary are highly varied
among speech segments. The unstable speech rate will further increase the difficulties of
the feature engineering approach, aiming to extract discriminative features to support the
ASR task. From the above descriptions, it can be seen that how to deal with the unstable
speech rate is an essential issue for improving the ASR performance in the ATC domain.

A comparison of the speech rate for common and ATC speech corpora is listed in
Table 2. The mean and standard deviation of the speech rate are measured, in which the
w/s means words per second. It can be seen that the speech rate of ATC speech is higher
than that of the common corpora for both Chinese and English. Specifically, the rate of
Chinese speech is higher than that of English speech. In addition, the ATC speech rate is
more unstable than that of the common corpora, i.e., higher standard deviation, 1.10 vs.
0.47 for Chinese, 0.75 vs. 0.47 for English.

Table 2. The comparison of the speech rate for different speech corpus [27].

Language Corpus Mean (w/s) Standard Deviation (w/s)

Chinese
ATCSpeech [23] 5.15 1.10
THCHS-30 [20] 3.48 0.47

English ATCSpeech [23] 3.28 0.75
Librispeech [17] 2.73 0.47
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2.4. Multilingual and Accented Speech

In general, English is the universal language for ATC communication all over the
world. However, some countries, including China, France, Russian, etc., still used to com-
municate with their domestic flights in local languages, while English is for international
flights. Similarly, many greeting words are also in the English ATC speech, such as nihao,
xiexie, etc. Most importantly, since the speakers (especially pilots) come from different
countries and cultures, and perform flights all over the world, ATC communication is
naturally a kind of accented speech, even for the English ATC speech. Therefore, multi-
lingual and accented speech is a prominent characteristic for the SIU research (ASR and
LU) in the ATC domain. This fact also causes a situation in which existing approaches
and models cannot achieve the SIU task in the ATC domain, and it inspires us to develop
dedicated approaches and models for the ATC application. Many technique challenges are
indispensably required to be addressed for multilingual and accented ASR tasks, such as
the scale of pronunciation and grapheme, vocabulary design, length dilemma of the output
text sequence, etc.

2.5. Code Switching

To eliminate the misunderstanding between the ATCO and aircrew, the international
civil aviation organization (ICAO) published the standard pronunciation of the vocabulary
words, which is called code switching [28]. The pronunciation of the homophone and near-
syllable words are switched. Similarly, the ATC department of other concerned countries
also published the pronunciation of the ATC terminologies in their local languages. Some
examples are shown in Table 3, in which both the English and Chinese are concerned. This
specificity burdens the difficulties of sample annotation, and it messes up the correlations
with common words for both the ASR and LU tasks. In addition, this real fact in Chinese
ATC speech forces us to study/train a special recognition engine, since existing models are
never trained by code-switching vocabularies let alone able to predict them correctly.

Table 3. Examples of code-switching words in the ATC domain.

Language Common ATC

English

three tree
five fife
nine niner

thousand tousand

Chinese

ling dong
yi yao
er liang
qi guai

2.6. Vocabulary Imbalance

To improve communication efficiency and operational safety, ICAO published the stan-
dard operation procedure of ATC communication, in which only predefined terminologies
are allowed in ATC communication [28]. However, in practice, many out-of-vocabulary
(OOV) words are still widespread in ATC speech, such as modal words. As described in
Figure 4, the word frequencies for both Chinese and English ATC speech are extremely
unbalanced in the ATCSpeech corpus. Up to 40% of words appear less than ten times,
while some words appear almost ten thousand times.

The OOV words cause an unbalanced dataset for the machine learning approach, i.e.,
long-tail problem. From the perspective of model training, this fact may severely degrade
the recognition performance, i.e., classification accuracy between speech frames and text
labels. Therefore, addressing the class imbalance is also a key to improve the recognition
accuracy of the SIU task in the ATC domain.
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2.7. Generalization of Unseen Samples

The generalization is a core evaluation measurement of data-driven models, which is
particularly important to the SIU research in the ATC domain. On the one hand, the distri-
butions of speech features are varied based on the device and communication conditions,
which highly depend on the model generalization to obtain the desired performance. On
the other hand, the vocabularies for different control centers or locations have a distinct
and unique set. For instance, the term “line up” is only for the ATCO of an aerodrome
tower (flight phase-dependent). Similarly, the waypoint “PIKAS” is only for a specific
sector (location-dependent), i.e., the 23rd sector in Chengdu area control center (ACC),
China. Therefore, enhancing the generalization of the SIU models among different control
centers or locations is a necessary technique to improve the SIU applicability, especially
under the limitation of annotating sufficient training samples.

2.8. Ambiguous Word Meaning

In the ATC domain, the digit is the common vocabulary for different goals. For in-
stance, a digit can be used to represent the airline number, flight level, altitude, speed,
heading, runway number, etc. The widespread usage of digits may result in the follow-
ing disadvantages:

(a) Since digits are commonly used in the speech corpus, the distributions or the con-
textual correlations between digits and other words are extremely similar. This fact
reduces the effectiveness of the language model (LM) for text correction to a certain
extent for the speech recognition and language understanding task.

(b) For the LU task, it is hard to design a fair and distinct label (slot filling) for digits in
the ATC-related corpus. If all the digits are regarded as the same label (i.e., digit),
the actual role for different goals (airline number, flight level, altitude, etc.) will be
confused. If all the digits are explained as different labels based on their real goal, a
large amount of one-to-many relationships will be generated. Both situations have a
possibility of degenerating the final performance of the LU model.

In addition, the flight callsign can also be represented in different formats. For instance,
both “Lufthansa” and “DLH” denote the Lufthansa airline. In summary, distinguishing
the word meaning from ambiguous texts based on the contextual situation is required to
achieve a high-accuracy LU task.

