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Abstract: Because of the light weight and high strength, composite laminates have many advantages
in aircraft structures; however, they are frequently subjected to severe dynamic loadings during
flight. To understand the dynamic properties of composite laminated thin plates at the stress scale,
this paper studies the stress modal analysis (SMA) of composite laminated thin plates by finite
element method (FEM). Firstly, the basic theory on SMA of composite laminates was given from
the classical displacement modal analysis. Secondly, a square laminated thin plate was numerically
studied to obtain some distribution laws of the stress mode shapes (SMSs) from the layup and
stress component perspectives. Then, based on the characteristics of SMSs in different plies, a
modified layup configuration was conducted for possible lower magnitude and more uniform
distributions of SMSs. Results indicate that ±45◦ layups can improve the performance of SMSs of the
square plate, without excessively decreasing the modal frequencies. Such fact manifests that ±45◦

layups are critically vital for the dynamic stress reduction of the square composite laminated plates.
Modal participation factor and strain energy were evaluated to assist the determination of critical
modes. Lastly, the aspect ratio of the composite plate on layup design was considered. Numerical
investigation in this study can serve as a preliminary step of SMSs perspective for the analysis and
optimization of dynamic composite laminates.

Keywords: modal analysis; stress mode shapes (SMSs); composite laminated plates; local dynamic
stress; layup design

1. Introduction

Mechanics of composite laminates have been researched for decades [1], mainly
due to their advantages in high specific strength, better fatigue/impact resistance and
weight reduction, etc. The dynamic aspects of composite laminated plates have been
remaining the hot topics for the airworthiness of aircraft structures, such as the composite
laminated wing/skin systems and composite fan blades. The vibration properties, dynamic
response and damage assessment of composite laminated structures [2–10] are of critical
importance for the real applications of aircraft structures, which are susceptible to severe
dynamic loadings during flight. The safety consideration of these aircraft laminated
structures needs to deeply understand their dynamic properties, so as to identify and assess
their operating conditions, and hence the airworthiness requirements can be verified [6].
Among the inherent characteristics of the dynamic structures, modal properties (e.g., modal
frequencies and mode shapes), play a vital role in observation of the dynamic behaviour
of mechanical structures. Modal properties of composite material systems contain rich
potential global/local information for dynamic structural identification [2,11]. Meanwhile,
the structural parameters of composite laminated plates (e.g., the ply orientation, aspect
ratios, cutouts, etc.) always act as important roles in determination of the inherent modal
properties and dynamic behaviours [12–17].

For general dynamic structures with metallic or composite materials, classical modal
analysis [18–20] has been of critical importance to facilitate the structural numerical mod-
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elling [21,22], response/damage prediction [23,24], vibration fatigue evaluation [25–27],
and structural dynamic design [28], etc. In modal analysis, local identification of struc-
tural systems is crucial for damage detection and dynamic modelling. As for the modal
analysis of plate-type structures, the structural characteristic deflection shapes or their
spatial derivatives are critically important for damage localization [29–31]. One the one
hand, by avoiding the use of traditional acceleration sensors with excessive self weight,
strain sensors are more favourable for light-weight thin-walled structures; on the other
hand, strain mode shapes and strain responses can provide important data for dynamic
modelling, identification and structural health monitoring. Consequently, due to the local
properties and information benefitted from the spatial second derivative, strain mode
shapes are highly sensitive parameters to local structural change and damage in flexural vi-
brations [20,32–35]. It was confirmed [36,37] that dynamic displacements can be estimated
using dynamic strain data without displacement measurement, where the strain mode
shapes can be directly estimated from the measured strains [38]. Such features facilitate
the full displacement/strain field reconstruction from measured strain modes. However,
towards structural remaining useful life, the stress frequency response function (SFRF) is
highly required in many cases for dynamic stress estimation, such as estimating a struc-
ture’s fatigue life during vibration [39]. Correspondingly, stress modal analysis (SMA) have
achieve vital advances in recent years, such as the dynamic response calculation [40,41]
and vibration fatigue evaluation [42–44] of isotropic materials. In particular, utilization of
stress modal approach into aircraft thin-walled structures with large numbers of joint holes
or notches [45,46] and local refinement of numerical model [47] can be of computationally
efficiency; however, these SMA studies mainly focused on metallic structures. To handle the
modal properties of composite structures, Lestari et al. [48] and Qiao et al. [49] conducted
the curvature mode shape-based damage assessment of carbon/epoxy composite beams
and plates, which indicated discontinuities of the curvature modes due to the presence of
damage. Frieden et al. [50] experimentally obtained the first four strain mode shapes of a
clamped CFRP composite plate. Shariyat et al. [51] developed a semi-analytical solution for
free vibration and modal stress analyses of two-dimensional functionally graded circular
plates. dos Santos et al. [52] conducted strain modal test on the carbon fiber composite plate
with a stacking sequence of [0◦/90◦/0◦/90◦/0◦/90◦/0◦], and the correlations between the
tested and the simulated strain modes were studied. Yang et al. [53] and Ooijevaar et al. [54]
respectively conducted the two-dimensional modal curvature estimation for composite
structures. For the purpose of structural health monitoring of composite sandwich panels,
Loutas and Bourikas [55] utilized strain mode shapes from two directions simultaneously
(instead of accelerations or displacements) for the optimal sensor placement. By using a
proposed higher-order zig-zag theory, Wu and Chen [56] evaluated the modal transverse
shear stress through the thickness of a four-layer [0◦/90◦/90◦/0◦] beam. More recently,
Esposito and Gherlone [57] reconstructed the displacement field of a composite wing
box via measured strain modes. It can be seen that these works have shown the useful
applications of strain-related modal techniques for advanced composite structures.

