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Abstract: Aircraft envelope expansion during new underwing stores installation is a challenging
problem, mainly related to the aeroelastic flutter phenomenon. Aeroelastic models are usually
very hard to model, and therefore flight tests are usually required to validate the aeroelastic model
predictions, which given the catastrophic consequences of reaching the flutter point pose an important
problem. This constraint favors using short time excitations like Sine Dwell to perform the flight
tests, so that the aircraft stays close to the flutter point as little time as possible, but short time data
implies a poor spectrum resolution and therefore leads to inaccurate and non repetitive results. The
present paper will address the problem related to processing Sine Dwell signals from aeroelastic
Flutter Flight Tests, characterized by very short data length (less than 5 s) and low frequency (less
than 10 Hz) and used to identify the natural modes associated with the structure. In particular, a new
robust technique, the PRESTO algorithm, will be presented and compared to a Matching Pursuit
estimation based on Laplace Wavelet. Both techniques have demonstrated to be very accurate and
robust procedures on very short time (Sine Dwell) signals, with the particularity that the Laplace
Wavelet estimation has already been validated over F-18 real Flutter Flight Test data as described in
different papers. However, the PRESTO algorithm improves the performance and accuracy of the
Laplace Wavelet processing while keeping its robustness, both on real and simulated data.

Keywords: Flutter Flight Test; Matching Pursuit; robust flutter data processing; system identification;
very short time signals; low frequency identification; damping identification; dwell excitations;
wavelet; sine dwell

1. Introduction

The flight envelope of an aircraft is the locus where the aircraft can safely fly. If the
inertial, elastic or aerodynamic characteristics of the aircraft change it is necessary to update
and expand the flight envelope [1–3]. The flight envelope is defined by several boundaries,
typically the aircraft ceiling, stall limit, maximum power and aeroelastic phenomena. An
example of a typical flight envelope can be seen in Figure 1. In particular, one of the
most important aeroelastic phenomena, the driver of the present paper, is the Aeroelastic
Flutter, whose tests unfailingly imply “high” residual risk according to any standard risk
analysis [4], since flutter flight conditions often end in catastrophic results. With this
fact taken into account, extensive previous analyses must be performed on either new
aircraft designs or old designs with substantial changes in the inertial/elastic/aerodynamic
properties of the aerodynamic surfaces, typically due to the installation of new wing stores
as required by different standards [5–7], since those are the factors that modify the flutter
conditions. A Spanish Air Force F-18 fully configured and ready to perform a Flutter Flight
Test, like the ones described in this paper, is depicted in Figure 2.
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Figure 1. Depiction of a typical flight envelope. In this sample case the flutter boundary defines the
low altitude-high airspeed right boundary, while the high altitude and high airspeed boundaries are
defined by the wing surface and maximum available power. However, different aircraft may present
different boundaries produced by other aeroelastic phenomena.

Aeroelastic flutter can be described as a self-excited vibration where two different
natural modes of the structure, initially at different frequencies, start to modify their fre-
quencies during flight as dynamic pressure increases, bringing them closer together. When
the frequencies are close enough, they start to exchange energy producing a synchronized
coupling, increasing the amplitude of at least one of the modes and producing the failure
of the structure. The importance of damping is due to the fact that the damping factor
of each mode changes as well. The mode whose amplitude increases faces an increase
in damping factor (relative to an initial negative value), and when such damping factor
passes from negative to positive values the amplitude vibration increases until the failure
of the structure.

Figure 2. F-18 in the CLAEX platform ready to perform a Flutter Flight Test sortie. Stores configura-
tion has been blurred due to confidentiality.
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Nowadays one of the conditions to guarantee the airworthiness certification of any
given aircraft is to demonstrate that it is free of flutter within the flight envelope [5,7,8].
Therefore, in the aforementioned cases an analysis process and Flutter Test must follow,
starting by numerical methods to predict the flutter point (typically Nastran [9] and/or
Zaero [10], although companies also use proprietary software to perform that analysis),
ground vibration tests to validate the natural modes, frequencies and damping factors at
zero airspeed (a good example is provided by [11]), and Flutter Flight Tests to validate
the flight envelope. The whole process is out of the scope of this paper, although it is
necessary to understand the whole process to acknowledge the importance and necessity
of an accurate identification of the natural modes, frequencies and damping factors, and
hence it will be briefly described in Section 2. As a reference, the process is documented
by [1], and good examples are provided by [2,3].

Once the flight tests end and data are gathered, it is necessary to post-process data to
characterize the aeroelastic behavior of the aircraft and validate the aeroelastic simulation
model. In a general case there are many techniques described to process these data, like
wavelet [12,13], non-linear techniques [14,15], Rational Fractional Polynomials [16–18], Prony
and variants, like Matrix Pencil and Eigenvalue Realization Algorithm (ERA) [19–22], etc. Once
the different frequencies and damping factors for the critical modes have been identified
it is necessary to predict the flutter point (the corresponding envelope boundary) from
extrapolation. Several methods are described to achieve this objective: [23–28] cite the most
important, although they are not part of the scope of this paper.

The main two excitation techniques on the aircraft suited to gather Aeroelastic Flutter
Flight Test data are Frequency Sweeps and Sine Dwells.

• Frequency Sweeps are chirp excitations from low to high frequency (values around
2 Hz to 20 Hz) and usually require 30 s to 60 s time signals. This is a big drawback
when close to the flutter point, considering that the pilot needs to keep the aircraft in
straight and level flight for such amount of time. However, they provide very good
information when trying to characterize the system. Figure 3 shows a real Frequency
Sweep from the gathered data, where the upper plot of the figure shows the aileron
excitation and the lower plot of the figure shows the reading of one of the sensors.

• Sine Dwells consist of several excitations at a given frequency close to the expected
natural frequency. In the case of this paper’s datasets, the aircraft performs a battery
of eight different excitations of 3 s each. For example, if the expected natural frequency
lies at 4.5 Hz, the pilot will run eight different programs exciting the aircraft at 4.2 Hz,
4.3 Hz, etc. until 4.9 Hz, leaving approximately 3 s to 5 s relax time between each
program to gather data. The main advantage of the Sine Dwell excitations is that
the time on which the pilot flies under flutter conditions is very reduced, which
considerably limits the risk associated to the tests. Figure 4 represents a Sine Dwell
sample extracted from real Flutter Flight Test data. In this figure only two program
runs are represented, while the full set consists of eight program runs. As in the case
of the Frequency Sweep, the upper plot of the figure shows the aileron excitation and
the lower plot the response of one of the sensors.

For the particular case of Sine Dwell excitations, characterized by being very short
time series (3 s to 5 s) as related to the frequencies of interest (2 Hz to 10 Hz), not all the
postprocessing techniques described above are suitable. Several require long times to
get accurate results, usually requiring Frequency Sweeps lasting around 30 s to 60 s. For
short time techniques, the most accurate identified are variants of Prony method [19–22],
wavelet techniques [12,13], a bandwidth based estimation (Peak-Amplitude technique)
proposed by [29] and the classical logarithmic decrements technique ([30], citing a generic
text for the sake of completeness), although this last technique is limited to signals where
only one single mode is present with close to zero phase angle. Note that the outcome of
these techniques sometimes is not suitable for the estimation of multiple modes with close
natural frequencies, as will be demonstrated in upcoming sections.
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Figure 3. Frequency Sweep sample plot extracted from real Flutter Flight Test data. The upper plot shows the forced
excitation on the flaperon through the Flight Controls, while the lower plot shows the reading from the wing extensometers.

Figure 4. Sine Dwell sample plot extracted from real Flutter Flight Test data. The upper plot shows the forced excitation
on the flaperon through the Flight Controls, while the lower plot shows the reading from the wing extensometers. In this
sample only two excitation programs are depicted, while the full test point involves eight different excitation programs.

The paper will be divided into several sections. First the aircraft stores integration
paradigm will be described in Section 2, supported by sample plots in Appendix A, which
were extracted from custom software to analyze real flutter configurations. Then the
impact of the phase angle and relationship to bandwidth on the identification of signals
derived from Sine Dwell excitations will be demonstrated in Section 3. Next different
techniques suitable for processing Sine Dwell signals will be described in Section 4, while
a new robust data processing technique, the PRESTO algorithm, will be presented in
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Section 5. In the experimental Section 6, the different techniques will be compared and
verified over simulated data, focusing on the Laplace Wavelet estimation as the main
source of comparison and further the PRESTO algorithm and Laplace Wavelet estimation
will be validated with real Flutter Flight Test Data from envelope expansion Flight Tests,
performed on Spanish Air Force F-18 during real stores integration campaigns. At last,
Section 7 will extract several conclusions and future lines of work.