2.9. Role Recognition

Based on the ATC procedure, ATC communication can be defined as a task-oriented
conversation task, focusing on detecting the potential risks from ATCO speech and repeti-
tion errors from pilot speech. In short, role recognition is an indispensable precondition
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of any business-related process. Different safety check procedures are applied to the in-
structions spoken issued by different roles (ATCO or pilot). Typically, resource conflict
check is designed for ATCO speech, while repetition check is for pilot’s speech. In general,
the ICAO requested that the ATCO instruction starts with a valid aircraft identification
(ACID) to specify the communication object, while the pilot instruction must end with their
ACID during the repetition. However, in practice, some pilots ignore the ATC rules, whose
instruction even starts with an ACID. The text-dependent role recognition approach may
be confused under this situation, and it further invalidates the subsequent safety check
tasks. That is to say, accurate role recognition is an important and fundamental step of the
LU task in the ATC domain.

2.10. Contextual Information

All the time, the SIU task is mainly addressed from the perspective of acoustic model-
ing, in which the LM is applied to correct the results based on semantic meanings. For the
SIU research in the ATC domain, the standardized phraseology plays a significant role in
improving the LM effectiveness. Most importantly, the contextual situational information
from other information sources (such as radar, flight plan, etc.) provides a more accurate
and targeted reference for the ASR research. For instance, the ASR result of an ACID is
“CSC 7019”, while only the flight “CSC 7016” really exists based on radar detection. In
this way, a correction from the “6” to “9” based on the contextual information may be
a promising way to improve the ASR performance since the pronunciation is easy to be
confused (i.e., “j iu” vs. “l iu”). In summary, incorporating the contextual knowledge into
the SIU research in a proper manner is a practical and highly efficient way to improve the
final performance; i.e., it is more realistic in a certain ATC environment.

3. Technique

In this section, existing works that relate to the SIU task are reviewed, including auto-
matic speech recognition, language understanding, and voiceprint recognition technique.
For all the techniques, the research advances in the common application are firstly pre-
sented to provide an overall glimpse, and those for the ATC domain are also reviewed here
to clarify its current development. In the section, the way that the following techniques can
be used to address the aforementioned challenges is also analyzed.

3.1. Automatic Speech Recognition

As the aforementioned illustration, ASR is the first step of the SIU task, which achieves
the representation conversion from speech signal to human- or computer-readable texts.
As shown in Figure 5, an ASR system consists of the acoustic model (AM) and LM, in
which the AM can be hidden Markov model (HMM)-based or end-to-end paradigm, while
the LM can be implemented by the n-gram or neural network architecture.
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The ASR research can be traced back to the 1950s [29], and it has undergone several
technical improvements, as described below:

(1) Statistical models: The introduction of statistical models advanced the first technical
peak of the ASR research, which achieves the goal of large vocabulary continuous
speech recognition (LVCSR). The hidden Markov model (HMM) [29] was proposed
to capture the state transitions among continuous phonemes, while the Gaussian
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mixture model (GMM) was applied to build the distribution between the state and the
vocabulary unit [30]. Currently, the HMM/GMM framework still plays an important
role in the ASR research.

(2) Hybrid neural network models: Thanks to the improvement of the deep neural
network (DNN), it was also proposed to the ASR research to replace the GMM, which
further generates the HMM/DNN framework [31]. As expected, the HMM/DNN
showed desired performance improvements over the HMM/GMM framework, which
also promotes the ASR research into the deep learning era.

(3) End-to-end models: Due to the strict requirements of the alignment between speech
and vocabulary, Graves et al. proposed a novel loss function called connectionist
temporal classification (CTC) [32]. The CTC loss function also formulated a new
framework, i.e., it is also known as the end-to-end-based ASR model. The end-
to-end ASR model is able to automatically align the speech and text sequence by
inserting the blank label, which formulates a more intuitive pipeline [33,34]. The
end-to-end framework reduces the requirement of expertise-dependent knowledge
and greatly promotes the popularization of the ASR study for common researchers.
Many outstanding research outcomes were obtained based on this framework, such
as Deep speech 2 (DS2) [35], Jasper [36], CLDNN [37], DeepCNN [38], etc.

(4) Sequence-to-sequence models: Lately, the sequence-to-sequence (S2S) mechanism was
also transferred to the ASR research [39,40]. Recently, the attention mechanism [41–44]
and Transformer architecture [45–48] were also improved to address the ASR issues
and showed desired performance improvement.

As to the multilingual ASR task, a sequence-to-sequence model was proposed to
recognize nine Indian dialects [49]. Li et al. proposed a Unicode-based multilingual
ASR model, which can also be used for the text-to-speech task [50]. The phoneme was
regarded as the modeling unit to achieve the multilingual ASR task [51]. A shared network
was designed as the backbone architecture to translate both the Mandarin and English
speeches [52]. The code-switching and multi-task mechanism were proposed to improve
the performance of the multilingual ASR model [53].

Learning from the approaches and models in common ASR applications, great efforts
have been made to achieve the ASR task in the ATC domain. In Table 4, the existing works
that relate to the ASR research in the ATC domain are reviewed, in which the framework,
the concerned challenges, and technical details are also concerned.

Table 4. The automatic speech recognition (ASR)-related studies in the ATC domain.