With the continuous development of numerical methods and software, on the one
hand, vibration aspects of laminated composite plates can be efficiently investigated by
numerical simulations, e.g., finite element method (FEM) for composite materials [58–60]. Up
to now, extensive studies have been conducted on the free vibration analysis of composite
laminated plates [61–68], which have given insights into accurate descriptions of the
complicated displacement fields of the natural vibration, i.e., the displacement mode
shapes (DMSs). On the other hand, because of the complex micro architecture, composite
materials themselves can be considered as a kind of complex structure. Failure and damage
analyses of complex composite laminates and structures require us to capture the structural
local properties, e.g., via the framework of FEM [69]. Furthermore, in the case of static
analysis, the invariant-based “master ply” approach [70] and the CUF-based (Carrera
Unified Formulation) approach [71] were developed towards the local stress recovery for
composite laminated structures, which have indicated excellent accuracy and efficiency
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for local static stress. Local dynamic stress will be also crucial for structural dynamics
of composite structures. Consequently, towards the dynamic structural identification at
the stress scale, it is highly necessary to shed light on their stress modal properties for
structural assessment under vibrations. For example, for the purpose of dynamic failure
analysis, the stress distribution in each layer is crucial. However, to the best of authors’
knowledge, although the global modal properties of composite structures have been widely
researched, the stress mode shapes (SMSs) of composite laminates have been relatively
less investigated in computational structural dynamics, which will be potentially useful
for dynamic modelling and damage assessment. The previous focus of SMSs research was
mainly developed for vibrating structures made of isotropic materials. Furthermore, in the
present strain modal analyses for composite laminates, only the surface strain distributions
were measured or calculated. However, the layer-wise strain/stress distributions are
required for structural damage assessment (e.g., the envelope damage for load-carrying
capability assessment). Therefore, the aim of present work is to numerically obtain some
basic laws for the SMSs of composite laminates for future potential use in the dynamic
stress response calculation and damage evaluation. The preliminary innovative point of
present study is to consider the SMSs of composite laminates from different dimensions.
The outline of this paper is as follows. Section 2 presents the basic theory for SMA of
composite laminates. Section 3 concisely describes the FEM modelling. In Section 4, the
numerical results are analysed and discussed. Section 5 draws some conclusions.

2. Theoretical Background

As mentioned in the introduction section, strain mode shapes already have indicated
some special advantages over classical DMSs for specific applications. Nevertheless, some
particular situations make stress mode shapes (SMSs) more promising in computational
structural dynamics. It can be enumerated that at least three aspects make it necessary to
further study the SMSs of composite laminated plates:

• Dynamic stress responses are straightforward related to material’s strength, e.g., in the
criteria of vibration fatigue under random loadings [72]; and vibration fatigue failure
of aircraft composite materials is frequently stress-induced high-cycle fatigue;

• Although the displacement fields of composite laminates are continuous, the stress
distribution of each lamina may experience severe discontinuity due to the severe
anisotropy. The SMSs can embody the orientation effect of each lamina, i.e., the
same strain along different directions may result in different stresses because of the
orthotropic properties;

• The strain modes measured at laminate’s surface in modal testing cannot reflect the
internal stress state at a mode shape; while the internal SMSs can be easily captured in
computational modal analysis, which will be useful for internal damage assessment
for each layer.