The scope of this paper is to study and compare different approaches for flutter
data analysis on very short time series, where the ultimate goal is to accurately identify
the different natural frequencies and damping factors of the aircraft at given dynamic
pressures from real Flutter Flight Test data, assuming a quasi-stationary approach to the
aeroelastic equations of motion described in the classical bibliography like [31–33]. The
datasets analyzed will be limited to Sine Dwell excitations during the relax phase (after
the excitation has ceased), considering very short time lengths of data, and in particular
the present paper will be constrained to the Data Processing stage of the stores integration
paradigm, which can be identified by the orange box in Figure 5. As a limitation of the
experimental study, for classification reasons altitude, airspeed and stores configuration
are not a disclosable piece of information from the real Flight Test data, so it will not be
possible to present a full flutter analysis like the one in [34].
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Figure 5. Stores integration paradigm particularized to Aeroelastic Flutter limiting factors. The stop point is reached either
when flutter conditions have been found during flight or when the confidence on the accuracy of the model is high enough
as to allow for a safe extrapolation of the flutter conditions.
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2. Aircraft Aeroelastic Flutter and Stores Integration Paradigm

During Flutter Flight Tests the objective is to gather data aiming at characterizing
the aeroelastic behavior of the aircraft and validate the aeroelastic simulation model. This
is usually done both during and after each flight, and depending on the in-flight results,
decisions will be taken to stop the test, start the analysis process again or proceed with
more or less caution to the next Flight Test point. The envelope is eventually defined
either because the flutter conditions have been reached during the flight (dangerous and
hence undesirable) or because the confidence in the model is high enough as to allow
for a safe extrapolation of the flutter point (hence the necessity to accurately characterize
the real Flight Test data). Figure 5 describes the stores integration paradigm focused on
Aeroelastic Flutter.

We will follow the paths described in Figure 2. The starting point is the definition of the
stores configuration which requires clearing a new flight envelope. Take into account that all
the subconfigurations need to be considered. For example, if two new fuel pods need to be
integrated, it is necessary to consider as subconfigurations each partial fuel load of each pod
and all the combinations between them. Then the parameters of all the subconfigurations
are loaded into a Structural Model of the aircraft, where the natural modes of all the
subconfigurations are calculated at zero airspeed (not considering aerodynamic forces).
To validate this structural model we follow Path 1 and perform a Ground Vibration test
(GVT) with the aircraft configured on the most significant subconfiguration. The results
from the GVT will be used to refine the Structural Model. Once the Structural Model is
considered accurate enough, Paths 2 and 3 feed the Aeroelastic model, where data from
Path 2 come from the Aerodynamic Model, the known aerodynamic coefficients of the
aircraft. Notice that those aerodynamic coefficients are usually defined for the aircraft
baseline configuration and may not include the aerodynamic parameters of the structure
considering those new stores. Therefore, the influence of the aerodynamics of the new
stores is usually neglected. Although occasionally the influence is so big that the aeroelastic
model is not reliable and the aerodynamic model requires some fine tuning, this situation
is far from usual (Path 12). The Aeroelastic Model gives lead to Path 4 and returns the
Analytical Results, which include the mode shapes from the Structural Model including
natural frequencies (see Figure A2) at zero airspeed and the V-G plots (where “V-G” refer to
velocity and damping factor, although frequencies are also plotted. See Figure A1). These
results define the evolution of the natural frequencies and damping factors of the aircraft
at different airspeeds along with the mode shapes for each subconfiguration, and therefore
allow to select the most critical configurations to perform the flight tests, where the most
critical configurations are selected considering the lowest airspeed where the damping
factor of any mode becomes zero with an abrupt slope [7]. At the end of Path 4 the natural
frequencies and modal shapes of the structure are obtained without the aerodynamic
forces (zero airspeed). We want to highlight that calculating the mode shapes taking into
account these aerodynamic forces for different points in the V-G plot would considerably
improve the situational awareness of the test director during the test. However, in some
cases such capability is not available, especially when the analysis is performed with
proprietary software. Once the critical subconfiguration is selected, Path 5 is followed
and flight tests are performed. The data gathered at the Flight Tests (Path 6) need to be
processed, which is the actual scope of the present paper and repeated until the critical
areas of the flight envelope are covered. After each flight, Path 7 and Path 8 compare the
data between the real data results and the analytical data results. In case both results match
and the confidence in the analytical model is considered sufficient, the pilot is cleared to
proceed with the next test point and eventually finish the test with the envelope cleared
(Path 9). In case of a mismatch there are two options. Either the flutter boundary has
been reached, and hence the flutter boundary is known at that dynamic pressure (Path
11), or the flutter boundary has not been reached, but the mismatch differences call for a
refinement on the analytic model, since proceeding would imply an unacceptable level
of risk (Path 12). This last step requires to be followed with caution, since other factors
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come into play. Defining a new aerodynamic model, including verification and validation,
is extremely costly in time, resources (availability of wind tunnel and/or computational
fluid dynamic models, software licenses, highly specialized personnel, etc.) and money. In
the case that configuration is really necessary then it may be worth the effort. However,
usually other solutions tend to be considered, like discarding the integration of that store
for another of equivalent performance, limiting the envelope to safe known regions or
selecting other subconfigurations where the aerodynamics of the store are not so relevant.
This last situation is typical of wingtip missiles, where the aerodynamics tend to have a
large impact. In those cases an option may be to discard the subconfigurations that include
wingtip installation favoring underwing or fuselage positions, initially less prone to disturb
the original aerodynamic model. However, there is not a fixed rule, and this case needs a
thorough analysis that falls out of the scope of this paper.

3. Theoretical Characterization of the Frequency Response

The model of flutter equations in the classical bibliography assumes structural or equivalent
viscous damping [29,33,35]. Assuming an underdamped system (damping factor 0 < ζ < 1)
under quasi-stationary conditions, the aeroelastic equations of motion can be reduced to a
homogeneous second order linear differential equation of constant coefficients. The derivation
of such solution 1 can be found in multiple textbooks, like [36–38]:

x(t) =
K

∑
j=1

aj · e−ζ jωnjt sin (ωdjt + φj) + ν(t) (1)

where k is the number of different modes, a is an amplitude constant, ζ is the damping
factor, ωn the natural angular frequency of the structure (ωn = 2π fn, being fn the natural
frequency), t is time, ωd = ωn

√
1− ζ2 is the damped angular frequency (ωd = 2π fd relates

the damped angular frequency with the damped frequency fd), φ is the phase angle and
ν(t) represents structural and aerodynamic noise.

As was stated above, the objective of this paper is to propose a new technique to
identify the frequency and damping factors of the different natural modes of the aircraft
in flight. In order to do so, it is necessary to understand the behavior of the equations
involved in the solution and also the different weight of each parameter. This theoretical
characterization is important since it will aid us to better understand the problem of
parameter estimation in the case of the presence of multiple modes. The focus will be set
on the importance of the phase angle and the relationship between the bandwidth of the
spectrum and the estimation of damping factors, following the Peak-Amplitude technique
proposed by Ewins [29].

We will start considering the classical time series response for underdamped second
degree linear ODE systems, with the constraint (0 < ζ < 1), as indicated in Equation (1).
For that particular case the Fourier transform of Equation (1) (multiplied by a step function
to consider values from 0 to infinite) is:

X(ω) = F{x(t)} = b · (α + iω)

(ζωn + iω)2 + ω2
n(1− ζ2)

= b · (α + iω)

ω2
n −ω2 + i2ζωnω

(2)

where:

α =
ωn
√

1− ζ2

tan(φ)
+ ζωn = ωn

(√
1− ζ2

tan φ
+ ζ

)
= ωnβ (3)

b =
a√
2π

sin(φ) (4)

β =

√
1− ζ2

tan φ
+ ζ (5)

Taking the absolute value of Equation (2) we obtain the power spectrum:
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Sx(ω) = |X(ω)|2 =b2 · (ω2 + α2)

(ω2
n −ω2)2 + 4ζ2ω2

nω2 = b2 · (ω2 + α2)

ω4
n + ω4 + ω2

nω2(4ζ2 − 2)
(6)

Note that the constant b is a function of φ. This expression is valid, except for the
particular case with φ = kπ, ∀k ∈ Z, which corresponds to the classical value of the
damped sinusoidal. In this particular case the Fourier transform is:

X(ω) = F{x(t)} =b′ · 1
(ζωn + iω)2 + ω2

n(1− ζ2)
= b′ · 1

ω2
n −ω2 + i2ζωnω

(7)

And the power spectrum:

Sx (ω) = |X(ω)|2 =b′2 · 1
(ω2

n −ω2)2 + 4ζ2ω2
nω2 = b′2 · 1

ω4
n + ω4 + 2ω2

nω2(4ζ2 − 2)
(8)

where:
b′ = b ·ωn

√
1− ζ2 (9)

Please note here that we choose to group the amplitude terms b and b′ with other
parameters, since the proper amplitude of the response is not one of the parameters of
interest for our estimations. The values of both b and b′ will depend on the amplitude of
the time response a, and since this value will also depend on the energy of the excitation
and the gain of the sensors, the dependence of both b and b′ with either the phase or the
natural frequency cannot be used in real cases.