Papers Technique Details Challenges Concerned

[1] Independent end-to-end models, DS2, ASR, ATC safety monitoring Sections 2.4 and 2.5
[27] An integrated cascaded model, DS2+S2S, multilingual ASR Sections 2.2–2.7
[16] Independent end-to-end models, DS2, ASR, pretraining, transfer learning Sections 2.1 and 2.4–2.6
[8] Cascaded model, DS2+S2S, SIU, multi-level LMs Sections 2.2, 2.4, 2.5, 2.8 and 2.9

[54] Complete end-to-end model, representation learning, multilingual,
pretraining Sections 2.1–2.6

[55] HMM/DNN, data augmentation, iterative training using unlabeled
samples Sections 2.1 and 2.7

[56] HMM/DNN, context-aware rescoring, SIU task Sections 2.5, 2.7, 2.8 and 2.10
[57] Semi-supervised for transfer learning, DNN based models Sections 2.1, 2.2, 2.5 and 2.7
[14] AcListant® based traffic dynamic sensing, Arrival Managers (AMAN) Sections 2.7 and 2.8
[11] Cross-task adaption, HMM framework, transfer learning Sections 2.2, 2.3 and 2.7
[58] N-best list re-ranking, ATCOSIM, syntactic knowledge Section 2.10
[59] traffic dynamic sensing -
[12] HMM-based framework, Spanish and English ATC speech, SIU task Sections 2.4 and 2.5

[60] French-accented English ATC speech, Time Delay Deep Neural Network
(TDNN) Sections 2.1, 2.2, 2.4 and 2.5

[61] 170 h of ATCO speech, TDNN-based benchmark Sections 2.2, 2.4 and 2.7
[62] Improve intelligibility by reducing speech rate Sections 2.2 and 2.3
[63] Speech corpus for ASR and text-to-speech task Sections 2.2, 2.3 and 2.5
[64] Callsign correlation between ATC speech and surveillance data Sections 2.1, 2.5 and 2.10
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3.2. Language Understanding

For the SIU task in the ATC domain, the language understanding (also known as
text instruction understanding) follows the ASR procedure, and it may follow the VPR
procedure if a text-independent role recognition is required. The main purpose of the LU
task is to extract ATC-related elements from ASR results. The LU consists of the following
research topic:

(1) Role recognition: details as illustrated in Section 2.9.
(2) Intent detection: extract the controlling intent (CI) from the text instruction. The CI is

a set of predefined ATC-related classes, such as climb, descend, heading, etc.
(3) Slot filling: analyze every word in a text instruction to obtain the contextual types,

which are called instruction elements (IE). Similarly, the IE is also a set of predefined
ATC-related classes, such as airline, flight number, altitude, speed, etc.

An example of the samples for language understanding is listed in Table 5, in which
the prefixes “B-” and “I-” denote the beginning and connection of a semantic element,
respectively. AL and CS are the airline company and callsign of the flight, respectively. TL
represents “turn left”, whose target parameter is 330. Similarly, CL denotes “climb”, with
the target parameter of 1200 m.

Table 5. An example of language understanding samples [1].

Text CCA 4012 Turn Left Heading 330 Climb to 1200 m

Slot filling B-AL B-CS B-TL I-TL B-CL I-CL
Intent Turn left and climb

Actually, both the intent detection and slot-filling task can be regarded as a special
type of the spoken language understanding (SLU) task. The role recognition is similar
to the intent detection task, and it is defined as a text classification task, i.e., classify the
speaker role based on the text instruction.

In the early stage, the intent detection and slot-filling task were solved separately.
With the development of deep learning techniques [65–67], the two tasks (intent detection
and slot filling) were achieved in a joint model. A brief illustration of technical details can
be found in Figure 6.
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(1) Intent detection: It is a classification task. Various models were proposed and im-
proved to achieve this task, including the generative machine learning models (such
as Bayesian [68], HMM [69], etc.), and discriminative models (such as logistic regres-
sion [70], maximum entropy [71], conditional random fields (CRF) [72], support vector
machine (SVM) [73], etc.). Deep learning models, including recurrent neural network
(RNN) [74] and convolutional neural network (CNN) [75], were also introduced to
achieve the intent detection.

(2) Slot filling: A maximum entropy Markov model (MEMM) [76] was proposed to
achieve the information extraction and segmentation from texts. The CRF was also
improved to achieve the slot filling task in [72]. The RNN block [77] and long short-
term memory (LSTM) [78] were also applied to improve the performance by building
long-term dependencies among the input text sequence.

(3) Joint model: Liu et al. proposed an LSTM-based model to achieve intent detection and
the slot-filling task jointly [79]. A combined model based on the CNN and triangular
CRF was also improved to jointly achieve the SLU task [75]. The recursive neural
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networks (RecNN) architecture [80] and gated recurrent unit (GRU) [81] were studied
to obtain the semantic utterance classification and slot filling jointly. Recently, the
attention mechanism [82,83] and transformer architecture [84,85] were also proposed
to address existing issues in the SLU research.

Note that role recognition is a special requirement in the ATC domain, and no studies
can be found in the literature. It can be defined as a two-class classification problem,
i.e., ATCO or pilot, whose technique implementation is similar to that of intent detection.
In general, the text instruction is regarded as the input to achieve the role recognition
task, where the embedding, RNN, and DNN layers are applied to predict the class label.
In addition, to address the issues illustrated in Section 2.9, voiceprint recognition will
be introduced in the following Section 3.3, which recognizes the speaker role from the
perspective of acoustic features. In summary, a proper combination based on the text
instruction and speaker feature is a promising solution for this task.

Language understanding is an essential step to bridge the gap between the ASR and
the ATC system; i.e., it converts the text into the predefined data structure. The following
works concerning this research topic are summarized in Table 6. It can be seen that the
research topic of language understanding focuses on the concept definition, while the
extraction approaches still needed to be improved in the future.

Table 6. The language understanding-related studies in the ATC domain.