In light of these aspects, this section introduces some basic theory by transferring
from displacement and strain modes to stress modes for composite laminated plates. The
flowchart is as shown in Figure 1, which starts with the analytical functions or numerical
models to obtain the DMSs, ends with the envelope SMSs of each ply. In the design
loop, the uniformly-distributed SMSs can be considered as the criterion for the purpose
of failure resistance. The more uniformly-distributed SMSs can lead to reduced local
stress concentration from the perspective of structural dynamics. Therefore, the results of
envelope SMSs are highly critical to evaluate the layups of composite laminates. Once the
degree of uniformity is satisfactory, the designer can exit from the loop and move on to the
verification of failure/crashworthiness analysis under a certain dynamic excitation.
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Figure 1. Flowchart for stress modal analysis of composite laminated plates in present study.

A continuous structural system can be discretized into a system with multiple degrees
of freedom (DOFs), by utilizing FEM, and the second-order differential motion equation in
the time domain of the discretized system is

M
..
x + D

.
x + Kx = f(t) (1)

where M ∈ RN×N , D ∈ RN×N and K ∈ RN×N are the mass, damping, and stiffness
matrices of the system with N DOFs, respectively; x is nodal displacement vector and
f is the exciting force vector applied to the system. The matrices of structural physical
properties M, D, K can be assembled in the FEM discretization. In the frequency domain,
the motion equation is (

−ω2M + jωD + K
)

X(ω) = F(ω) (2)

where j is the imaginary unit. The traditional computational modal analysis is a classical
matrix eigenvalue problem. Under the assumption of light damping that can be neglected,
eigenvalue problem can be reduced to solve the matrix determinant det

(
K−ω2M

)
= 0,

from which the N modal frequencies can be calculated. That is, the modal frequencies
are calculated via a global stiffness and mass matrices. Then, the eigenvector φ ∈ RN

represents the inherent vibration form (relative displacements) of the corresponding eigen-
value. The full eigenvectors comprise the modal matrix Φ ∈ RN×N . With the aid of
modal coordinate q(t), the displacement modal decomposition in the time domain gives
x(t) = Φq(t). In the frequency domain, the displacement frequency response function
(DFRF) can be described by the modal parameters as [18]

H(ω) =
n

∑
r=1

φrφT
r

kr −ω2mr + jωcr
(3)

where n is the reduced mode number; kr, mr, and cr denote the rth modal stiffness, modal
mass and modal damping, respectively. The above equations are the general theory
applicable to both metallic and composite structures. Herein, let us consider the free
vibration of a rectangular composite plate (a × b × h). The classical laminated plate theory
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is an extension of the Kirchhoff (classical) plate theory to laminated composite plates, of
which the displacement field has

u(x, y, z, t) = u0(x, y, t)− z ∂w0
∂x

v(x, y, z, t) = v0(x, y, t)− z ∂w0
∂y

w(x, y, z, t) = w0(x, y, t)
(4)

where (u0, v0, and w0) are the elastic displacement components along the (x, y, z) coordinate
directions of a point on the mid-plane (i.e., z = 0), respectively. Generally, the z-axis is
aligned along the thickness direction (transverse direction) for thin plates. The Kirchhoff as-
sumption indicates that the deformation is entirely due to bending and in-plane stretching,
which agrees well with the thin plate case, so that it is assumed in this preliminary investi-
gation. In free vibration analysis, the mode shape function at a point can be expressed by a
series as [1]

φ(x, y) =
m

∑
i=1

n

∑
k=1

cik ϕi(x)ηk(y) (5)

where m and n are the numbers of the used functions in each direction. Detection of damage
locations in plate-like metallic and sandwiched structures based on the changes in modal
strain energy has been well established and applied [73,74], which is in nature related to
the change in the curvature mode shapes (CMSs). CMSs have recently been investigated
as a promising feature for damage identification [75]. Analytically, the modal curvature
vector of thin plates can be defined as

κ =


κx
κy
κxy

 =


− ∂2φ

∂x2

− ∂2φ

∂y2

−2 ∂2φ
∂x∂y

 (6)

It can be seen that CMSs are evaluated by the second-order differentiation of the
DMSs. Numerically, CMSs can be calculated by a central difference approximation:
κi = (φi−1 + φi+1 − 2φi)/d2, where φi is the DMSs at i-th grid point in structure, d is
the distance between neighbouring grid points. Once the modal curvatures are obtained,
some useful resultant quantities can be derived, e.g., modal strain energy during the elastic
deformation of laminated plates can be calculated as [76]:

U =
1
2

x

a×b

[
D11κ2

x + D22κ2
y + 2D12κxκy + 4

(
D16κx + D26κy

)
·κxy + 4D66κ2

xy

]
dxdy (7)

where the coefficients Dik are the bending stiffness. In light of the strain–displacement
relationship of an elastic thin plate, the strain mode shape can be defined as the distribution
of the in-plane strain components at the top or bottom surface of the plate according
to the corresponding natural vibration mode. Such definition can facilitate the strain
measurement for a manufactured structure, which is an advantage of strain modal testing.
For example, the local surface strains at a mode shape in the x and y directions can be
expressed as [52]

φε = δ·κ (8)

where δ is the distance between the neutral plane and the surface. It can be seen that
both the strain and curvature modes are based on the deformation relationship. Now, let
us deal with composite materials, of which the constitutive relations are different from
isotropic materials. Generalized Hook’s law for an elastic anisotropic material is a linear
stress–strain constitutive relationship, defined by

ε = Sσ (9)
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σ = Cε (10)

where σ is the macro stress vector, ε is macro strain vector, C is elastic matrix and S = C−1

is the compliance matrix. Composite laminates can be made of unidirectional laminas,
plain-woven laminas, or twill-woven laminas, etc. For simplicity but not to lose generality,
herein this study considers the unidirectional lamina for the composite laminates. The
main difference from the isotropic material the orientation-dependant material property.
Furthermore, the unidirectional lamina falls within the orthotropic material category. In
this study, consider the laminated plates with the following assumptions:

(a) The thickness distribution of the plate is uniform.
(b) The material is linear elastic and 2-D orthotropic.
(c) The damping is light, so that it can be neglected.

If the lamina (i.e., one layer) is thin and does not carry any out-of-plane loads, one can
assume plane stress conditions for the lamina. The stress–strain relationship can then be
written as  σ1

σ2
τ12

 =

 Q11 Q12 0
Q12 Q22 0

0 0 Q66

 ε1
ε2

γ12

 (11)

The choice of coordinate system for the laminated plate will determine its layup
(stacking sequence). A coordinate system used for showing an angle of the lamina is given
in Figure 2. The axes in the 1–2 coordinate system are called as the local axes or the material
axes. The direction 1 is parallel to the fiber and the direction 2 is perpendicular to the fiber.
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The off-axis stress–strain relationship under the plane stress field can be expressed as σ1
σ2
τ12

 =

 c2 s2 2sc
s2 c2 −2sc
−sc sc c2 − s2

 σx
σy
τxy

 (12)

where c = cos θ and s = sin θ. This relation can be abbreviated as

σ = Tσ′ (13)

where T is the transformation matrix. Apparently it has σ′ = T−1σ. Now that all plies
have an angle associated with the coordinate system, therefore, it can be concluded that the
SMSs in each ply will be different with each other, though they share the same deflections
in DMSs under the assumption of constant displacement across the thickness [61]. Such fact
is different from isotropic plates, where the maximum stress always appears at the surfaces.
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Similar with the dynamic displacement responses for linear systems, the modal super-
position theory can be used to describe the dynamic stress response as a summation of the
rth SMSs (φσ

r ) weighted by the rth modal coordinate (qr) in the time domain

σ(t) =
m

∑
r=1

φσ
r qr(t) (14)

where m is the number of considered modes. It should be mentioned that σ(t) in
Equation (14) denotes the dynamic stress response in a general sense, which represents an
arbitrary stress component or a stress invariant. A mapping relationship exists between
σ(t) and φσ

r , such as σx(t)→ φσ
x|r for thin plates. Further, dynamic stress response in the

frequency domain can be expressed by using the stress frequency response function (SRFR)
Hσ(ω). For example, the unsteady aerodynamic loading and the aero-acoustic loading
are random excitations on the panel surfaces of aircraft structures. The dynamic stress
response under random excitations can be calculated by

Sσ
YY(ω) = Hσ∗(ω)SXX(ω)HσT(ω) (15)

where the matrices SXX and Sσ
YY are the power spectral density (PSD) functions of dynamic

excitation and stress response, respectively. Further, the stress PSD has different directions
and resultant quantities. Equation (15) is tenable for both the isotropic and composite
materials as long as the SFRF is obtained. As one of the inherent properties, the SFRF is
determined by SMSs in nature. Therefore, the random stress responses in the frequency
domain are determined by the input excitation and SMSs together. It can be concluded that
optimal SMSs can achieve stress response reduction, and hence the local excessive stress
concentration can be alleviated for dynamic composite structures.