In this point, the present paper derives the equations assuming the time series have
been windowed by a step function, since the general equations for a finite-time window
function needlessly complicate the calculations. In experiments it is common practice to
get a time sufficiently long so that the amplitude of the signal is below the noise level,
so as a matter of fact the assumption of time infinitely long can be made without loss of
generality, even though the data has actually been selected with a finite-time rectangular
window. In general we can assume the scope of the present paper to be limited to spans of
time T where the data amplitude of the time series at t = T is similar to the level of noise.

The decision on not to window the results with a common window (hanning, black-
man, etc.) is deliberate. Coll [18] employs a Hann window in her JFlutter software, but her
data come from Frequency Sweeps 30 s to 60 s long. On the other hand, Potts [20] suggests
that windowing is not necessary to obtain accurate data with data lengths and frequencies
similar to the present case. Considering that the aim of this paper is to support the results
of aeroelastic data on aircraft structures, with frequencies between 2 Hz and 10 Hz and time
samples of less than 5 s, searching for exponentially damped sinusoidals arising from Sine
Dwell excitations, given the low amount of cycles in the data, the disturbance in amplitudes
from a window function, different from a boxcar window, would throw a significant error
on top of the error inherent to the processing methods with such low amount of data. This
particular statement has been confirmed by the authors in preliminary experiments.

In any standard spectral analysis two factors are typically considered: the resonance
frequency and the bandwidth. In this point of the theoretical analysis we will focus on
deriving these two values analytically, with the objective of determining their relationship
with the parameters of the signal (ωn, ζ and φ).

3.1. Resonance Frequency of a Single Mode

Once calculated the power spectrum of a single mode (Equations (6) and (8)), in order
to characterize the resonance frequency we must calculate the first derivative in search for
the points of maxima. Now let us determine the maximum of the power spectrum for a
single mode as related to ωn, which will be the resonance angular frequency ω0. For this
purpose we will partially derive Equation (6) with respect to ω and set it equal to zero.
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Equation (8) is a particular case of the former when the phase angle φ = kπ and will be
treated accordingly when analyzing the derivative.

∂Sx(ω)

∂ω

∣∣∣∣
ω=ω0

= b2

[
2ω0(ω

4
n + ω4

0 + ω2
nω2

0(4ζ2 − 2))
(ω4

n + ω4
0 + ω2

nω2
0(4ζ2 − 2))2

−
(ω2

0 + α2)(4ω3
0 + 2ω0ω2

n(4ζ2 − 2))
(ω4

n + ω4
0 + ω2

nω2
0(4ζ2 − 2))2

]
= 0 (10)

So, removing the denominator and simplifying we get Equation (11).

(ω4
n + ω4

0 + ω2
nω2

0(4ζ2 − 2))− (ω2
0 + α2)(2ω2

0 + ω2
n(4ζ2 − 2)) = 0 (11)

Notice that the term ω0 was simplified accounting for the trivial solution ω0 = 0.
However, calculating the second derivative it can be demonstrated that this particular
result is a minimum. The demonstration is out of the scope of this paper.

Rearranging the terms and simplifying Equation (11) in order to solve ω0:

ω4
0 + 2α2ω2

0 + α2ω2
n(4ζ2 − 2)−ω4

n = 0 (12)

This equation can be solved (please take into account that we only allow positive real
values for ω0), obtaining the resonance angular frequency with Equation (13)

ω0 =

√
−α2 +

√
α4 − 4ζ2α2ω2

n + 2ω2
nα2 + ω4

n (13)

Now, replacing α with Equation (3).

ω0 = ωn

√
−β2 +

√
β4 + 2(1− 2ζ2 ) β2 + 1 = ωn γ (14)

Please note here that β (see Equation (5)) depends on both the damping factor and
the phase of the original signal. So, although the resonance frequency is proportional to
the natural frequency of the damped signal, it will also depend on both the phase and the
damping factor. This dependency makes it difficult to directly estimate the natural fre-
quency from the resonance frequency, as one might originally expect. To better understand
the degree of dependency of γ with ζ and φ we will now study its range of variation.

In general, for underdamped signals we have that 0 ≤ ζ ≤ 1. Then 0 ≤ ζ2 ≤ 1 and
1 ≥ 1− 2ζ2 ≥ −1 . So, considering 1− 2ζ2 ≤ 1 we can deduce that β4 + 2(1− 2ζ2)β2 + 1 ≤
β4 + 2β2 + 1. Taking this into consideration we can establish the upper limit to the value
of ω0:

ω0 ≤ ωn

√
−β2 +

√
β4 + 2 β2 + 1 = ωn (15)

In this inequation, boundary solution ω0 = ωn is achieved when β = 0. So, consider-
ing the definition of β given by Equation (5), this particular solution will be achieved in the
case of φ = φ1 = − arctan

√
1− ζ2/ζ. Please notice that this is true also when ζ = 0 for

any value of φ.
Now let us look for the lower limit of ω0. We consider that (1− 2ζ2)2 ≤ 1, and thus

we can establish that β4 + 2(1− 2ζ2)β2 + 1 ≥ β4 + 2(1− 2ζ2)β2 + (1− 2ζ2)2. So, taking
again into consideration Equation (14) and simplifying we can establish that:

ω0 ≥ωn

√
−β2 +

√
β4 + 2(1− 2ζ2 ) β2 + (1− 2ζ2 )2 = ωn

√
1− 2ζ2 (16)

As a conclusion of this demonstration, in general for underdamped signals the res-
onance angular frequency ω0 ≥ ωn

√
1− 2ζ2. That is, independently on the phase, the

frequency of the maximum of the power spectrum will be greater than ωn
√

1− 2ζ2. This
limit case will be achieved for the particular case of φ = φ2 = kπ, ∀k ∈ Z which can be
deducted from the maximization of Equation (8). In that particular case maximizing the
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power spectrum implies the minimization of the denominator, which after simplifying
leads to ω2

0 + ω2
n(1− 2ζ2) = 0. From this point it is easy to see that effectively the value

ω0 = ωn
√

1− 2ζ2 is the positive solution of this equation.
From these upper and lower limits of ω0 we can deduce that the estimation of the

natural angular frequency ωn from the amplitude of the power spectrum is not straightfor-
ward as some might expect, since the value of the resonance frequency will also depend on
the damping factor and on the phase of the signal.

To better understand these expressions, Figure 6 shows the relationship between the
relative resonant frequency (γ = ω0/ωn) of a single underdamped mode and the damping
factor (ζ) for different phase values (φ). As we can see, the two extreme values obtained
with φ1 and φ2 represent both extremes of the curves. It is important to note the strong
relationship between the phase angle and the resonance frequency in the power spectrum.
This statement will be relevant in the upcoming sections.
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Figure 6. Relative resonant frequency (γ = ω0/ωn) of a single underdamped mode, with respect to
the damping factor (ζ) for different phase values (φ).

3.2. Bandwidth of a Single Mode

Another factor to assess the impact of the different parameters when identifying the
system is the bandwidth. Ewins in [29] describes the Peak-Amplitude method to estimate
damping factors. However, this approach leaves behind the phase angle, which depending
on the relationship with the rest of the parameters may introduce a large source of error.

To analytically study the bandwidth first we need to determine the maximum ampli-
tude of the power spectrum at the resonance angular frequency ω0, which will be obtained
by evaluating Equation (6) in ω = ω0 = ωnγ as described in Equation (14).

After simplifying, we can determine max{|X(ω)|2} = |X(ω0)|2 using Equation (17).

|X(ω0)|2 = b2 · γ2 + β2

ω2
n(1− γ2)2 + 4ζ2ω2

nγ2 (17)

Now to determine the 3 dB bandwidth we must look for the frequency values ω1 and
ω2 that make |X(ω)|2/|X(ω0)|2 = 1/2.
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|X(ω)|2
|X(ω0 )|2

=

ω2+ω2
n β2

(ω2
n−ω2)2+4ζ2ω2

nω2

γ2+β2

ω2
n(1−γ2)2+4ζ2ω2

nγ2

=
1
2

(18)

Rearranging the terms and simplifying we can get an equation ω4/2 + gω2
nω2 +

hω4
n/2 = 0 that can be solved, being g and h given by Equations (19) and (20), respectively.

g = 2ζ2 − 1− (1− γ2)2 + 4ζ2γ2

γ2 + β2 (19)

h = 1− β2 2(1− γ2)2 + 8ζ2γ2

γ2 + β2 (20)

At last, considering that ω > 0, the two valid solutions of the equations ω1 and ω2
will be given by Equation (21).