Papers Technique Details

[1] Joint S2S model, 26 controlling intent, safety monitoring
[8] Joint S2S model, 26 controlling intents, 55 instruction elements

[10] SESAR 2020 Solution PJ.16-04, extra qualifier, conjunction
[86] 10 ontologies for ATC command extraction
[57] More label classes (such as QNH), conditional clearances
[87] Command definition for ASR rescoring

3.3. Voiceprint Recognition

Voiceprint recognition (VPR) is a task to identify the speaker of a given utterance. VPR
is one of the desired alternatives for text-dependent role recognition in the SIU system,
which directly takes the speech utterance as input to predict the speaker identification.
Thus, it is capable of reducing the cascaded errors raised by voice activity detection (VAD)
and the ASR model. The VRP technique is also the essential component of task-orient
conversation management in the ATC domain. As illustrated in Figure 7, the VPR is
generally divided into two pipelines: training and application. The training pipeline is to
extract a discriminative feature representation from an input speech waveform, while the
application pipeline makes a decision (accept/reject) based on the similarity evaluation
between the template feature vector and real-time feature vector to be recognized.
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The VPR research can be traced back to the 1960s [88], and it has undergone several
technical improvements, as described below:

(1) Template matching: In the early stage, the VPR approaches directly calculated the
similarity between the time-frequency spectrum to determine whether two utterances
come from the same speaker [89]. Then, this type of approach was improved to con-
sider the speech diversity in the temporal dimension, which further generated other
approaches, such as the dynamic time warping (DTW) [90] and vector quantization
(VQ) [91], etc.

(2) Statistical models: As the GMM model has made great progress in the ASR research,
it was also explored to build a robust text-independent VPR system [92]. Moreover,
other models were further introduced to improve the performance and robustness,
such as the universal background model [93] and support vector machine [94].

(3) Factor analysis models: To compensate for the channel mismatching and the in-
dependence problems of Gaussian components, the joint factor analysis (JFA) [95]
and i-vector [96] approaches were studied, which are widely popular in industrial
applications, making the VPR technique into a new stage.

(4) Deep neural network models: With the d-vector [97] proposed in 2014, DNN-based
models showed the ability to directly optimize the discriminations among different
speakers. Subsequently, both metric learning and representation learning were also
widely used in the VPR research. In this pipeline, the DNN architecture is used to
extract high-level abstract embeddings as voiceprint representation features, while
metric learning is applied to optimize the networks. Enormous research outcomes
were generated based on this core idea, such as Deep Speaker [98], X-vector [99,100],
j-vector [101,102], SincNet [103], etc.

To the best of the authors’ knowledge, there are no studies that aim to recognize
the speaker role (ATCO or pilot) in the ATC domain, which is further applied to detect
communication errors.

4. Applications

As is well known, the spoken instruction understanding task is to extract ATC-related
concepts and elements (i.e., traffic dynamics) from the ATC communication speech, which
serves as an extra information source of the current ATC system. The obtained information
by the SIU task can be performed in both real-time and post-analysis applications. In this
section, the possible subsequent ATC applications are reviewed and prospected based on
the spoken instruction understanding techniques in this work.

4.1. Information Enhancement

After obtaining the real-time traffic dynamics from the ATC speech, a natural and
intuitive idea is to feed the obtained information into the current ATC system, which takes
the ATC speech into the information processing loop in an automatic manner. The ATC
system providers, including the INDRA (Madrid, Spain) and Thales (La Défense, France)
cooperation, have studied the way to feed the real-time information to the ATC system
based on open-source ASR tools [10], such as the electronic strip system. This approach
not only enhances the source of real-time information but also improves the timeliness of
information sensing (extraction in advance).

4.2. Communication Error Detection (CED)

Once the information of ATC communication speech is obtained, various applications
can be applied to detect the potential communication risks, as below:

(1) The instruction completeness: Confirm whether essential elements are embedded
in the ATCO’s instruction based on the ATC rules, such as target altitude for climb
instruction. The purpose of this application is to encourage the ATCO to issue
standard instructions to eliminate misunderstandings between ATCO and aircrew
during the ATC communication.
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(2) Resource incursion: Check whether the concerned resources of the ATCO instruction
are valid or have conflicted with other operators from temporal and spatial dimen-
sions, such as the closed runway detection, ground obstacle, etc. [104]. In this way, the
potential risks can be detected in the stage of instruction issue and greatly improve
the operational safety in advance.

(3) Repetition check: Check whether the pilot receives the ATCO’s instruction in a correct
and prompt manner. The repetition check error includes no response from aircrew,
repetition error (intent or elements), etc. [5]. This application is able to reduce the
risks raised by the incorrect transmission and understanding of the pilot instruction,
which can eliminate the potential safety risk during the issue of instruction (before
changing the aircraft motion states).

4.3. Conflict Detection Considering Intent

Currently, the ATC system failed to process ATC speech directly, let alone to un-
derstand it and further be applied to improve flight safety. Existing works only relied
on the current aircraft state (radar) or flight plan to predict the flight trajectory [105,106]
and conflict detection [107]. If the SIU task can be achieved with considerable high con-
fidence, the flight trajectory can be predicted based on the consideration of controlling
intent and its ATC-related elements [108]. In this way, the accuracy of the conflict detection
approach can also be improved by a more reliable predicted trajectory. Most importantly,
conflict detection can be performed at the issue time of the instruction (before the aircraft
changes its motion state) and allows the ATCO to cope with an emergency with more
pre-warning time.

4.4. Post Analysis and Processing

Currently, the ATC speech is completely recorded to serve as evidence of post-event
analysis. Taking the recorded ATC speech, a large number of post-processing applications
can be achieved, including (but not limited to) the following:

(1) Workload measurement: Evaluate the workload of an ATCO from the time and sector
dimensions, such as flight peak hours or busy sectors [13,109]. Based on the evaluation
results, more efficient and effective designs for the airspace sector are expected to
be achieved to balance the ATCO workload, which is also helpful to improve the
operational safety of air traffic. For instance, a frequent “correct” instruction may
indicate that an ATCO is in a fatigued state, so that too many incorrect instructions
appeared in the ATC speech.