3. FEM Modelling

For simplicity, but without loss of generality, a square laminated thin plate with
clamped boundary condition was considered for present case study at first. Each ply can
be modelled as a linear, elastic, orthotropic material. For composite laminates in aerospace
structures, the E11/E22 ratio can reach higher than 10, e.g., the graphite/epoxy lamina. In
light of this fact, the mechanical properties of a CFRP lamina are used here, of which the
values are the same with previous crashworthiness study for composite laminates [77].
The initially considered layup was [0◦/45◦/0◦/−45◦]s, using 0.15 mm thick unidirectional
lamina, which are illustrated in Figure 3. The modelling technique of composite layup was
used to build the laminated plate, where each ply is composed of a homogenous material of
uniform thickness, with fibers oriented along a single orientation. Although dozens or even
hundreds of layers may be used in real application, this study considered the eight-ply
plate as the demonstration, which does not affect the mechanism investigation of SMSs in
composite laminates. The layers were modelled by using quadrilateral shell element (S4R),
which is characterized by four-node doubly curved thin or thick shell, reduced integration,
hourglass control, finite membrane strains. Table 1 lists the material properties of the
unidirectional lamina. To verify the accuracy of FEM model, three different FEM meshes of
the square laminated thin plate were considered: (a) coarse mesh with 25 × 25 elements,
(b) moderate mesh with 50 × 50 elements, and (c) dense mesh with 100 × 100 elements.
Figure 4 presents the FE meshes together with schematic representation of the clamped
boundary condition, i.e., constraining all of the six degrees of freedom at each edge of the
plate. Figure 5 plots the first 20 modal frequencies via three different FE meshes. It can be
seen that the moderate mesh with 50 × 50 elements can achieve the satisfactory results.
Therefore, the selected mesh size was 10 mm × 10 mm on the square plate and a total of
2500 elements was used in the following analysis. The Lanczos algorithm has been utilized
to obtain the eigenvalues and eigenvectors.
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Figure 5. Modal frequencies of the square laminated thin plate via three different FEM meshes.

4. Results and Discussion

To compare each normal mode, it is critical to apply the same normalization method
to the mode shapes. Herein, the displacement normalization was selected. Although the
DMSs of square laminated thin plates are well-known, for the convenience of comparison,
the first six DMSs are plotted as Figure 6, which are smoothly distributed as expected. And
obviously, in each mode, the deflection of an arbitrary location (x, y) under the mode shape
shares the same deflection value for each layup. Even though a delamination appears,
DMSs cannot reflect it because the delamination is generally much small distance in a
micro scale.
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Figure 6. The first six DMSs of the initial composite laminated plate (DMS: Displacement
mode shape).

To explain the results of SMSs as given in Figure 7, two aspects should be clarified:

(1) The stress mode distributions in different laminas will be different due to the or-
thotropic elastic properties. Because the maximum damage envelope of all layers is
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critically important in evaluating the strength of laminated plates (e.g., in the failure
criteria of damage mechanics); therefore, herein, the envelope SMSs are considered.

(2) The SMSs have different distributions with different stress components (e.g.,(
φσ

x φσ
y φσ

xy

)
for thin plates along the three important directions) and the in-

variants. For simplicity but without loss of generality, present study only considers
the in-plane stresses, which are the most important stress components in damage
criteria of composite laminates. For instance, the Tsai–Hill failure criterion can be

written as σ2
TH =

( σx
X
)2

+
(

σy
Y

)2
+
(

σxσy
X2

)2
+
(

τxy
S

)2
= 1, for the multi-axial random

stress states (plane stress) in composite structures [78].
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Figure 7. The first four envelope SMSs along three stress directions of the initial composite laminated plate (SMS: Stress
mode shape).