ω1,2 = ωn

√
−g±

√
g2 − h (21)

Thus the 3 dB bandwidth (B) will be determined using Equation (22).

B = ω1 −ω2 = ωn

(√
−g +

√
g2 − h−

√
−g−

√
g2 − h

)
(22)

Which after some simplification yields:

B = ωn
√

2
√
−g−

√
h (23)

As we can see, the bandwidth will be proportional to the natural frequency, but again
it strongly depends on the damping factor and the phase of the signal. To better understand
this dependency, let us analyze the bandwidth for the two extreme phase cases φ1 and φ2
considered above.

As was already stated, the particular case of φ = φ1 was associated to β = 0, γ = 1
and ω0 = ωn, which was one of the extreme values of the resonance angular frequency.
Replacing those values in Equations (19) and (20) we get g = 2ζ2 − 1− 4ζ2 = −1− 2ζ2,
and h = 1. So, substituting g and h in Equation (23) we get (24).

B|φ1 = ωn
√

2
√

1 + 2ζ2 −
√

1 = 2ζωn (24)

On the other hand, the other extreme case was obtained when φ = φ2, for which
ω0 = ωn

√
(1− 2ζ2). In this case the maximum value of the power spectrum must be

determined substituting this condition in Equation (8) and simplifying.

|X(ω0)|2 = b2 · 1
4ω4

nζ2(1− ζ2)
(25)

Thus, in the case of φ = φ2 to determine the bandwidth we must solve Equation (26).

|X(ω)|2
|X(ω0 )|2

=
4ω4

nζ2(1− ζ2)

(ω2
n −ω2)2 + 4ζ2ω2

nω2 =
1
2

(26)

Simplifying we obtain the same equation ω4/2 + gω2
nω2 + hω4

n/2 = 0 but in this case
with g = 2ζ2 − 1 and h = 8ζ4 − 8ζ2 + 1. Considering these values of g and h in Equation (23)
we obtain the bandwidth for the extreme case with φ = φ2 in Equation (27).

B|φ2 = ωn
√

2

√
1− 2ζ2 −

√
8ζ4 − 8ζ2 + 1 (27)
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To better understand these expressions, Figure 7 shows the relationship between the
relative bandwidth (B/ωn) of a single underdamped mode, and the damping factor ζ for
different phase values. As we can see, the two extreme values obtained with φ1 and φ2
represent both extremes of the curves, but in this case the conditions are different for low
damping and high damping factors. For low damping factors, the bandwidth is practically
independent of the phase angle. However, for relatively high values of the damping factors
(but always within our values of interest), there is significant disturbance to the linearity of
the relationship between the damping factor and the phase angle.

This result is interesting if the Peak-Amplitude technique [29] is to be employed,
where it is necessary to remember that unless the conditions favor closeness between
the resonance frequency and the natural frequency, or low damping factor values are
considered, phase must be taken into account to get an accurate damping factor estimation.
In addition, take into consideration that in the case that several modes are involved, the
Peak-Amplitude technique would not throw any useful result.

Regarding the existence of one single or several natural modes, it is important to
notice that the analysis performed in this section has taken into account signals with one
single mode. The theoretical analysis has shown the strong relationship between the phase
angle φ, the natural angular frequency ωn and the damping factor ζ related to the power
spectrum. This result can be extrapolated qualitatively to more than one natural mode
although not quantitatively. However, this approximation will be sufficient to calculate the
seeds for the PRESTO algorithm, as will be described in Section 4.4.
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Figure 7. Relative bandwidth (B/ωn) of a single underdamped mode, with respect to the damping
factor (ζ) for different phase values (φ).

4. Data Processing Paradigm, Optimization Algorithms and Fitting Functions

Once the theoretical framework has demonstrated the importance of the phase in the
estimation of both the natural frequency and the damping factor, this section will describe
different optimization techniques employed to characterize signals similar to Sine Dwells
in terms of duration and frequency range.
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In the introduction 1 several techniques were described to process aeroelastic sets
of data coming from Flutter Flight Tests. However, only a few were suitable for Sine
Dwell excitations. Please notice one very important point. The main constraint on these
techniques is the final form solution defined by the certification standards for airworthiness
(mainly [6,7]). Those standards require a very specific numerical limit on damping factor of
the critical mode, and therefore it is necessary to get the best reconstruction possible with
the closest functions to the critical natural modes not simply an accurate reconstruction of
the signal achieved by a different model or as a sum of different modes. For example, a
classical ARMA model might produce an accurate reconstruction of the signal. However,
the parameters of the model do not fit the requirements of the mentioned standards, which
can only be fulfilled by a model based on Equation (1).

4.1. Matrix Pencil Algorithm

Matrix Pencil is a variant of the Prony Method, and a description of the technique can
be found in [19–22]. It is based on the same principle as the Prony Method, a decomposition
of the signal in sums of exponentially damped sinusoids, with the particularity that instead
of decomposing in as many modes as possible considering the number of samples in the
signal (as for the Prony Method), it is possible to select a number of signals so that the fit is
the best possible with that number of elements.

This technique is extremely accurate and useful to reconstruct Sine Dwell signals,
since implicitly filters the lowest energy modes with SVD (Singular Value Decomposition)
and the reconstruction is very accurate and fast. However, the signal model requires a
high order to reconstruct the signal accurately, and when comparing all those modes to the
actual data during the simulation runs, the error returned is considerably high compared
to other techniques.

4.2. Wavelet Techniques

Different wavelet techniques have been developed on this topic. The wavelet trans-
form seems the perfect candidate to deal with such signals, short length and low frequency,
and in particular the Laplace Wavelet transform has returned excellent results on flutter
Sine Dwell signals.

The Laplace Wavelet has been successfully employed by Freudinger, Lind and
Brenner [12,13] on this same problem and aircraft. There are different ways to fit the
sampled signal to the estimation, and in particular one way employed by these authors
was the Matching Pursuit algorithm [39,40]. A broader discussion on this technique will
follow in Section 6.2.3.

4.3. Peak-Amplitude Technique

This technique was described by Ewins in Reference [29]. Although the technique
is too basic and the results are not accurate when several modes come into play, due
to its extremely fast estimation, the authors will follow this approach to estimate the
frequency and damping factor seeds in the PRESTO technique but updated by employing
the equations developed in Section 3.2. More information on this aspect will be provided
in Section 5.

4.4. Proposed Paradigm

Considering the drawbacks from the aforementioned techniques, the authors decided
to follow a different approach and paradigm described in Figure 8, which shows the
standard optimization process used to determine the parameters of the signal. Please
notice that this paradigm, although common, is not necessarily followed by the techniques
described above. It is also important to remark that the current paper is based on a
developmental procedure oriented to comparing different techniques. The present paper is
extracted from an early -yet promising- stage, and hence the main two metrics employed
are accuracy (error between truth and estimation) and processing time. To prevent bias in
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the processing time, the stop criterium selected was to complete the selected number of
iterations. In particular, 10 runs and 1000 iterations each run were performed.

Figure 8. Data processing paradigm employed.

We will now focus on two mode responses. In real scenarios it is quite common to find
close modes which overlap both in time and frequency domains. Thus we will consider
Equation (28) as the main analytical model used to describe the basic parametric equation
to be used by the fitting algorithm.

x̂(t) = a1 · e−ζ1ωn1t sin (ωd1t + φ1) + a2 · e−ζ2ωn2t sin (ωd2t + φ2) + ν(t) = x(t) + ν(t) (28)

In this case x̂(t) represents the signal measured from the acquired data, x(t) the
signal reconstruction and ν(t) represents higher order terms, including noise. The first
thing to consider in the optimization process is the domain in which optimization of the
fitting function is defined. That is, we can define the mean square error either in the time
domain, in the complex frequency domain or in the power spectrum. All those cases will
be analyzed below.

• Time domain fitness function. This is the most basic approximation. The basic parametric
Equation (28) feeds the optimization algorithm, where it generates a synthetic time
series. This synthetic time series, along with the sampled time series, feeds the fitting
function and the cycle is repeated until the desired stop criterion is reached. So, in the
time domain, the mean square error is defined as MSEtime = E{(x(t)− x̂(t))2}.
The main disadvantage of this fitness function is that random seeds sometimes con-
verge to local minima, so it is necessary to find an accurate estimator.

• Complex frequency domain fitness function. As an alternative approach one standard
possibility is the use of a fitness function defined in the frequency domain. In this
case, the parametric function passed to the optimization algorithm is also Equation (28).
However, after reconstructing the synthetic time series it numerically calculates the
complex spectrum and separates the real and imaginary parts. On the other hand,
the sampled time series is transformed numerically into a frequency spectrum, also
separating real and imaginary parts. The synthetic and sampled data are fed to the
fitting function and the cycle is repeated until the stop criterion is reached. So, in this
case the fitness function is defined as MSE f req = E{|X(ω)− X̂(ω)|2}, where X̂(ω) is
the Fourier transform of the measured signal x̂(t) in the form stated above.