(2) Performance evaluation: The ATC speech is a side view of real-time air traffic opera-
tion, in which the ATCO performance is enclosed as the conversation speech. Thus,
the ATCO performance also deserves to be considered to detect the improper ATC
actions and further improve ATCO’s skills. For example, excessive extra instructions
for changing aircraft motion state may indicate that the sector always faces potential
risk so that the ATCO has to adjust the aircraft motion to resolve the potential conflict.
Facing this situation, it is necessary to improve operational safety by enhancing the
ATCO skills or designing a more proper standard operating procedure (SOP) during
the ATC communication.

(3) Information retrieving: Currently, human hearing is the only way to search the ATC
speech for a certain goal. Intuitively, based on the SIU technique, it is easy to search the
target information (speech) from a long-duration continuous record speech, such as a
certain flight number or a certain ATCO. This is strong support to the post-incident
analysis in an automatic manner, since it is laborious and costly work undertaken by
human staff.

(4) Event detection: Detect anomaly speech to support other analyses in the ATC domain.
For instance, the “confirm” instruction is issued by many speakers in a certain sector
or time period and may indicate that the communication condition between ATCO
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and aircrew in the sector or time period is needed to be improved, such as the
infrastructure malfunction or signal interference.

4.5. ATCO Training

In the ATC domain, ATCO training is given a particularly high priority, since ATCO
is the core of the air traffic operation. Only a licensed ATCO is allowed to compete for
a position in a real ATC environment. A series of knowledge and operation training
requirements were published and requested by ICAO [110] to bring up a qualified ATCO.
Currently, due to the technique limitation, a dedicated person is also needed to act as
the pilot to assist the ATCO training, which requires the extra cost of ATCO training, i.e.,
human resource and training device (position). By combining the SIU approach and other
advanced techniques (i.e., instruction generation and text-to-speech), an autonomous pilot
agent is expected to be developed to serve as a human–machine interface and further
replace the human-acted pilot during the air traffic controller training. It is clear that the
training agent is able to greatly save the training and maintenance cost and improve the
utilization of the training devices. This will speed up the progress of skill upgrade for
ATCO facing a new system or SOP and further benefit to improve the air traffic safety.
Most importantly, facing the limitation of physical attendance (such as COVID-19), the
autonomous training agent is capable of achieving a virtual training system through online,
which solves the current dilemma of ATCO training.

5. Future Research

Based on the aforementioned technique challenges and exiting works, the possible
research topics related to the SIU task in the future are prospected, from the perspective
of automatic speech recognition, language understanding, and voiceprint recognition, as
summarized below:

5.1. Speech Quality

(1) Speech enhancement: Facing the inferior speech quality in the ATC domain, an
intuitive way is to achieve the speech enhancement to further improve the ASR and
VPR performance. With this technique, a high-quality ATC speech is expected to be
obtained to support the SIU task and further benefit to achieve the high-performance
subsequent ATC applications.

(2) Representation learning: Facing the diverse distribution of speech features raised
by different communication conditions, devices, multilingual, unstable speech rate,
etc., there are reasons to believe that the handcrafted feature engineering algorithms
(such as MFCC) may fail to support the ASR and VPR research to obtain the de-
sired performance. The representation learning, i.e., extracting speech features by
a well-optimized neural network, may be a promising way to improve the final
SIU performance.

5.2. Sample Scarcity

(1) Transfer learning: Although a set of standardized phraseology has been designed
for the ATC procedure, the rules and vocabulary still depend on the flight phases,
locations, and control centers. It is urgent to study the transfer learning technique
among different flight phases, locations, and control centers to save the sample
requirement and formulate a unified global technical roadmap.

(2) Semi-supervised and self-supervised research: Since the data collection and annota-
tion is always an obstacle of applying advanced technology to the ATC domain, the
semi-supervised and self-supervised strategies are expected to be a promising way to
overcome this dilemma, in which the unlabeled data samples can also be applied to
contribute the model optimization based on their intrinsic characteristics, such as that
in the common application area.
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(3) Sample generation: Similar to the last research topic, sample generation is another way
to enhance the sample size and diversity and further improve the task performance,
such as text instruction generation.

5.3. Contextual Information

(1) Contextual situational incorporation: As illustrated before, contextual situational
information is a powerful way to improve SIU performance. Due to the heterogeneous
characteristics of the ATC information, existing works failed to take full advantage of
this type of information. Learning from the state-of-the-art studies, the deep neural
network may be a feasible tool to fuse the multi-modal input by encoding them as a
high-level abstract representation using the learning mechanism and further make
contributions to improve the SIU performance.

(2) Multi-turn dialog management: Obviously, the ATC communication in the same
frequency is a multi-turn and multi-speaker dialog with a task-oriented goal (ATC
safety). During the dialog, the historical information is able to provide significant
guidance to current instruction based on the air traffic evolution. Thus, it is important
to consider the multi-turn history information to enhance the SIU task of current
dialog, similar to what is required in the field of natural language processing.

5.4. Other Research Topics

(1) Joint SIU model: Currently, the ASR and LU tasks are achieved separately, i.e., a
cascaded pipeline, which also leads to cascaded errors (reduces the overall confidence).
In the future, a joint SIU model for automatic speech recognition understanding
(ASRU) deserves to be studied to capture the task compatibility to promote the final
performance, similar to that of the joint SLU model. In this way, the SIU task can be
achieved in a more intuitive and clear processing paradigm.

(2) On-board SIU system: Currently, all the SIU studies are developed based on the
requirements of the ground systems. The computational resource is heavily required
due to the applications of the deep learning model. For future development, it is also
attractive to achieve the SIU task for the on-board purpose (i.e., cockpit) and further
construct a safety monitoring framework for the aircrew. In this way, a bi-directional
safety-enhancing system is constructed for both the ATCO and aircrew, which is
expected to ensure flight safety in a reinforced manner. To this end, the model transfer
from the X86 platform to the embed system (such Jetson, NVIDIA, CA, USA) is the
primary research to save the computational resource requirements, such as model
compression, power reduction, etc.