An envelope plot allows one to view a contour plot of the highest or lowest value of
an output variable in FEM results for composite laminates. The criterion of the absolute
maximum magnitude was chosen to find out the SMSs hotspots. From modal analysis, the
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first four envelope SMSs along the three in-plane stress directions are plotted in Figure 7.
Firstly, it can be observed that relatively high values distribute along the clamped boundary
edges, which are different from the DMSs of composite plates. Such law indicates that
SMSs are useful for locating highly-stressed regions in composite laminates, which is
similar with the case for metallic structures. Secondly, it can be seen that higher modes
usually can give higher maximum values in SMSs. This distribution law will be vital for
the vibroacoustic random fatigue of frequency-sensitive advanced composite laminates,
where high-order local modes will result in high-frequency local dynamic stress, and hence
contributes much more to the fatigue damage accumulation. From modal theory, higher
modes generally contribute less to total dynamic response; however, the dynamic strength
of some composite laminates greatly degrades with the increasing frequency [27]. High-
frequency stress response will result in high peak factor, and hence the high threshold
crossings [79]. Consequently, the vibration damage of composite laminates depends on
the combined effect of the contributed vibration stress and material’s properties; while the
first factor can be characterized by the SMSs. Furthermore, Figure 7 can indicate the two
dimensions to observe the envelope SMSs: (1) the dimension of the mode order will be
useful in determination of the relative modal contributions to the overall dynamic stress
response; (2) the dimension of stress components can ensure the vector order of the SMSs
agrees with that of the DMSs, so that matrix multiplication between the DMSs and the
SMSs can be performed theoretically. Further, the relative magnitudes of different stress
components can unravel the critical orientation for composite structural design. Two more
SMSs are shown in Figure 8 for further comparison with the first four ones. Generally
speaking, higher-order DMSs experience more complicated displacement fields and appear
more local peak deflections. However, from the fifth and sixth envelope SMSs compared
with the first four ones, there is no evidence to show that higher-order SMSs will appear
more critical points for composite plates.

Aerospace 2021, 8, x FOR PEER REVIEW 11 of 21 
 

 

Firstly, it can be observed that relatively high values distribute along the clamped bound-

ary edges, which are different from the DMSs of composite plates. Such law indicates that 

SMSs are useful for locating highly-stressed regions in composite laminates, which is sim-

ilar with the case for metallic structures. Secondly, it can be seen that higher modes usually 

can give higher maximum values in SMSs. This distribution law will be vital for the vi-

broacoustic random fatigue of frequency-sensitive advanced composite laminates, where 

high-order local modes will result in high-frequency local dynamic stress, and hence con-

tributes much more to the fatigue damage accumulation. From modal theory, higher 

modes generally contribute less to total dynamic response; however, the dynamic strength 

of some composite laminates greatly degrades with the increasing frequency [27]. High-

frequency stress response will result in high peak factor, and hence the high threshold 

crossings [79]. Consequently, the vibration damage of composite laminates depends on 

the combined effect of the contributed vibration stress and material’s properties; while the 

first factor can be characterized by the SMSs. Furthermore, Figure 7 can indicate the two 

dimensions to observe the envelope SMSs: (1) the dimension of the mode order will be 

useful in determination of the relative modal contributions to the overall dynamic stress 

response; (2) the dimension of stress components can ensure the vector order of the SMSs 

agrees with that of the DMSs, so that matrix multiplication between the DMSs and the 

SMSs can be performed theoretically. Further, the relative magnitudes of different stress 

components can unravel the critical orientation for composite structural design. Two more 

SMSs are shown in Figure 8 for further comparison with the first four ones. Generally 

speaking, higher-order DMSs experience more complicated displacement fields and ap-

pear more local peak deflections. However, from the fifth and sixth envelope SMSs com-

pared with the first four ones, there is no evidence to show that higher-order SMSs will 

appear more critical points for composite plates. 

 

Figure 8. The fifth and sixth envelope SMSs along three stress directions of the initial composite laminated plate (SMS: 

Stress mode shape). 

Contrary to the envelope SMSs, stress mode of each lamina can reveal the individual 

contribution of modal stress from the individual lamina, and hence design optimization 

can possibly be conducted with an emphasis on the laminas with high magnitude of 

modal stress. Observing the SMSs of 0° and ±45° plies shown in Figure 9, it can be com-

paratively found that SMSs in ±45° plies distribute more local peak points, while with 

lower peak values than these in 0° plies. For example, in the x-component stress mode at 

SMS 5

(x)

SMS 6

(x)

SMS 5

(xy)

SMS 6

(xy)

SMS 5

(y)

SMS 6

(y)

Figure 8. The fifth and sixth envelope SMSs along three stress directions of the initial composite laminated plate (SMS:
Stress mode shape).