With this method convergence problems and local minima are still present. Although
the use of frequency responses in which the energy of the signal is concentrated in less
samples allows for the reduction in the amount of frequency terms, reducing the computa-
tional cost of the evaluation of the fitness function, the more complex process of extracting
the Fourier transform of the signal compensates for the increased speed.
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• Power spectrum based fitness function. The power spectrum approximation follows the
same approach as the complex frequency approximation, but in this case the power
spectrum is numerically calculated from the complex frequency, instead of having
both real and imaginary parts separated. The fitting function to be optimized is eval-
uated from the power spectrum of the signals, MSEspec = E{(|X(ω)|2 − |X̂(ω)|2)2}.
This choice tends to reduce the convergence problems, but the solutions achieved
sometimes imply a loss in performance with respect to the two first fitness functions.
In this case, as in the Complex Frequency domain estimation, it is possible to reduce
the amount of frequency terms to be taken into consideration in order to reduce the
computational cost of evaluating the fitness function without local minima problems,
but the convergence tends to be very slow and requires multiple (usually more than
six) runs to converge.

Taking into consideration the main advantages and disadvantages of each fitness function,
the next sections proposes a novel approach that tries to combine the benefits of time domain
optimization while reducing the convergence problems of the optimization algorithm.

5. Proposed Combined Power Spectrum and Time Optimization

This section describes the proposed estimation approach, denoted the combined
PoweR spEctrum Short Time Optimization (PRESTO). Analyzing the conclusions derived
from the fitting functions described in the previous section, we can establish several facts:

• The Time and Complex frequency domain fitness functions are very sensitive to
local minima;

• The initial conditions make a difference in terms of convergence to local or global minimum;
• The power spectrum fitness function can reach the global minimum but after many

iterations and is insensitive to initial conditions;
• The Time and Complex Frequency fitness functions quickly reach the minimum but

are very sensitive to initial conditions and prone to reach local minima if the seeds are
not adequate.

With these facts in mind the objective of the proposed method is to combine a good
estimation of the seeds with the Peak-Amplitude estimation and employ the time based
estimation to return the final solution. The detailed process is as follows:

1. Estimate the natural frequency seed as the peak frequency in the power spectrum;
2. Estimate the damping factor, with the 3 dB bandwidth and the natural frequency

known, solving from Equation (24). Notice that the usual range of damping factors in
real applications is not very different from this estimation;

3. Since the phase term φ and amplitude a are unknown at this point, they are
randomly initialized;

4. Run the Time based estimation with the seeds obtained from the steps above.

The proposed estimation approach is sensibly faster than other methods, both clas-
sical and proposed by the paradigm, and the experimental results on synthetic data are
really promising.

6. Experimental Results

The objective of this section is to describe the experimental setup and to analyze the
results in order to evaluate the proposed estimation technique and in order to further verify
the conclusions extracted from the theoretical analysis carried out in the previous sections.
For this purpose, two groups of experiments are included:

• First set of experiments processing synthetic data:

– The primary objective is to measure the accuracy of the described methodologies,
evaluating the errors in frequency and damping factors between the estimations
and the ones used to generate the signals;
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– The secondary objective is to measure the computational cost of the differ-
ent techniques.

• Second set of experiments processing real Flight Test Data, obtained from Flutter
Flight Tests performed on Spanish Air Force F-18:

– The best two techniques obtained from the synthetic data experiments will
be employed;

– The error will be assessed by performing a linear regression between the mea-
sured data and the reconstructed signal with the processed parameters and
comparing the MSE of the normalized signals (normalized against the maximum
amplitude of each real signal).

6.1. Multimodal Estimation of Simulated Data
6.1.1. Description of the Experiment Conditions

As a combination of two different modes following Equation (28), 10.000 simulated
data signals have been generated considering these constraints:

• Each signal lasts 5 s;
• The sampling frequency is 85 Hz;
• The parameters of each mode and signal were randomly selected from this range of

parameters (notice the number of significant digits):

– Natural frequency: 3.0 Hz ≤ fn ≤ 6.0 Hz;
– Damping factor: 0.03 ≤ ζ ≤ 0.20;
– Phase angle: 0.00 ≤ φ ≤ 2 · π;
– Amplitude: 0.01 ≤ a ≤ 0.50;
– White Gaussian noise SNR: 0 dB, 5 dB, 10 dB.

The optimization algorithm considered by the authors for the paradigm described
in Figure 8 is a standard “Trust Region” algorithm [41] and the error metric Mean Square
Error (MSE). The boundaries employed to randomly initialize each parameter are broad
compared to the expected real (and simulated) values. In the case of the phase angle φ
the whole 2π circumference, while the others varied from [−10 10] for the amplitude
constant a, [0 1] for the damping factor ζ and [0 10]Hz for the natural frequency fn. As we
can see, the parameter margins for the simulated data were representative of real cases.
The selection of the optimization algorithm was not random and several options were
considered in the preliminar experiments, including the Levenberg–Marquardt method,
Genetic Algorithms and the Trust Region algorithm. After these preliminary experiments
and several considerations, the selected one was the Trust Region, since it tends to perform
reasonably fast, it is robust, and it can be applied to ill-conditioned problems [42].

In order to minimize the convergence towards local minima 10 runs of each algorithm
were executed, with a maximum of 1000 iterations on each run. The stop criterium selected
was to stop after all the runs (and iterations) were performed, to account for a uniform
time estimation. In the case of the PRESTO technique, the seeds were obtained from the
Peak-Amplitude estimation with Equation (24).

In the complex frequency based and the power spectrum based fitting functions we
removed frequency values far from the values of the signals expectations. In particular,
frequencies higher than 14 Hz were discarded.

Regarding Matrix Pencil, Peak-Amplitude and Laplace Wavelet techniques, given
the deterministic characteristics of the techniques it was not necessary to execute 10 runs.
Instead 1 single run was executed, and hence the plots show one straight line at a constant
error level.

Matrix Pencil estimation was performed considering order 200 and an order reduction
of 196 natural modes from those original 200 (keeping 4 natural modes for the final estima-
tion). These parameters are similar to the ones employed in the referenced bibliography.
One important point to remark is that those parameters were selected by the authors after
trying different combinations and selected the ones with lower error. It is necessary to
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mention that the process was intensively tailored by the authors attempting to improve the
results with different combinations of parameters. The details of the technique including
the order reduction can be found in [19–21]. The technique returned 4 different natural
frequencies and their corresponding damping factors. In order to select the best matches,
a first attempt was made following [43], where an energy sorting technique is employed.
However, the best matching frequencies returned were completely different to the expected
ones. At last, the modes were sorted by frequency and the closest match to the expected
frequencies was selected.

Laplace Wavelet estimation was made following [13] in a Matching Pursuit scheme.
The technique can be run multiple times to return any number of modes, so the authors
applied the technique expecting two different modes. Regarding the dictionaries, the ranges
were substantially different from the ones used by the authors in the other techniques, since
the size of the dictionaries was too large to achieve results in a reasonable time; therefore,
the dictionary range was limited to the range of parameters used to generate the signal and
the number of significant digits the minimum used for each parameter. Regarding the time
delay, the range was [−5.0 + 5.0] seconds. From this point of view, the Laplace Wavelet
estimation had better conditions than the PRESTO algorithm.

Regarding the error metrics, since the samples were generated artificially it is possible
to determine the accuracy in the estimation of the relevant parameters. For this purpose, the
authors measured the average relative error (%) in the estimation of the natural frequency
ωn and the Root Mean Square Error (RMSE) in the estimation of the damping factor ζ.

6.1.2. Analysis of Results

Figures 9 and 10 show the behavior of the estimation techniques for the natural
frequency and the damping factor respectively, and Table 1 includes the numerical results
of the estimations considering time consumed and different signal to noise ratios (SNRs).

The time based estimation and the complex frequency based estimation obtain precise
estimations with 6 repetitions of the optimization process. However, they are very prone to
get stuck in local minima. On the other hand, the power spectrum based estimation tends
to find the global minimum, but at the cost of requiring 10 repetitions (and consequently
time) to obtain good results. These three techniques show poor performance regarding
time consumed, although the error estimations show reasonably good results among the
analyzed techniques. It is worth noticing that the techniques are sensitive to noise, showing
a great difference between the 0 dB SNR datasets’ solutions (similar to the Peak-Amplitude
estimations) and the 10 dB datasets’ solutions (similar to the PRESTO estimation).

The Peak-Amplitude estimation is the simplest of all and shows a reasonably good
estimation considering the time required, several orders of magnitude faster than all the
others. The technique is rather insensitive to noise, although it is expected that outliers will
affect it enormously, especially for the frequency estimation (and hence to the damping
factor estimation).