6. Conclusions

In this work, a comprehensive review is made for the spoken instruction under-
standing in the ATC domain. The whole paper is categorized into three parts: challenge,
technique, and application. The concerning techniques for the SIU task are firstly specified,
in which a total of 10 challenges are summarized based on the ATC specificities. Lately,
extensive works of concerned techniques are reviewed for both the common and ATC
applications. A brief summary of this work can be found in Table 7, in which both the
findings and conclusions are presented to provide the development of this issue. It can
be seen that although great efforts have been made in this field, some key issues are still
needed to be addressed properly. Finally, a series of future research topics are sketched
in this work. The author sincerely hopes that this work can contribute to the research
community of the spoken instruction understanding in the ATC domain.
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Table 7. A summary of this work.

Section Item Findings Conclusions or Future Research Topics

Challenges

Data collection and annotation English corpus [24,26]
Chinese/English corpus [23]

More corpora are required to build
large-scale SIU systems in the ATC
domain.

Volatile background noise and
inferior intelligibility Multi-scale CNN [27] Representation learning may be a

promising way to overcome the
mentioned issue.Unstable speech rate Multi-scale CNN [27]

Multilingual and accented
speech

Cascaded pipeline [8,27]
Independent system [1,23] The end-to-end multilingual framework.

Code switching Language model [27]
The author believes that the most
efficient way is to build sufficient training
samples.

Vocabulary imbalance
Phoneme-based vocabulary
[8,27]
Data augmentation [1,26]

Sub-word-based vocabulary is a better
tradeoff between the vocabulary size and
sequence length.

Generalization of unseen
samples Transfer learning [16] Transfer learning from other domains is a

feasible way to address this issue.

Ambiguous word meaning Currently, no literature is for
this issue.

An intuitive way is to build a dictionary
for synonyms pairs.

Role recognition Text-dependent SLU model
[1,8]

VPR is a powerful text-independent way
to achieve this task.

Contextual information Enumeration of possible
information [56,87].

Deep information fusion using neural
network is expected to improve the
performance of this issue.

Techniques

Automatic speech recognition

Monolingual: HMM-based
[26], deep learning based
[1,16,23,60].
Multilingual: deep learning
based [8,27,54].

Great efforts deserve to be made to
promote the ASR task into an industrial
level, including speech quality,
contextual information, etc.

Language understanding
Concept extraction [10], deep
learning based SLU model
[1,8].

More concept classes are required to
cover the ATC-related elements,
especially for the rarely used terms.

Voiceprint recognition Currently, there is no
literature for this issue.

Building a corpus for the ATC
environment is the key to train a
qualified VPR system.

Applications

Information enhancement Electronic strip system [10]. More applications are expected to be
achieved based on the SIU task.

Communication error
detection

Studies based on ASR tools
[5,12,14,60,62]. A way to improve the air traffic safety.

Conflict detection considering
intent

Flight trajectory considering
intent [107].

Conflict detection considering intent
should be studied to provide more
warning time for ATCO.

Post analysis and processing

(1) Workload measurement
and performance evaluation
[13,109].
(2) Currently, there is no
literature on the information
retrieving and event detection.

More applications are required to be
explored to take full advantage of the SIU
research outcomes.

ATCO training There is no literature for this
issue.

It is very important to emphasize the SIU
task in the ATC domain.
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Automatic Call Sign Detection: Matching Air Surveillance Data with Air Traffic Spoken Communications. Proceedings 2020, 59, 14.
[CrossRef]

65. Lin, Y.; Zhang, J.; Liu, H. Deep Learning Based Short-Term Air Traffic Flow Prediction Considering Temporal–Spatial Correlation.
Aerosp. Sci. Technol. 2019, 93, 105113. [CrossRef]

66. Liu, H.; Lin, Y.; Chen, Z.; Guo, D.; Zhang, J.; Jing, H. Research on the Air Traffic Flow Prediction Using a Deep Learning Approach.
IEEE Access 2019, 7, 148019–148030. [CrossRef]

67. Li, L.; Lin, Y.; Du, B.; Yang, F.; Ran, B. Real-Time Traffic Incident Detection Based on a Hybrid Deep Learning Model. Transp. A
Transp. Sci. 2020, 1–21. [CrossRef]

http://doi.org/10.1007/s10579-019-09449-5
http://doi.org/10.3390/proceedings2020059014
http://doi.org/10.1016/j.ast.2019.04.021
http://doi.org/10.1109/ACCESS.2019.2945821
http://doi.org/10.1080/23249935.2020.1813214


Aerospace 2021, 8, 65 21 of 22

68. Dumais, S.; Platt, J.; Heckerman, D.; Sahami, M. Inductive Learning Algorithms and Representations for Text Categorization. In
Proceedings of the Seventh International Conference on Information and Knowledge Management—CIKM ’98, Bethesda, MD,
USA, 3–7 November 1998; ACM Press: New York, NY, USA, 1998; pp. 148–155.

69. Collins, M. Discriminative Training Methods for Hidden Markov Models. In Proceedings of the ACL-02 Conference on Empirical
Methods in Natural Language Processing—EMNLP ’02, Philadelphia, PA, USA, 6–7 July 2002; Association for Computational
Linguistics: Morristown, NJ, USA, 2002; Volume 10, pp. 1–8.

70. Yu, H.-F.; Huang, F.-L.; Lin, C.-J. Dual Coordinate Descent Methods for Logistic Regression and Maximum Entropy Models. Mach.
Learn. 2011, 85, 41–75. [CrossRef]

71. Malouf, R. A Comparison of Algorithms for Maximum Entropy Parameter Estimation. In Proceedings of the 6th Conference
on Natural Language Learning—COLING-02, Taipei, Taiwan, 26–30 August 2002; Association for Computational Linguistics:
Morristown, NJ, USA, 2002; Volume 20, pp. 1–7.