Contrary to the envelope SMSs, stress mode of each lamina can reveal the individual
contribution of modal stress from the individual lamina, and hence design optimization
can possibly be conducted with an emphasis on the laminas with high magnitude of modal
stress. Observing the SMSs of 0◦ and ±45◦ plies shown in Figure 9, it can be comparatively
found that SMSs in ±45◦ plies distribute more local peak points, while with lower peak



Aerospace 2021, 8, 63 12 of 21

values than these in 0◦ plies. For example, in the x-component stress mode at the first ply
(0◦), there are two highly-stressed regions, located at the middle of the two edges. Such
distribution law also exhibits the consistency with the vibration fatigue analysis, where the
failure location was at the mid-point of the outermost 0◦ layer [3]. However, the number of
the highly-stressed regions in the stress mode is increased to five at the second ply (45◦),
with the peak magnitudes becoming more uniform. Considering these results, a designed
plies can be proposed as Figure 10, in order to possibly achieve more uniformly-distributed
SMSs, by means of using ±45◦ plies. Once the peak values of SMSs in individual laminas
decrease, the envelope SMSs can be reduced. This fact provides a design criterion for ply
angles, when envelope stresses are the primary concern, such as anti-failure analysis of
composite structures under vibration loadings.
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Figure 9. The first SMSs along three stress directions at different plies of the initial composite laminated plate: (Ply 1)
outmost 0◦ ply; (Ply 2) 45◦ ply; (Ply 3) inner 0◦ ply; (Ply 4) −45◦ ply.
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Figure 10. Designed plies of the square laminated plate for SMSs reduction.

Figure 11 shows the first four envelope SMSs along three stress directions of the
composite laminated plate with the designed layups. Comparing with the SMSs of initial
composite laminated plate in Figure 7, it can be found that more peak points appear in the
SMSs of all ±45◦-ply laminate, while the peak values can by and large, achieve a decrease
as given in Table 2. To highlight the different improvement degrees of the designed layup
for the three components at each mode, the different background colours are used in the
table with the deepest blue depicting the most optimal. These results can indicate the
outperformance of the all ±45◦-ply square laminated plate in terms of the dynamic stress
reduction via the decreased and uniform modal stress distribution. However, ±45◦ design
may possibly decrease the modal frequencies, which needs to be examined. Results of the
first 11 frequencies are compared as Table 3, which indicates that the designed laminate
exhibits higher modal frequencies on the whole, except the first and third modes. Results
validate the fine dynamic properties of the designed laminated plies.

Table 2. The maximum magnitudes of the first six envelope SMSs along the three directions.

Mode Number

Maximum Magnitude of the Stress Mode

Initial Layup Designed Layup

x y xy x y xy
1 10.83 0.74 0.37 6.74 0.49 0.53
2 12.26 1.82 0.90 13.73 1.10 1.08
3 19.54 3.09 1.53 15.00 1.09 1.18
4 28.96 1.10 0.82 20.83 1.63 1.64
5 29.41 2.64 1.32 26.61 1.94 2.10
6 26.76 4.24 2.11 29.86 1.83 1.98

Table 3. Comparison of the first 11 modal frequencies.

Mode Number
Modal Frequency (Hz)

Initial Layup Designed Layup Percent of Change (%)
1 54.4 52.9 −2.7
2 80.2 101.4 26.5
3 123.8 111.2 −10.2
4 135.6 161.2 18.9
5 160.1 183.5 14.6
6 179.0 191.5 7.0
7 208.4 235.1 12.8
8 239.6 259.6 8.4
9 258.2 289.5 12.1
10 280.1 295.6 5.5
11 284.0 322.8 13.7
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Figure 11. The first four envelope SMSs along three stress directions of the composite laminated plate with the designed
layups (SMS: stress mode shape).

In summary, the results in present study can be condensed into the Figure 12, which
exhibits three different dimensions to observe the SMSs of composite laminated thin plates.
Three different dimensions of the stress modal matrix Φσ include (1) mode selection;
(2) hotspot determination; and (3) critical ply. The first two are similar with the metallic
structures, while the third one is the peculiar feature of composite laminated plates. In
the graph, each grid represents one element in the modal matrix. For the anti-failure
and crashworthiness design of aircraft composite structures, it is valuable to identify the
critical hotspots in the critical layers at the predominant modes, so that the composite layup
design with total structural weight unchanged can be effectively conducted by following
the design criteria: (1) higher modal frequency; (2) lower and more uniform modal stress.
The uniformly-distributed modal stress can ensure the structure more dynamically fully-
stressed, so as to avoid the premature failure at local regions.
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Figure 12. Three different dimensions to observe the SMSs of composite laminated plates in
present study.