Matrix Pencil estimation returns bad results related to both frequency and damping
factor estimations, although the time required scored a very low value and is extremely
insensitive to noise. The technique requires numerous signals to return good results to
reconstruct the original signal. The authors performed numerous tests on the datasets,
exploring heuristically different modes considered (accuracy of the model) and reduction
orders (noise filtering), and the best results related to the metrics required by our problem
included 200 modes and filtering 196 signals (keeping the 4 different signals with most
energy to reconstruct the original signal).

The Laplace Wavelet technique is also, along with the Matrix Pencil estimation, ex-
tremely insensitive to noise. Even though under a high SNR the results are below the
average, notice that under noisy conditions the results are considerably good, and in fact
the best of all the techniques for SNR = 0 in damping factor estimation. From the com-
putational load aspect, the technique returned a well below average time result (lowest
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equals best), and the time required for each estimation is good enough to process sensors
in real time (maybe a couple seconds delay, depending on the dictionary size).
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Figure 9. Average relative error (%) in the estimation of the natural frequency ( fn = ωn/(2π)) of two
simulated underdamped modes. SNR 5 dB.
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Figure 10. Root mean square error (RMSE) in the estimation of the damping factor (ζ) of two
simulated underdamped modes. SNR 5 dB. Logarithmic scale

The proposed PRESTO technique, described in Section 5, starts calculating the Peak-
Amplitude estimation to provide seeds for the Time based estimation. The results show a
much lower error for the proposed solution, both in the estimation of the natural frequency
and the damping factor, than any of the other techniques alone. The technique is very
sensitive to noise. However, it is important to remark that, even with the worst noise
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conditions considered (SNR = 0), the technique achieved the best results in frequency and
second best in damping factor estimations. Timewise, the technique matches in time the
Laplace Wavelet technique and also poses as a candidate for real time estimations. It is also
interesting to note that the Time based estimation itself, seeded with random values, did
not initially show spectacular behavior. However, combined with an extremely fast but
low accuracy estimation, it turned the tides and resulted in a very accurate technique in
most of the cases.

To better analyze the problems of convergence of the different solutions, Figures 11 and 12
show the results after removing the 10% worst estimations. Notice that many of those
datasets include the lowest frequency and highest damping factor combinations resulting
in very short datasets, occasionally not even completing one full cycle before the signal is
completely dampened. Now the first two approaches (time based estimation and complex
frequency estimations) show a much better result when compared to the power spectrum
based technique and eventually lead to results similar to the PRESTO estimation. Regarding
the Laplace Wavelet estimation, the results show a slightly improved behavior than with
the full dataset considered, meaning that even with short timed and heavily damped
signals the technique is mostly unaffected, a fact that plays in its favor. The PRESTO
technique, however, sensibly improved the estimation meaning that, as expected, short
timed signals heavily impact the accuracy of the estimations.

In order to analyze the computational cost and the dependency of the results with the
SNR, numerical results are detailed in Table 1 with different SNRs (0 dB, 5 dB and 10 dB).
The plots Figures 9–12 show the relationship between different estimators considering only
a SNR of 5 dB as representative of real data. However, it is necessary to compare also
results with different SNRs, assuming worst (0 dB) and best (10 dB) case scenarios.
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Figure 11. Average relative error (%) in the estimation of the natural frequency ( fn = ωn/(2π)) of
two simulated underdamped modes excluding the worst 10% cases of the database. SNR 5 dB.
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Figure 12. Root mean square error (RMSE) in the estimation of the damping factor (ζ) of two
simulated underdamped modes excluding the worst 10% of cases of the database. SNR 5 dB.
Logarithmic scale.

Table 1. Main results of the simulated experiments comparing the average natural frequency error and damping factor
RMSE, considering different SNRs.

Time Complex Power Matrix Peak Laplace PRESTO
Based Freq. Spec. Pencil Amplitude Wavelet Mixed
Estim. Estim. Estim. Estim. Estim. Estim. Estim.

Num. of reps. 6 6 10 1 1 1 2
Time/est. 4.1 s 6.2 s 25.6 s 0.01 s 5 · 10−5 s 0.06 s 0.06 s

Avg. Err. fn SNR = 10 dB 4.08% 4.21% 4.10% 14.69% 10.12% 8.75% 2.84%
Avg. Err. fn SNR = 5 dB 6.41% 6.78% 6.16% 14.69% 10.17% 8.78% 4.37%
Avg. Err. fn SNR = 0 dB 10.43% 11.10% 9.27% 14.69% 10.76% 8.82% 6.82%

RMSE ζ SNR = 10 dB 0.029 0.030 0.042 0.095 0.049 0.042 0.026
RMSE ζ SNR = 5 dB 0.042 0.044 0.057 0.098 0.051 0.042 0.038
RMSE ζ SNR = 0 dB 0.061 0.067 0.078 0.095 0.061 0.043 0.055

For the results presented in Table 1, the performance analysis considered only 1 signal
and the best number of repetitions of the optimization process for each technique, that is,
6 repetitions for the time based estimation and the complex frequency based estimation,
10 for the power spectrum based estimation, 2 for the PRESTO estimation and only 1 for
Matrix pencil, Laplace Wavelet and Peak-Amplitude, since the paradigm is different
for those last three techniques. All those started with initial random conditions for all
the parameters but for the PRESTO estimation. In the case of the proposed PRESTO
optimization, first 1 run of the Peak-Amplitude estimation was performed and then 2 more
runs of the time based estimation. The computational cost was measured in processing
time using a single 2.5 GHz CPU with 8 cores, and it measured the time of all the stages
in the optimization process. In the case of the PRESTO solution we include both the time
required to perform the Peak-Amplitude estimation and the time based estimation.

Regarding the errors in the estimation of the natural frequency considering different
values for SNR, in all cases the PRESTO technique improved in approximately 1.5–2% the
best estimation achieved by the next best technique. Considering an average case of 5 Hz
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for fn and an average SNR = 5 dB, these results imply an average difference of less than
0.1 Hz between the real and the estimated frequencies.

When discussing the RMSE relative to damping factor, the results for PRESTO es-
timation are better in almost all cases. The only situation where the results were better
by another technique was with Laplace Wavelet and SNR = 0. In this case, the Laplace
Wavelet estimation threw an average error of 0.043 vs. 0.055, which is coherent with the
statement that the technique is insensitive to noise.

In general, the proposed PRESTO estimation shows a very good response in terms
of time and, more specifically, in terms of repeatability and accuracy. The technique is
sensitive to noise and is only beaten compared to the Laplace Wavelet in terms of damping
factor and under a noisy scenario. Notice that the Laplace Wavelet technique was already
successfully employed on real F-18 analyses. For this reason, the Laplace Wavelet technique
and the PRESTO estimation will be compared in processing real Flight Flutter data.

6.2. Multimodal Estimation of Real In-Flight Responses
6.2.1. Description of the Experiment Conditions

The Spanish Air Force Logistic Center of Armament and Experimentation (CLAEX
as the Spanish acronym) has kindly provided the authors with several sets of sampled
data from Flutter Flight Tests. The data was acquired on Spanish Air Force F-18A/B, flown
from the Torrejon Air Force Base and controlled from the CLAEX Control Room. The
aircraft configuration during the tests was cruise flight conditions, flaps and landing gear
retracted and different stores hanging from inboard and outboard, wingtip stations loaded
and centerline fuel tank. Stations 4 and 6 were empty.

The setup of the Flight Tests includes the use of an instrumented aircraft with exten-
someters to gather vibrational data and a Radio Frequency (RF) link with a ground station
to direct the test. The excitations are typically made through the Flight Excitation Control
Unit of the aircraft (FECU), which injects the predetermined excitation signals into the
flaperons. The motion of the flaperons is then recorded through accelerometers in the
trailing edge of the flaperons.

During the test, the test director is in continuous communication with the pilot from
the control room and analyzes qualitatively the data in real time to avoid going beyond
a catastrophic point. In case the test director determines that the signals analyzed imply
a dangerous condition for the safety of the pilot, the Test Director commands to stop the
test and the aircraft must return to known safe flight conditions, usually in the center of
the envelope.

The data gathered during a Flutter Test typically includes Sine Dwell excitations and
Frequency Sweep excitations. All those excitations are regular data extraction techniques
for the F-18 legacy aircraft series, as described in [1,34]. However, the data points selected
in the present paper are limited to Sine Dwell excitations.

The expectations of the test are to generate a flight envelope for a given configuration
of the aircraft and subconfigurations, where only the most critical subconfigurations will be
tested and the rest are limited by the most restrictive conditions of the former. In particular,
the Flutter Flight Tests aim to define the combination of maximum Mach number at
different altitudes available for the aircraft in safe flight conditions. EASA CS-25 and
MIL-A-8870 [5,6] specify a minimum value for reduced structural damping factor of 0.03
(equivalent viscous damping factor of 0.015) as the limiting flutter point to stop the test
and reach the edge of the envelope. Values of damping factor below 0.03 are considered to
imply flutter conditions, and therefore those regions must be avoided and documented.