72. Raymond, C.; Riccardi, G. Generative and Discriminative Algorithms for Spoken Language Understanding. In Proceedings of the
Annual Conference of the International Speech Communication Association, INTERSPEECH, Antwerp, Belgium, 27–31 August
2007; Volume 1, pp. 413–416.

73. Haffner, P.; Tur, G.; Wright, J.H. Optimizing SVMs for Complex Call Classification. In Proceedings of the 2003 IEEE International
Conference on Acoustics, Speech, and Signal Processing—ICASSP ’03, Hong Kong, 6–10 April 2003; Volume 1, pp. I-632–I-635.

74. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv 2014, arXiv:1412.3555.

75. Xu, P.; Sarikaya, R. Convolutional Neural Network Based Triangular CRF for Joint Intent Detection and Slot Filling. In
Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding—IEEE, Olomouc, Czech Republic,
8–12 December 2013; pp. 78–83.

76. McCallum, A.; Freitag, D.; Pereira, F. Maximum Entropy Markov Models for Information Extraction and Segmentation. In
Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, CA, USA, 29 June–2 July 2000; pp.
591–598.

77. Mesnil, G.; Dauphin, Y.; Yao, K.; Bengio, Y.; Deng, L.; Hakkani-Tur, D.; He, X.; Heck, L.; Tur, G.; Yu, D.; et al. Using Recurrent
Neural Networks for Slot Filling in Spoken Language Understanding. IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23,
530–539. [CrossRef]

78. Yao, K.; Peng, B.; Zhang, Y.; Yu, D.; Zweig, G.; Shi, Y. Spoken Language Understanding Using Long Short-Term Memory Neural
Networks. In Proceedings of the 2014 IEEE Spoken Language Technology Workshop (SLT), South Lake Tahoe, NV, USA, 7–10
December 2014; pp. 189–194.

79. Liu, B.; Lane, I. Joint Online Spoken Language Understanding and Language Modeling with Recurrent Neural Networks. In
Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue, Los Angeles, CA, USA, 13–15
September 2016; Association for Computational Linguistics: Stroudsburg, PA, USA, 2016; pp. 22–30.

80. Guo, D.Z.; Tur, G.; Yih, W.T.; Zweig, G. Joint Semantic Utterance Classification and Slot Filling with Recursive Neural Networks.
In Proceedings of the 2014 IEEE Workshop on Spoken Language Technology, SLT, South Lake Tahoe, NV, USA, 7–10 December
2014; pp. 554–559.

81. Xiaodong, Z.; Houfeng, W. A Joint Model of Intent Determination and Slot Filling for Spoken Language Understanding. In
Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; Brewka, G.,
Ed.; AAAI Press: New York, NY, USA, 2016; pp. 2993–2999.

82. Li, C.; Li, L.; Qi, J. A Self-Attentive Model with Gate Mechanism for Spoken Language Understanding. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing—EMNLP 2018, Brussels, Belgium, 31 October–4 November 2018.

83. Liu, B.; Lane, I. Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling. In Proceedings of
the Annual Conference of the International Speech Communication Association, INTERSPEECH, San Francisco, CA, USA, 8–12
September 2016; pp. 685–689.

84. Radfar, M.; Mouchtaris, A.; Kunzmann, S. End-to-End Neural Transformer Based Spoken Language Understanding. In Proceed-
ings of the Interspeech 2020—ISCA, Shanghai, China, 25–29 October 2020; pp. 866–870.

85. Huang, C.-W.; Chen, Y.-N. Adapting Pretrained Transformer to Lattices for Spoken Language Understanding. In Proceedings of
the 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Sentosa, Singapore, 14–18 December 2019;
pp. 845–852.

86. Nguyen, V.N.; Holone, H. N-Best List Re-Ranking Using Semantic Relatedness and Syntactic Score: An Approach for Improving
Speech Recognition Accuracy in Air Traffic Control. In Proceedings of the 2016 16th International Conference on Control,
Automation and Systems (ICCAS)—IEEE, Gyeongju, Korea, 16–19 October 2016; pp. 1315–1319.

87. Oualil, Y.; Schulder, M.; Helmke, H.; Schmidt, A.; Klakow, D. Real-Time Integration of Dynamic Context Information for
Improving Automatic Speech Recognition. In Proceedings of the Annual Conference of the International Speech Communication
Association, INTERSPEECH, Dresden, Germany, 6–10 September 2015; ISCA: Dresden, Germany, 2015; pp. 2107–2111.

88. Kersta, L.G. Voiceprint Identification. Nature 1962, 196, 1253–1257. [CrossRef]
89. Pruzansky, S. Pattern-Matching Procedure for Automatic Talker Recognition. J. Acoust. Soc. Am. 1963, 35, 354–358. [CrossRef]
90. Furui, S. Cepstral Analysis Technique for Automatic Speaker Verification. IEEE Trans. Acoust. 1981, 29, 254–272. [CrossRef]

http://doi.org/10.1007/s10994-010-5221-8
http://doi.org/10.1109/TASLP.2014.2383614
http://doi.org/10.1038/1961253a0
http://doi.org/10.1121/1.1918467
http://doi.org/10.1109/TASSP.1981.1163530


Aerospace 2021, 8, 65 22 of 22

91. Soong, F.; Rosenberg, A.; Rabiner, L.; Juang, B. A Vector Quantization Approach to Speaker Recognition. In Proceedings of the
ICASSP ’85, IEEE International Conference on Acoustics, Speech, and Signal Processing, Tampa, FL, USA, 26–29 March 1985;
Volume 10, pp. 387–390.