Furthermore, the frequency response analysis was conducted to evaluate the overall
strain energy, which is a global metric to measure the stress and strain under forced vibra-
tion. Figure 13 plots the frequency-domain strain energies of the initial and designed square
composite laminated plates, with the frequency range [0,350] Hz. Curves of the overall
strain energy achieve peak values at the modal frequencies for both of the plates, which
is similar with the other frequency response functions (FRFs). On the whole, the strain
energy of the designed laminated plate was reduced, which verified the outperformance of
the ±45◦ plies in dynamic stress reduction for the square plate. The reason of such result
can be attributed to the reduction of the SMSs in nature. In addition, it can be seen that
some of the peaks of strain energies appear at different mode numbers of the two square
plates. This is mainly due to the variation in modal participations of the two composite
plates, of which the values are compared as Figure 14. Magnitude of modal participation
can assist to identify the predominant modes for dynamic stress response [68], which is an
indicator for the modal vector dimension of composite laminated plates in Figure 12. In
addition, from Figures 13 and 14, it can be seen that both the modal participation factor and
modal strain energy can be useful for mode selection. Such result agrees with the study by
Esposito et al. [57], where the strain energy was used for mode selection of a composite
wing box.

At last, the effect of aspect ratio on the layup design was considered. As an example,
the rectangular laminated plate with aspect ratio of 3:2 was demonstrated. The in-plane
size is 750 mm × 500 mm, and the initial layup was the same as that of the initial square
plate. From the SMSs distributions of the initial rectangular plate, it can also be found
that the 0◦ ply is highly stressed at the middle of the clamped edges. Considering the
3:2 aspect ratio and arctan

( 2
3
)
= 33.69

◦
, therefore, the designed layup was selected as

[30◦/−30◦/30◦/−30◦]s. Figure 15 compares the first envelope SMSs along the three
directions of the rectangular laminated plates with the initial and designed layups. It
can also be seen that the reduction in SMSs has achieved on the whole by using the
designed layup.
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Figure 13. Frequency-domain strain energies of the initial and designed square composite lami-
nated plates.
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Figure 14. Modal participations of the two square composite laminated plates.

Before the end, it is worthwhile to mention that present study only addressed the
inherent modal properties of the composite laminated thin plates within the framework of
classic laminate theory. It is obviously promising that stress modal analysis of composite
laminates need to be investigated via the higher order theories [1], e.g., to include the shear
deformation across the thickness direction and the delamination within the numerical
framework. In addition, in the future work, the failure and crashworthiness analysis under
dynamic loading need to be carried out and the role of stress modal analysis with the
proper damage criteria of composite laminated structures should be verified.
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5. Conclusions

A numerical investigation on stress modal analysis of composite laminates was con-
ducted. Theoretical and numerical results indicate that the SMSs of composite laminates
include two directions: (1) the in-plane directions, such as the x-, y-, xy-directions and
the invariants, which is similar with the isotropic plate; and (2) the through thickness
direction, i.e., the distribution in each layer or the envelope quantity. Therefore, the SMSs
of composite laminate involve three different dimensions to interpret: (1) mode selection;
(2) hotspot determination; and (3) critical ply. The first two are similar with the isotropic
plates, while the third one is the peculiar feature of composite laminates. The SMSs of
different plies will generally be different with each other, although they share the same
deflections in DMSs. Such feature is different from the SMSs of isotropic materials, so as
to reveal the critical hotspots in critical layers, which will be useful in dynamic failure
analysis of composite structures. By observing the distributions of SMSs in different layers,
ply angle design was performed to seek for the SMSs with more uniform distributions
for both the square and the rectangular composite plates. The frequency-domain strain
energy responses and modal participation factors of the composite laminated plates were
evaluated. This process verifies the SMA of composite laminates can be a fast tool for
dynamic stress reduction in structural design stage.
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Lastly, it is worthwhile to mention that the SMSs of composite laminates need to be
further investigated for assessment and design purpose of real composite structures with
much more complex stacking sequence and geometric configurations; and that the higher
order theory should be applied for more accurate results.
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Nomenclature

C elastic matrix
D damping matrix
f exciting force vector
j imaginary unit
K stiffness matrix
M mass matrix
H displacement frequency response function
Hσ stress frequency response function
S compliance matrix
x nodal displacement vector
w out-of-plane deflection
φ displacement mode shape
Φ displacement modal matrix
φσ stress mode shape
Φσ stress modal matrix
ω modal frequency
ε strain vector
σ stress vector
κ modal curvature
FEM finite element method
FRF frequency response function
SFRF stress frequency response function
SMA stress modal analysis
SMSs stress mode shapes
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