The signals intended to be analyzed are the response of the aircraft after an excitation
at a given frequency, represented in Figure 4 as the relax phase of the extensometers, with
no input from the flaperons (no excitation). As we can see, Equation (1) describes the
natural vibration of an element of a lifting surface of an aircraft in generalized coordinates,
in a frequency region where a single mode can be isolated. It can be interpreted, for
example, as the angle registered by an inclinometer on the leading edge of the wing. If for
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any reason the wing absorbs energy at frequency fn, it will return that energy oscillating as
stated in Equation (1) when the excitation stops.

Please note here that, even though one could assume that the phase of the mode might
be neglected by properly aligning the time window with the signal, this will not be the case
when multiple modes are present in the signal. When two different modes contribute to
the signal they can compensate each other, so that even though the signal might start in
a zero value, both modes can present non zero phase. This assumption can be explained
during the acquisition process. When the excitation stops (see Section 2), the FECU unit
stops the flaperons at 0◦, which in the case of a single mode contributing and relatively
far from the resonance frequency (most of the cases analyzed), often coincides with the
measuring extensometers in a relaxed state (offsets of 0◦ or 180◦), hence returning a zero (or
close to zero) value for the starting point when the data are acquired, and indirectly setting
the contributing mode phase angle to a value close to 0◦ or 180◦. In the case of 180◦, the
amplitude constant fixes the issue by returning a negative constant. In the case of multiple
modes, however, the contribution of both modes implies that none of the modes need to be
zero if the contribution of both modes add up to zero or close enough to zero. In fact, when
two modes contribute the oscillation is seldom aligned in phase with the excitation.

Data was acquired from Sine Dwell excitations at 85 Hz, with a trimmed maximum
duration of 5 s each set. Shorter sets were zero-padded in the final samples to process
samples of the same length. Take into consideration that not all the data was usable, since
many sets included turbulence, unstable maneuvers, etc. In addition, the data provided did
not include the actual values for frequency, damping factor or phase, so it was necessary to
estimate the values by comparing the solution with the real data, without any previous
estimation on the true data. On top of that, one important point to remark is the Sine
Dwell excitations were run in batches of 8 different programs, meaning that (as a simplified
example) if the expected natural frequency lies at say 4.5 Hz, the excitation programs
started at 4.2 Hz, 4.3 Hz and so on until 4.9 Hz (eight programs in total). This fact is crucial
for the upcoming analysis since all the signals, 640 in total, were processed independently
of their closeness to the actual natural mode, and therefore assuming a perfect noiseless
scenario, where all the data were accurately gathered and each single signal had good data,
only 1/8 to 3/8 of the signals shall include any kind of useful data, given that those are the
closest to the natural frequency of interest. In our case this means that the best expectation
from the analysis would be to get 80–240 good data samples assuming that all the data
gathered are good and usable, which is an assumption that is seldom correct.

As a summary, the ultimate goal of this problem will be to fit real inflight data with
the two main parameters of this model, fn and ζ, for each critical natural mode and at
every dynamic pressure.

6.2.2. Analysis of Results

Figure 13 depicts the plot of original data amplitudes vs. synthetic data amplitudes
considering the proposed PRESTO technique. The optimization assessment was made
representing all the individual data samples amplitudes vs. the signals reconstruction.
Considering this approach, a perfect fit would return a perfect straight line at 45◦ (slope = 1)
with a y− intercept of y = 0. Out of 640 total datasets, the best 180 were represented.

The numerical results of the optimization considering the phase angle can be seen
in Table 2. Calculated over the 180 datasets, show an R-Square coefficient of 0.72, which
implies a small amount of dispersion of the data (an ideal R-square value of 1 would imply
a perfect fit). On top of that the slope of the regression is 0.83, close to the ideal slope of 1,
and a y-intercept of −0.001.
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Figure 13. Data fit of real vs. synthetic data processed with the PRESTO technique calculating both
modes simultaneously.

Comparing the PRESTO with the Laplace Wavelet estimation and regressions, Figure 14
and Table 3 represent the same results but without considering the phase of the spectrum
in the fitting calculations. In this case, the plot shows also a clear correlation in the
data as in the case of the PRESTO estimation. However, the R-Squared coefficient is
slightly worse than in the case of the PRESTO estimation (0.57) and a very similar slope
(0.79), which implies that the fitting results are mostly equally coherent in both cases,
although the Laplace Wavelet estimation shows slightly more dispersion in the data than
the PRESTO technique.
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Figure 14. Data fit of real vs. synthetic data processed with the Laplace Wavelet technique calculating
one mode at a time.
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Table 2. Linear regression over sampled data vs. reconstructed data considering the proposed
PRESTO estimation.

Linear Regression Equation y = Mx + N

Nominal value Lower bound Upper bound
M 0.8302 0.8264 0.8339
N −0.0007 −0.0015 0.0001

R-Squared coefficient 0.716

Table 3. Linear regression over sampled data vs. reconstructed data considering the Laplace
Wavelet estimation.

Linear Regression Equation y = Mx + N

Nominal value Lower bound Upper bound
M 0.7856 0.7809 0.7903
N 0.0055 0.0045 0.0064

R-Squared coefficient 0.572

Figures 15–18 show the results of the match between original and synthetic reconstruc-
tions of selected signals, PRESTO processing vs. Laplace Wavelet processing. The selection
has been made under the following rules:

• Coupled plots (horizontally) represent the same original signal processed by the
PRESTO technique (left) and Laplace Wavelet (right).

• The signals have been sorted by the MSE between the original and reconstructed
signals, and obviously the MSE order is different for Laplace and PRESTO processing.
Order 1 means the lowest MSE obtained during the reconstruction.
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Figure 15. Original signal (blue) and signal reconstruction processed by the PRESTO technique (red).
MSE order 7 (lower order means better match).
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Figure 16. Original signal (blue) and signal reconstruction processed by the Laplace Wavelet tech-
nique (red). MSE order 1 (lower order means better match).

Figures 15 and 16 represent the matching for one of the signals where only 1 mode
is involved, while Table 4 shows the estimated parameters after forcing the algorithm to
extract two different modes. In this case the Laplace processing returns a very good match.
In fact it is the best of the whole dataset processed by that technique, while the PRESTO
processing returns a slightly worse error (the 7th from the whole dataset). In this case, the
Laplace Wavelet processing returned two equivalent modes ( f = 4.5 Hz, ζ = 0.04), while
the PRESTO processing returned one first extra mode disturbing the signal and clearly
spurious, while the second mode of f = 4.6 Hz, ζ = 0.03 is clearly dominant (but disturbed
by the former). After processing the signal through logarithmic decrements, the results
show a damping factor of ζdeclog = 0.039, which is much closer to the Laplace Wavelet
processing. The explanation to the better estimation in damping for the Laplace wavelet
is described marginally in Section 6.2.3. The PRESTO mechanism forces the existence of
two different modes regardless of the actual number of modes involved, while the Laplace
Wavelet will try to match one single mode with the maximum energy and then start
searching for secondary modes. This means that if only one mode is involved, the PRESTO
algorithm will initially try to share the energy between two “ghost” modes, neither of them
specially accurate but close to the actual value, while the Laplace Wavelet will allocate the
maximum amount of energy into one single mode (initially the actual mode) and if forced
to search more modes those will be spurious modes. According to the authors experience
analyzing real data, the most sensitive factor is damping. While the frequency is often
estimated within an acceptable range of values, the damping factor is more sensitive to
local minima or oscillations in the estimations. That being considered, in Figures 17 and 18
the effect is the opposite. The PRESTO algorithm replicates very accurately the features
of the original signal including artifacts (Figure 17), which gives a slight advantage on
the confidence on the results compared to the Laplace Wavelet (Figure 18), always noting
that the results of the Laplace Wavelet replicate with high accuracy the original signal. In
this case, however, it is not possible to perform an even-breaker test. The Logarithmic
decrements technique is not applicable for this signal, and therefore the only metric capable
of giving confidence is the one exposed above.
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Table 4. Figures 15 and 16 estimated parameters.

Figure 15 (PRESTO) Figure 16 (Laplace)

Frequency [Hz] Damping factor [] Frequency [Hz] Damping factor []
Mode 1 4.443 0.073 4.550 0.045
Mode 2 4.579 0.030 4.550 0.040

MSE 0.004 0.003

Figures 17 and 18 show results where clearly two modes are involved, and as in the
previous case, Table 5 shows the estimated parameters for those two modes. In this case
the PRESTO processing order is the 10th from the whole dataset, while the Laplace Wavelet
processing returned the 22nd in order. Where two modes are involved it is not possible
to apply logarithmic decrements to the data, and unfortunately the authors are unable to
compare both results to a tie breaker. Nevertheless, notice that the matching of the PRESTO
processing mimics almost perfectly the artifacts in the signal, while the Laplace Wavelet
processing fails to match slightly in amplitude and to reproduce the artifacts, which is
coherent with the analysis on the techniques performed in Section 6.2.3.
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Figure 17. Original signal (blue) and signal reconstruction processed by the PRESTO technique (red).
MSE order 10 (lower order means better match).