92. Reynolds, D.A.; Rose, R.C. Robust Text-Independent Speaker Identification Using Gaussian Mixture Speaker Models. IEEE Trans.
Speech Audio Process. 1995, 3, 72–83. [CrossRef]

93. Reynolds, D.A.; Quatieri, T.F.; Dunn, R.B. Speaker Verification Using Adapted Gaussian Mixture Models. Digit. Signal. Process.
2000, 10, 19–41. [CrossRef]

94. Campbell, W.M.; Sturim, D.; Reynolds, D.A. Support Vector Machines Using GMM Supervectors for Speaker Verification. IEEE
Signal. Process. Lett. 2006, 13, 308–311. [CrossRef]

95. Kenny, P.; Ouellet, P.; Dehak, N.; Gupta, V.; Dumouchel, P. A Study of Interspeaker Variability in Speaker Verification. IEEE Trans.
Audio. Speech. Lang. Process. 2008, 16, 980–988. [CrossRef]

96. Dehak, N.; Kenny, P.J.; Dehak, R.; Dumouchel, P.; Ouellet, P. Front-End Factor Analysis for Speaker Verification. IEEE Trans.
Audio, Speech Lang. Process. 2011. [CrossRef]

97. Variani, E.; Lei, X.; McDermott, E.; Moreno, I.L.; Gonzalez-Dominguez, J. Deep Neural Networks for Small Footprint Text-
Dependent Speaker Verification. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing, Florence, Italy, 4–9 May 2014.

98. Li, C.; Ma, X.; Jiang, B.; Li, X.; Zhang, X.; Liu, X.; Cao, Y.; Kannan, A.; Zhu, Z. Deep Speaker: An End-to-End Neural Speaker
Embedding System. arXiv 2017, arXiv:1705.02304.

99. Snyder, D.; Garcia-Romero, D.; Povey, D.; Khudanpur, S. Deep Neural Network Embeddings for Text-Independent Speaker
Verification. In Proceedings of the Interspeech 2017—ISCA, Stockholm, Sweden, 20–24 August 2017; pp. 999–1003.

100. Snyder, D.; Garcia-Romero, D.; Sell, G.; Povey, D.; Khudanpur, S. X-Vectors: Robust DNN Embeddings for Speaker Recognition.
In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018; pp. 5329–5333.

101. Liu, Y.; Qian, Y.; Chen, N.; Fu, T.; Zhang, Y.; Yu, K. Deep Feature for Text-Dependent Speaker Verification. Speech Commun. 2015.
[CrossRef]

102. Chen, N.; Qian, Y.; Yu, K. Multi-Task Learning for Text-Dependent Speaker Verification. In Proceedings of the Annual Conference
of the International Speech Communication Association, INTERSPEECH, Dresden, Germany, 6–10 September 2015; pp. 185–189.

103. Ravanelli, M.; Bengio, Y. Speaker Recognition from Raw Waveform with SincNet. In Proceedings of the 2018 IEEE Spoken
Language Technology Workshop (SLT), Athens, Greece, 18–21 December 2018; pp. 1021–1028.

104. Kopald, H.; Chen, S. Design and Evaluation of the Closed Runway Operation Prevention Device. Proc. Hum. Factors Ergon. Soc.
Annu. Meet. 2014, 58, 82–86. [CrossRef]

105. Lin, Y.; Zhang, J.; Liu, H. An Algorithm for Trajectory Prediction of Flight Plan Based on Relative Motion between Positions.
Front. Inf. Technol. Electron. Eng. 2018, 19, 905–916. [CrossRef]

106. Lin, Y.; Yang, B.; Zhang, J.; Liu, H. Approach for 4-D Trajectory Management Based on HMM and Trajectory Similarity. J. Mar. Sci.
Technol. 2019, 27, 246–256. [CrossRef]

107. Chen, Z.; Guo, D.; Lin, Y. A Deep Gaussian Process-Based Flight Trajectory Prediction Approach and Its Application on Conflict
Detection. Algorithms 2020, 13, 293. [CrossRef]

108. Yepes, J.L.; Hwang, I.; Rotea, M. New Algorithms for Aircraft Intent Inference and Trajectory Prediction. J. Guid. Control. Dyn.
2007, 30, 370–382. [CrossRef]

109. Cordero, J.M.; Rodríguez, N.; Miguel, J.; Pablo, D.; Dorado, M. Automated Speech Recognition in Controller Communications
Applied to Workload Measurement. In Proceedings of the Third SESAR Innovation Days, Stockholm, Sweden, 26–28 November
2013; pp. 1–8.

110. ICAO. Manual on Air Traffic Controller Competency-Based Training and Assessment, 1st ed.; International Civil Aviation Organization:
Montréal, QC, Canada, 2016.

http://doi.org/10.1109/89.365379
http://doi.org/10.1006/dspr.1999.0361
http://doi.org/10.1109/LSP.2006.870086
http://doi.org/10.1109/TASL.2008.925147
http://doi.org/10.1109/TASL.2010.2064307
http://doi.org/10.1016/j.specom.2015.07.003
http://doi.org/10.1177/1541931214581018
http://doi.org/10.1631/FITEE.1700224
http://doi.org/10.6119/JMST.201906_27(3).0007
http://doi.org/10.3390/a13110293
http://doi.org/10.2514/1.26750

	Introduction 
	Air Traffic Control Safety 
	Spoken Instruction Understanding 
	Research Design 
	Document Structure 

	Challenges 
	Data Collection and Annotation 
	Volatile Background Noise and Inferior Intelligibility 
	Unstable Speech Rate 
	Multilingual and Accented Speech 
	Code Switching 
	Vocabulary Imbalance 
	Generalization of Unseen Samples 
	Ambiguous Word Meaning 
	Role Recognition 
	Contextual Information 

	Technique 
	Automatic Speech Recognition 
	Language Understanding 
	Voiceprint Recognition 

	Applications 
	Information Enhancement 
	Communication Error Detection (CED) 
	Conflict Detection Considering Intent 
	Post Analysis and Processing 
	ATCO Training 

	Future Research 
	Speech Quality 
	Sample Scarcity 
	Contextual Information 
	Other Research Topics 

	Conclusions 
	References