Table 5. Figures 17 and 18 estimated parameters.

Figure 17 (PRESTO) Figure 18 (Laplace)

Frequency [Hz] Damping factor [] Frequency [Hz] Damping factor []
Mode 1 4.577 0.033 4.600 0.040
Mode 2 5.913 0.021 6.000 0.030

MSE 0.004 0.006
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Figure 18. Original signal (blue) and signal reconstruction processed by the Laplace Wavelet tech-
nique (red). MSE order 22 (lower order means better match).

6.2.3. Comparison between PRESTO and Laplace Wavelet Techniques

Laplace Wavelet and PRESTO techniques are quite similar. Considering one single
degree of freedom for simplicity, both equations are equivalent as shown in Equation (29)

Aeωn2π(t−τ)sin(ωd2π(t− τ)) = Aeωn2πt−ωn2πτ)sin(ωd2πt−ωd2πτ) = Beωn2πtsin(ωd2πt− φ) (29)

This result can be extrapolated for 2 degrees of freedom if instead of 1 single time
delay 2 different time delays are considered, so all in all both equations are exactly the same
in terms of unknown parameters. However, it is important to notice that both techniques
differ in the method of process data. Laplace Wavelet technique estimates one mode at a
time, removes its contribution to the original signal and afterwards estimates the second
mode. Errors in the estimation of the first mode will be carried and amplified for the
estimation of the second mode, mainly driven by errors in the phase angle as demonstrated
in [44] for Matching Pursuit estimations, which is the search procedure followed by the
Laplace Wavelet approach. This problem is partially mitigated by the PRESTO estimation.
The estimation of both modes at the same time implies that the error is not carried to the
second mode, since the optimization intends to minimize the error contribution of both
modes globally. This fact might explain why the Laplace Wavelet fits considerably better
signals where the contribution of the second mode is negligible. Figures 16 and 18 show
this behavior, where the estimated signal is affected by an offset. Take into account that the
addition of a second mode sensibly not aligned with the corresponding original signal will
induce a slight offset in the sum signal.

It may be possible to modify the technique to calculate both modes at the same time
through the Laplace Wavelet but take into account that Matching Pursuit is a greedy
estimator [39,40], and the memory required to construct the dictionary is comprised by the
product of the number of elements of each parameter. Consider for example a typical range
in frequency between 2 Hz and 10 Hz and a low resolution of 0.1 Hz. There are 81 elements
in this range. Assuming all the parameters around this number of elements, with only
1 mode at a time (4 parameters), the dictionary size is 814 ≈ 4 · 107 elements, with their
respective calculations associated. In the case of 2 modes (8 parameters) the dictionary size
would be 818 ≈ 2 · 1015 elements. Even assuming the test facility has a mid size cluster
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available to calculate low accuracy results, if two modes are to be processed simultaneously
with the Laplace wavelet approach, it is not easy to get a real time estimation during a
Flutter Flight Test as it may be possible using the PRESTO estimation, even using a low
end home use computer and reaching more accurate results.

7. Conclusions and Discussion

The present paper has developed the equations of motion of a lifting surface subjected
to aerodynamic, inertial and elastic forces, with damping factor defined by the viscous
damping model. It has shown the importance of the phase angle in relationship with
the bandwidth and the resonance frequency and presented a new approach to process
data, the PRESTO technique, comparing it to a state-of-the-art technique, the Laplace
Wavelet processing.

The main conclusion to be drawn from this paper is that the phase angle contribution
is paramount for the identification of natural modes in flutter data processing (or in general
in aeroelasticity), either as a phase angle like in the PRESTO technique or as a time offset as
in the Laplace Wavelet approach as demonstrated in Section 6. On top of that, a new data
processing technique has been presented, the PRESTO technique. The validation of such
processing approach has been demonstrated by the numerical results with two different
sets of data, simulated data (generated with known parameters) and real data (without
any previous knowledge of the actual values), and it has demonstrated to be a robust and
accurate technique to identify natural modes of Flutter Flight Tests, especially comparing
it to the already in use technique, Laplace Wavelet. It is worth noticing that the results
between both techniques, Laplace Wavelet and PRESTO, are quite similar. In addition,
it must be taken into account that the Laplace Wavelet technique relies upon Matching
Pursuit processing. Given the greedy nature of Matching Pursuit, the best combination of
parameters will be included as a solution of the Laplace Wavelet only if the model matches
reality as accurately as possible (it was already demonstrated that the Laplace Wavelet
fitting function does) and the dictionary includes the right combination of parameters.
However, increasing the number of parameters (or the size of the dictionary) increases
exponentially the number of cases to calculate and consequently the time required, which
in some cases might lead to extremely long calculation times if the seeds and ranges are
not estimated carefully.

The PRESTO and Laplace Wavelet processing show the same level of correlation be-
tween the reconstructed and original signals, although the Laplace Wavelet shows slightly
more dispersion and mimics artifacts worse. The dictionary conditions enormously the
performance of the technique, and therefore the Laplace Wavelet performance will be sen-
sibly worse considering a non-taylored dictionary. Regarding the robustness, the Laplace
Wavelet shows an extreme insensibility to noise and overfitting when less modes than ex-
pected are considered compared to the PRESTO technique. However, the Laplace Wavelet
technique has difficulties processing signals consisting of more than two modes, while the
PRESTO technique has a tendency to overfitting signals consisting of one single mode.

In general, PRESTO and Laplace Wavelet approaches show the same level of cor-
relation between the original and reconstructed signals. While the PRESTO technique
showed superior characteristics than the reference technique analyzed, Laplace Wavelet,
in terms of performance, dispersion and several modes processing, the Laplace Wavelet
shows stronger robustness in terms of overfitting of signals consisting of one single mode
and noise.

As for the recommendations and future lines of work, the PRESTO technique shows
great potential as a stand-alone technique for real time applications, since the model
accurately matches reality and the time required is short enough as to allow for getting
results before proceeding with the next test point. However, there is some room for
improvement. The technique is prone to overfitting, and simple unimodal signals will
return bigger errors than the Laplace Wavelet or even logarithmic decrements. A possible
line of work may be to develop a preprocessing algorithm to estimate the most probable
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number of modes, which will significantly reduce (or even eliminate) the propensity to
overfitting. In addition, it is necessary to improve its robustness to noise without getting
stuck in local minima. For that reason it is necessary to improve the optimization algorithm.
At last, the datasets employed came from F-18 real flights. The technique may be most
likely extended to different platforms, but it needs to be validated with real data from
other aircraft.

Author Contributions: Conceptualization: S.A.-K., R.G.-P. and M.R.-Z.; Formal analysis: R.G.-P. and
S.A.-K.; Funding acquisition: M.R.-Z. and R.G.-P.; Investigation: S.A.-K. and R.G.-P.; Methodology:
S.A.-K. and R.G.-P.; Project administration: M.R.-Z. and R.G.-P.; Software: R.G.-P. and S.A.-K.;
Supervision: M.R.-Z. and R.G.-P.; Validation: S.A.-K. and R.G.-P.; Visualization: S.A.-K. and R.G.-P.;
Writing; Original draft: S.A.-K.; Writing; Review and editing: M.R.-Z. and R.G.-P. All authors have
read and agreed to the published version of the manuscript.

Funding: This work has been partially funded by the Spanish Ministry of Economy, Industry and
Competitiveness, with project RTC-2016-4687-7, the Spanish Ministry of Science, Innovation and
Universities, with project RTI2018-098085-B-C42 (MSIU/FEDER) and by the Community of Madrid
and University of Alcala under project EPU-INV/2020/003.

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained
from the Spanish Air Force CLAEX, with permission to use and report in the present paper (under
restrictions) from the Communications Office of the Spanish Air Force. The data are not publicly
available for confidentiality reasons.

Acknowledgments: The data from real Flight Flutter Tests were kindly provided by the Spanish Air
Force, the institution to which the authors show their appreciation. The plots in Appendix A were
extracted from two different software packages developed by Agustin Vaquero for the Spanish Air
Force CLAEX.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Support Figures

Figure A1. Typical V-G sample plot from VGPlotter. Notice the frequency variation in Modes 2 and 3
and the change from negative to positive damping factor (flutter point) in the vicinity of the airspeeds
where those two frequencies get close together.
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Figure A2. Structural deformation sample depiction from DePlotter. The figure shows a typical pure
wing plunge mode, with a subtle pitch deformation in the fuselage.
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